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All You Need to Know About Queuing Theory

Queuing is essential to understand the behaviour of complex
computer and communication systems

In depth analysis of queuing systems is hard

Fortunately, the most important results are easy

We will first study simple concepts



1. Deterministic Queuing

Easy but powerful

Applies to worst case and A(t) A'(H)
transient analysis —»> S — S|

Example: playback buffer sizing
Source sends data at constant bit rate r

Network imposes a variable delay, received bit rate no
longer constant

At destination, received data is stored in playback buffer,
read at a constant rate r

Q: does it work ? How should the playback buffer be
engineered?



Cumulative Functions Alt) D(t)

—> S —

It is convenient to use cumulative (= integral) functions:
A(t) = amount of bits input to system S in [0, t]
D(t) = amount of bits output from system S in [0, t]

Assume no loss tbits  A(e) —
B(t) = backlog (buffer content) ()
attime t

d(t) = virtual delay . time
= delay if system is FIFO ' } >

At time t, the system § is empty



The playback buffer problem A1) A1) DY

Sources sends at constant rate:
A(t) =1t

Destination wants to obtain
D(t) = r(t — delay offset)
Assume FIFO network with

delay jitter bounded by A
d(0)—A<d(t)<d(0)+A

* bits Alt)

d(0) — A d(0) d(0) + A

i.e. A'(t) is between the two parallel lines D1 and D2

Take D(t) given by the line D2, i.e. (Playback Policy):
Wait for a time A before reading the first bit

Then read at constant rate r,
sothat D(t) =r(t —d(0) — A)

We have D(t) < A'(t) therefore: all bits arrive before time to read

them (no starvation)



How large should the AH)

A(t)  D(1)
playback buffer be ? s Ty
A 1A * bits A o
B 2rA )

C. 3rA

D. r(d(0)+ A)
E. None of the above

time

F. | don’t know d(0) —A d(0) d(0)+A



2. Operational Laws
Little’s law — N —

Consider an arbitrary discrete system and call
A = customer arrival rate (in customer/s)
R = average response time (in s)
(average time spent in system by an arbitrary customer)
N = average number of customers in system (customers)
(as seen by an observer who samples the system at an arbitrary
point in time)
Then [Little] AR = N
Interpretation: Say every customer pays 1 Fr per minute spent in
system
A customer, in average, pays R Fr
The system, in average, receives N Fr per minute

The system is visited by A customers per minute; the system, in

average, receives AR Fr per minute > AR = N
8



Little’s law in a simulation

4
- R
B(tz ) < 1 B(t)

B (1:2+)\\‘\%\---\,L
5

T >

tl tZ
Consider a simulation where we measure R and N. We use two

counters responseTimeCtr and backlogCtr, initially O and updated at

every event. At end of simulation, we have
nbCust T

responseTimeCtr = R., and backlogCtr = f B(t)dt

n=1 0

where B(t) = nb customers in system at time t, R,, = response time
of n'customer and nbCust = nb customers served

At end of simulation we do: R = responseTimeCtr/nbCust,
A =nbCust/T and N = backlogCtr/T



How is each counter updated at time t,?

&

B(t7) . Ry .
B
B(t}) -‘-—-»\ ©
t1 {3 %) ’

responseTimeCtr = Y.0PCUSt R and backlogCtr = foT B(t)dt

A. responseTimeCtr += (t, — t3)B(t;)
backlogCtr += (t, — t3)B(t;)

B. responseTimeCtr += (t, — t;)B(t;)
backlogCtr += (t, — t3)B(t;)

C. responseTimeCtr += (t, — t3)B(t5)
backlogCtr += (t, —t;)B(t;)

D. | don’t know



Utilization Law

Consider a single server queue > \ { (
and apply Little’s formula to
the server

R = average service time = S
N = 0 X P(queue is empty) + 1 X P(queue is nonempty)
= P(queue is nonempty)

thus AS = P(queue is nonempty)

Note that AS is the utilization factor of the server

13



The Interactive
User Model

n users alternate between think
time and visit to the service
center

Apply Little to the system A - B A

AMZ+R)=n

v

A
\ 4
A

Service
Center

\ 4

ExXAMPLE 5.4: SERVICE DESK. A carrental company in a large airport has 10 service
attendants. Every attendant prepares transactions on its PC and, once completed,
send them to the database server. The software monitor finds the following averages:
one transaction every 5 seconds, response time = 2 s.

