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1. What is a simulation ?



Two simulation examples. What is the
difference ?

Simulation 1: Time to complete  Simulation 2: Delay at a server
N jobs

N customers arrive (at the
same time) at Joe’s shop and
download a file. We want to
estimate the time T it takes to
serve the N customers

An information server handles
requests according to some
scheduling policy. We want to
estimate the time it takes to
serve one request



Two Simulation Runs

What is the difference ?

Mean Queue Length

Scenario 1

M/M/1 Queue, He = 0.096, Hg = 0.01
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Average service time = 96 ms

Mean Queue Length

Scenario 2

M/M/1 Queue, 11, = 0.0101, i = 0.01

Average service time = 101 ms

Request arrival rate = 10 /s



Definition of Stationarity

A property of a stochastic model X,

Let X, be a stochastic model that represents the state of the
simulator at time t. It is stationary iff

foranys >0

(X1, X¢9, oy X¢) has same distribution as (Xi14+9 Xioasr oor Xinas)

i.e. simulation does not get “old”



Classical Cases

Markov models

Definition: State X, is sufficient to draw the future of the simulation --
Common case for all simulations

For a Markov model, over a discrete state space

If you run the simulation long enough it will either walk to infinity
(unstable) or converge to a stationary regime

Ex: queue with p >1: unstable
queue with p <1: becomes stationary after transient

If the state space is strongly connected (any state can be reached from
any state) then there is O or 1 stationary regime

EX: queue
Else, there may be several distinct stationary regimes
Ex: system with failure modes
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Stationarity and Transience

Knowing whether a model has a stationary regime is sometimes a
hard problem

We will see important models where this is solved

Ex: some queuing systems
Ex: time series models

Reasoning about your system may give you indications
Do you expect growth ?
Do you expect seasonality ?

Once you believe your model is stationary, you should handle
transients in order to eliminate the impact of initial conditions

Remove (how ? Look at your output and guess)

Sometimes it is possible to avoid transients at all (perfect
simulation — see later “Importance of the View Point”)
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Typical Reasons For Non Stationarity

Obvious dependency on time

Seasonality, growth

Can be ignored at small time scale (minute)
Non Stability: Explosion

Queue with utilization factor >1
Non Stability: Freezing Simulation

System becomes slower with time (aging)

Typically because there are rare events of large impact
(« Kings »)
The longer the simulation, the larger the largest king

We'll come back to this in the chapter « Importance of the
View Point »
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The state of a simulation attime 4
t=1,23,..isdrawn atrandom 7

from a distribution F(). Is this a |l
stationary simulation ? | IS S
X is a sample drawn from the
A . Ye S distribution N (23, 100)
B. It depends on the distribution
FC )

C. It dependsif the simulation
terminates or not

D. No
E. Idon’t know
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2 Accuracy of Simulation Output

A stochastic simulation produces a random output, we need

confidence intervals

30 runs of
Joe’s shop:
estimate the
time to

serve a batch
of N customers
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Confidence Intervals
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When computing these
confidence intervals we

need to make sure that...

A.

... the simulation runs are
independent

... the output is normally
distributed

Both
None

| don’t know

8

Confidence Intervals for Mean and Median

Med
-/

iI]

n
¥

20 30
MNumber of customers

17



3 Random Number Generator

A stochastic simulation does not use truly random numbers but
use pseudo-random numbers

The Random Number Generator produces a random number ~
U(0,1) based on a chaotic sequence

Example (obsolete but commonly used, eg in ns2:)

EXAMPLE 6.8: LINEAR CONGRUENCE. A widespread generator (for example the
default in ns2) has a = 16’807 and m = 2°! — 1. The sequence is z, = ¢Jodm
where s I1s the seed. m Is a prime number, and the smallest exponent /. such that

a = 1 mod m is m — 1. It follows that for any value of the seed s, the period of z,, is
exactly m — 1.Figure 6.5 shows that the sequence x,, indeed looks random.

Let us check if output looks random
19



The Linear Congruential Generator of ns2

Uniform QQPIlot

0.6

uniform qg

b
1

appears to be
iform

(a)
ol Auto-c¢orrelation is
autocortelation negligjble
D____l___l """"""""""""""""""""""" lr L _
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Lag Diagram

(X, X)), 1000 points
n *n+h

Xy, appears to be
independent of

Xn+h
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Period of RNG

This RNG appears to produce an iid, uniform output
However, it is in fact periodic

Any sequence generated from a deterministic algorithm in
a given computer must be periodic (because the number of
states is finite)

But we can require that the period should be much larger than
maximum number of uses

The ns2 simulator has period = 2 - 10, which is too small

The “Mersenne twister” (matlab’s default) has period
219937 — 1~ 106000
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Example when the period is too small
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(a) Linear Congruence with a = 16’807 and (b) L’Ecuyer’’s generator[ LecuyerSimConf-01]
m = 2% —1
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(x,, x;,) for two parallel streams with th

Two Streams, seaeds =

e ns2 RNG

1 and 2
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Using RNGs

Be careful to have a RNG that has a period orders of magnitude
larger than what you will ever use in the simulation — choose your

RNG carefully

The RNG must have a period several orders of magnitude larger
than the maximum number of times you will call it

The RNG uses a seed -- for independent replications you need
independent seeds; sequential runs usually are sufficient. If you
use parallel runs, you must find an way to obtain truly independent

seeds
Eg based on clock
Or by using an RNG that supports parallel streams
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4 Sampling From A Distribution

Problem is:

Given a distribution F (), and a RNG, produce some sample
X thatis drawn from this distribution

A common task in simulation
Matlab does it for us most of the time, but not always
Two generic methods

CDF inversion

Rejection sampling

26



CDF Inversion for distribution with CDF F ()

Applies to real or integer valued random variable

For a continuous distribution: draw U ~ U(0,1) using RNG; then
X = F71(U) is drawn from the distribution with CDF F()

09 p /
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Proof

U is uniformly distributed: P(U < u) = u foru € [0,1]

We define X by X = F"1(U), i.e. U = F(X)
Let us compute the CDF of X

X<x)&e (F(X) < F(x)) because F is monotonic increasing

Therefore
P(X <x)=P(F(X) <F(x)) = F(x)

28



EXAMPLE 7.10: EXPONENTIAL RANDOM VARIABLE. The CDF of the exponential
distribution with parameter \ is F'(x) = 1 — ¢, The pseudo-inverse is obtained by
solving the equation

l—e M =p

where = is the unknown. The solution is = = —E““T_p}. Thus a sample X of the

exponential distribution is obtained by letting X = —h‘”}‘i or, since U and 1 — U
have the same distribution: (U
n(t )

X =-— 79

- (7.9)

where U Is the output of the random number generator.
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CDF Inversion, when F() has jumps
Replace inverse by pseudo-inverse

THEOREM 6.1. Let F' be the CDF of a random variable X with values in R. Define the pseudo-
inverse, F~! of F by
F~(p) =sup{zx: F(x) < p}

Let U be a sample of a random variable with uniform distribution on (0,1); F~1(U) is a sample
of X.

L .
Fm) [ . CDF of an integer-valued
. e — : random variable
Fo-1) [ K ;
-l in=Fl(p)

30



Sampling an integer valued RV

We want to draw a sample of the random integer N = 0 such that

let F, = Yjropiforn=0,1,2,..andF_; =0

1. Draw U using the RNG
2. OutputisnsuchthatF,,_; < U<E,

31



EXAMPLE 7.11: GEOMETRIC RANDOM VARIABLE. Here X takes integer values
0.1,2,.... The geometric distribution with parameter ¢ satisfies P(X = k) = (1 — 6)*,
thus for n € N:

F(n)= zﬂ:(i)(l — Ok =1— (1 — )t
f=0

by application of Eq.(7.10):

B In(l —p)
LY ) w < ) _
F~(p) ra@rs_lllfl_g}{_n—kl
hence
o In(1 — p)
| ,
F=p) = Lu(l — 9:]J

and, since U and 1 — U have the same distribution, a sample X of the geometric

distribution is
.| In(U)
X = [111[1 —H)J (7.11)
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What does this function compute ?
myfun(p) =ifrand() < pOelse 1

A.