QUESTION 5.3.2. What is the average think time ? °

14



What is the average think time ?

m m o 0O W >

EXAMPLE 5.4: SERVICE DESK. A carrental company in a large airport has 10 service
attendants. Every attendant prepares transactions on its PC and, once completed,
send them to the database server. The software monitor finds the following averages:

one transaction every 5 seconds, response time = 2 s.

48 s
| don’t know

Z R
O

O A Service
O | Center
@,

O n users
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Network Laws

d
Y ﬂ]\ no Ek_..?u

e [Forced Flows] \i. = AV, where A\, is the expected number of customers arriving per
second at node k and V), is the expected number of visits to node k by an arbitrary customer
during its stay in the network.

o [Total Response Time] Let R [resp. R).] be the expected total response time R seen by an
arbitrary customer [resp. by an arbitrary visit to node k.

R = Z R R‘I'I?Fr
I

17



Example )

Ol
9]
O

—3 " CPU

NI@

)

............................

ExamMPLE 5.5: Transactions on a database server access the CPU, disk A and disk
B (Figure 5.8). The statistics are: Vppy = 102,V = 30,Vg = 68 and ECPU =
0.192 s, E’A = (0.101 s, RB =0.016s

QUESTION 5.3.3. What is the average response time for a transaction ? 1°

One request visits in average 102 times CPU,20 times A and 17

times B
Forced flows: Acpy = 1024, A4, =207, A5 =171
Total Response: R =102 Rcpy + 20 Ro+17 Ry

1093 7 5



Bottleneck Analysis

A crude, but powerful approach — often sufficient to analyze

complex queuing systems

Example: what is the throughput (transactions per second)

versus n?

...........................

CPU

n users
in think time
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Principles of Bottleneck Analysis

Little’s Formula
Waiting time = 0 -- tight at low utilization
Utilization < 1 -- tight at high utilization

20



...........................

)

n users

Little’s formula:

AZ+R)=n
n

A== — — —
/Z + 102 RCPU + 20 RA+17 RB

Waiting Time:

Utilization:

A<

n

o Z_ + 102 §CPU + 20 §A+17 §B
102 AScpy <1,20185, <1,1718z <1

1 1 1

/ISmin(

102Scpy 20 S, 17 Sg

(1)

) (2)

21



throughput n/(z+ 2V8)
1/(V,S,)
1/(Vepy Scpu) = (2)
(1) Without congestion collapse
With congestion collapse
-
n

A<= (1)

o Z + 102 §CPU + 20 §A+17 §B

A < min(102 Scpy, 20 Sa, 17 Sg)  (2)

Bottleneck analysis gives the black bound

The true curve is either blue or red, depending on the presence of
congestion collapse or not

A resource that achieves minimum in (2) is a bottleneck
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3. Single Server Queue )
Stability -

THEOREM 8.3.1. (Loynes [3, Thm 2.1.1])

If p < 1 the backlog process has a unique stationary regime. In the stationary regime, the queue

empties infinitely often.
Furthermore, for any initial condition, the waiting time of the nth customer converges in distribu-
tion as n — oo to the waiting time for an arbitrary customer computed in the stationary regime.

If p > 1 the backlog process has no stationary regime.

Recall that p = A X average service time

In other words
p < 1 = system has a stationary regime (and converges to it)
p > 1 = system has no stationary regime

If p = 1 the theorem says nothing — both cases are possible

Loynes’ theorem does not assume any independence anywhere .