The flip of a coin where 1 is obtained
with proba p and 0 with proba 1-p

The flip of a coin where 1 is obtained
with proba 1 — p and 0 with proba p

A sample of a geometric random

. . 1
variable with mean ;

A sample of a geometric random

. . 1
variable with mean E

| don’t know
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hich one is a uniform random point ?

10’000 samples

A. A
B. B
C. Both
D. None
E

. I don’t know

0 D,1 02 EI 3 D.A 0,5 D‘G TJ, 08 09 1



How do you sample a uniform point in a rectangle ?

37



We sample a point M = (X, Y)uniformly in some
arbitrary area. Are X and Y independent ?

A. Yes

B. It depends on the area
C. No
D

. I don’t know




What is the PDF of the e
uniform distributionin 4 ?
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How can we sample a point uniformly

distributed in this area 47

A draw X ~ U(-10,20)

if X € [0;10] draw Y ~ U(—20; 40]

else draw Y ~ U(0; 20]

B repeat

draw X ~ U(—10,20),Y ~ U(—20; 40]

until (X,Y) € 4

A. A

B. B

C. Both

D. None

E. Idon’t know

T

30

Dfeye » o, ¥,

15 20
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Rejection Sampling for Conditional Distribution

THEOREM 6.2 (Rejection Sampling for a Conditional Distribution). Let X be a random variable
in some space S such that the distribution of X is the conditional distribution of X given that
Y € A, where (X,Y) is a random variable in S x S’ and A is a measurable subset of S.

A sample of X is obtained by the following algorithm:

do

draw a sample of (X,Y)
until Y € A
return(X)

1
P(YeA)"

The expected number of iterations of the algorithm is

Notation in this theorem | Previous example

X (X,Y) ~ Unif( rectangle)
(X,Y) ~ Unif( rectangle)
(X,Y) ~ Unif( A)

~Q

S




1

1(x,y) =4 X area(A)

It can|be sampled by rejection sampling
L N

sample a point (X, Y) uniform in a bounding
reject (X,Y) if notin 4
until (X,Y) € 4
return (X,Y) <

around A

Note: the distribution here is not the same as there

48




What does this algorithm compute ?

1. sample X uniformly in [—10,10];

sin“x
2. compute g = f(X) L1 —
3. with probability q os|
return (X) R
with probability 1 — g
goto 1

A sample of the random variable with pdf = Kf (x) for some constant K

A sample of the random variable with pdf = K |x|f (x) for some constant K

A sample of the random variable with pdf = K |1 — x|f (x) for some constant K
Nothing, it never terminates

None of the above

Tmo o ® >

| don’t know
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Rejection Sampling for General Distributions

THEOREM 6.3 (Rejection Sampling for Distribution with Density). Consider two random vari-
ables X .Y with values in the same space, that both have densities. Assume that:

e we know a method to draw a sample of X
o the density of Y is known up to a normalization constant K: [y (y) = K f{}(y), where [} is
a known function
e there exist some c > 0 such that
fv(z)
fx(x)

A sample of Y is obtained by the following algorithm:

<c

do
draw independent samples of X and U, where U ~Unif(0, c)

; F(X)
until U < )
return(X)

The expected number of iterations of the algorithm is +=.
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some ¢ > () such that

o el
Example: use rejection Fel@) = ¢
Samphng tO draW 3 Sample i obtained by the following algorithm:
. do
Of Y W|th pdf f Y (y) — draw iﬁﬁ%endentsamples of X and U, where U ~Unif(0, c)
until U < 3¢
Sm(}’) 2 return(X) o
K 1{—a£y£a} - ~
y ol /\ sinx |
f@="5 |
1 ol /
X ~ Unif(—a,a), fy(x) ==—for —a<x<a - / \
2a . \/A

o ' s e
a a 3 4 2 a 2 2 Py - T

in(y)\? f ) ()
fl}l(y) — (Smy ) 1{—aSySa} £ (X) — 1 < 2a we take c = 2a
2a

The rejection sampling algorithm is:

1. Sample X ~ Unif(—a, a) and U ~ Unif(0,2a)

fx (X)

2. IfU <
1/2a

return(X) else goto 1
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Example: use rejection
sampling to draw a sample

of Y with pdf fy(y) =

K (siny()’))z 1{—a$y$a}

The rejection sampling algorithm is:

~some ¢ > 0 such that

Rl _
Fela) -

i obtained by the following algorithm:

do

draw independent samples of X and U, where U ~Unif(0, ¢)
until U < M
fx(X)

return(X)

The rejection sampling algorithm is:
1. Sample X ~ Unif(—a, a} and I/ ~ Unif{0,2a)

2. KU = % return{X) else gotn 1

Replace T by V = %, we obtain the equivalent algorithm:
1. Sample X ~ Unif(—a, a)} and ¥ ~ Unif{0,1)
2. KV < fF(X) return(X) else goto 1

1. Sample X ~ Unif(—a,a) and U ~ Unif(0,2a)

fx (X)

2. IfU <
1/2a

return(X) else goto 1

Replace U by V = % we obtain the equivalent algorithm:

1. Sample X ~ Unif(—a,a) and V' ~ Unif(0,1)
2. IfV < f'(X) return(X) else goto 1
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: 1. Sample X ~ Unif(—a,a) and V ~ Unif(0,1)
Interpretathn 2. ItV < f{H(X) return(X) else goto 1
T ’ ) N\ ’ " ) ]
0:8 — III']'-I -
0| \ : | f
. - . A ect. ]
0:5 u o k \#Il's )( wd, |
ol et : 1
Yor=~--- - T X : ]
L S : pdf
=] P\ : _
1 : -: HR"\ /f'r_‘\\u |
X

} histogram
: of 2°000]
- samples
obtained by rejection sampling
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ARBITRARY DISTRIBUTION WITH DENSITY Assume that we want a sample of Y, which

takes values in the bounded interval [a, b] and has a density fy = K fi*(y). Assume that f{(y)
(non normalized density) can easily be computed, but not the normalization constant /A which 1s

unknown. Also assume that we know an upper bound M on fi.

We take X uniformly distributed over [a, b| and obtain the sampling method:

do
draw X ~Unif(a,b) and U ~Unif(0, M)

until U < fi}(X)
return(.X)

Note that we do not need to know the multiplicative constant /<. For example, consider the distri-

bution with density
.2
. -sin*(y)
fry) =K 2 1{—a<y<a} (6.13)

K 18 hard to compute, but a bound A on fy* 1s easy to find (M = 1) (Figure 6.10).
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We sampled 5’000 points from the distribution in
0 ;1 ]% with pdf 4, B or C. Who's what ?

[

A. ABC
B. ACB
C

D

E

-

G

CAB
BCA
. CBA

. BAC

o =
S
L
A
Il
s
X
=
+
<2
I
-

. Idon"t know C(x,y) = K3 x \/(x — 0.5)2 + (y — 0.5)2
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Which algorithm is a correct sampling of the
distribution in [0 ;1 ] with pdf proportional to C ?
A A

B. B
C. Both
D

F

C(x,y) =+/(x —0.5)2 + (y — 0.5)2

None

| don’t know

A 1, Sample X and Y uniformly in [0,1] and U~Unif(1, 1/\/7);
2.1fU < C(X,Y) return(X,Y) else goto 1

B 1. Sample X and Y uniformly in [0,1] and U~Unif(0,1);
2.1fU < C(X,Y) return(X,Y) else goto 1
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EXAMPLE 6.14: A STOCHASTIC GEOMETRY EXAMPLE. We want to sample the ran-
dom vector (X, Xy) that takes values in the rectangle [0, 1] x [0, 1] and whose distri-
bution has a density proportional to | X1 — X3|. We take fx = the uniform density over

0.1] x [0. 1] and f2(z1.29) = |21 — ao|. An upper bound on the ratio 22122) i 1 The
d fy An upper bound on the ratio H-Z1<2 is 1. Th
sampling algorithm is thus: ‘ |

do

draw X, Xo and U ~Unif(0. 1)
until U < | X — X
return( 'y, X»)

Figure 6.10 shows an example. Note that there is no need to know the normalizing
constant to apply the sampling algorithm.
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Another Sample from a Weird Distribution
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Figure 3.8: (a) Empirical histogram (bin size = 10) of 2000 samples of the distribution with density fx ()

proportional to %@ll{_asgia} with a = 10. (b) 2000 independent samples of the distribution on the
rectangle with density fx, x,(z1,x2) proportional to |z; — x2|.



6.3 Ad-Hoc Methods

Optimized methods exist for some common distributions
Optimization = reduce computing time
If implemented in your tool, use them !

Example: simulating a normal distribution
Inversion method is not simple (no closed form for F1)
Rejection method is possible

But a more efficient method exists, for drawing jointly 2
independent normal RVs

There are also ad-hoc methods for n-dimensional normal
distributions (gaussian vectors)
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1’000 samples of the random Gaussian vector (X,Y) with zero mean

. . (1 0
and covariance matrix (O 1)
X~N(0,1),Y ~N(0,1) and X,Y are independent

d‘ 1 | ] I I I I

-2 -




1’000 samples of the random Gaussian vector (X, Y) with zero mean

and covariance matrix (015 Ois)

X,Y are not independent
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What is the distribution of

Y?
A.

B.
C.

=

Normal withu = 0,02 = 1
Normal withu = 0,62 = 0.5

Normal but with other
parameters

Non normal
| don’t know

1’000 samples of the random Gaussian vector (X, V') with zero

. S0 S R
mean and covariance matrix 0.5 1
L __'l x

X.Y are not independent
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4 Monte Carlo Simulation

A simple method to compute integrals and probabilities

|dea:
interpret the integral or probability f as f = E(@ (X))

simulate as many independent samples of X as you want
estimate the expectation by the mean

1. generate R replicates X", r =1..R
2. the Monte-Carlo estimate of S is

R
~ 1
B = ﬁzl P (X;)
=
3. compute a confidence interval for the mean (since [ is the mean
of the distribution of @ (X))
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Example: Compute f =
1 01 1 (1
f() f() f() fo \/(xl o x2)2 T (}’1 o yZ)Z dxldXZdyldyZ

i.e. the average distance between two points uniformly distributed in the unit square
[0; 1]%. Say which one is a correct implementation of the Monte-Carlo method:

b=0,s=0 B

A

1. Draw R points M", N" random
uniform in [0,1]?

2. f = mean(d(M",N"),r = 1:R)

3. 6 =std(d(M",N"),r =1:R)

4. Cl=f +1.966

A

B
Both
None

| don’t know

do R times
sample (X1, Yy, X5,Y,) iid ~ Unif
(0,1)

b=>b+ \/(X1 —X5)2 + (Y, —Y,)?
S=S + (Xl _Xz)z + (Yl - Yz)z
end

A

B =b/R
~ _ S _ p2
g = /R f
_ P o
CI—,Bil.96\/E
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Example

Compute ff =
1 01 01 01
f() f() f() f() \/(xl o xZ)Z + (yl o y2)2 dxldxde1d3’2

i.e. the average distance between two points uniformly distributed

in the unit square [0 ; 1]2.

We obtain the following Monte Carlo estimates

R B 95% confidence interval
1’000 0.5254 0.5102 0.5405
10°000 0.5227 0.5178 0.5276
100°000 0.5206 0.5190 0.5221
1°000°000 0.5216 0.5211 0.5221

(The answer is known and is equal to 0.5214 [Ghosh B. 1943, On the distribution of
random distances in a rectangle])
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Is it a good idea to use a confidence interval

for the mean ?

A. Yeswhen R is large

B. Yes but it would be
safer to use a Cl for
median

C. No because we don’t
know if the output is
normally distributed

D. | don’t know

4 Monte Carlo Simulation

B A simple method to compute integrals and probabilities
B Idea:

» interpret the integral or probability f as f = E(@(X))

» and assume you can simulate as many independent samples
of X as you want:

1. generate R replicates X"
2.the Monte-Carlo estimate of f is

R
- 1
p =§; ?(X,) ‘

3. compute a confidence interval for the mean (since § is the
mean of the distribution of ¢ (X))
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Conclusion

Simulating well requires knowing the concepts of
Transience
Confidence intervals
Sampling methods (Rejection sampling, CDF inversion)

Monte Carlo simulation is an efficient way to compute by
simulation quantities that can be expressed as integrals
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