Example: M/GI/1 queue
M = riarkoy - —— - —>1server

= Poisson arrival process \_\J

Times between arrivals are exp(d)  GI = General

where A is the arrival rate Independent

i.e. service times are iid
memoryless: an arrival in with a finite variance and
[t,t + dt] is independent of the independent of the arrival
past and has probability A dt process

M/GI/1 QUEUE Stability 1s for p < 1 with p = 1S

N = f"‘ —I—pWItllh— (l—l—f;%)
Ny = P— Avg number in waiting room
—K))

‘[T p5K  Avg waiting time

Stability 1s for p < 1 for all the examples below.

24



The formula N = N, + p is true ...

A. For the M/GI/1 queue but not for all
stable single server queues

B. For all single server queues with
Poisson arrivals but not for all stable
single server queues

C. For all single stable server queues
D. Idon’t know

— | {

25



Other explicit formulas

GI+ Exponential service times

M/M/L QUEE

Constant service times

M/M/I/K QUEUE  Stability is for any p.
~/

P(N = k) = (1 - p)pMpcreky
7]'= ]__le"‘i

PO( arriving customer is discarded ) = P(N = K)

Total capacity K customers in system—



AS

S servers ﬂ p = -
Ve

M/M/s QUEUE  Stability is for p < 1. Let

s—1 (sp)' -
U = iz £_and p= !
Yo L—pu
,._T = TE—P_p _|_ Sp
.
*_ (i lg—,-’-—"
__p
1? - 5{1_5) —|— 5
i~ v
W 5{1§P:| ‘
7R = g /PE = p) + 21— p)?
¢ ow =15/ pe(l+ p —pp)
nlep)® L
P(N=k)= Ti H0sk=ss
n-if k> s
— a—1 {ap)? g0
1 = Ei:ﬂ iﬁ] + ,:'e!({lpip]
POW < z)=1— pe 5103
P(all servers busy) = P(N = s) = p (Erlang-C formula)
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Non Linearity of Response Time

Mean Response Time 1In seconds

2.5

2
<
|

~ I Requests per Second
6 8 10

ExamMPLE 5.2: A database system services requests that can be modeled as a Pois-
son process. The time needed to process a request is 0.1 second and its standard
deviation is estimated to 0.03. How does the average response time depend on the
number of requests per second that can be served 7 The solution is found by the

M/GI/1 queue model and is plotted in Figure 5.3.
QUESTION 5.2.4. What is the maximum load that can be served if an average response time

of 0.5 second is considered acceptable ?

8.8 requests per second.

29



Which curve is for which distribution of service time?

G M m o O W

Top =1
Middle =2
Bottom =3

1,3,2
2,1,3
2,3,1
3,1,2
3,2,1
| don’t know

Mean Response Time

14

10

M/GI/1 queue with same mean service time

ff

but with different second moment of service til/v{e

1. o5 = 0 (constant service time)
2. os =S (e.g. exponential)
3. o5 =28

/
/
/”

P

0.6

0.8

Utilization
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Optimal Sharing

Assume Poisson arrivals and
exponential service times.

Compare the two in terms of
» Response time
» Capacity

System 2

A )
A:@

32



Which curve is for system 1 ?

C.

The top curve

The bottom
curve

| don’t know

System 2
()
R

Mean Response Time

| L . L

Ttilization
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Which system has the larger
capacity ?

(i.e. the max A for which
system is stable ?)

A. System 1
B. System 2

C. Both have the
same

D. | don’t know

System 2

—1®

N

5.

e T N s

Mean Response Time

Ttilization
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For an M/M/1 queue, what is the expected response
time for a customer with service time x ?

A SA-p —x)

S
1-p M/M/1 QUEUE Stability is for p < 1.
xp f AT
¢ 1 M
P N = 2
5 W 1-p
D, - =i
1-p W= £
, P
E. | don’t know ON =1,
ORp = I—S—
- _p k
PN =k) = (1-p)p*
| P(R<z)=1—-eUP5F

xp




The Processor Sharing Queue M/GI/1/PS

All queues seen so far are FIFO (a notation such as M/M/1 assumes
FIFO by default)

The processor sharing queue M/GI/1/PS is a single server non FIFO

gueue where the server is equally shared between all customers
present.

Models: processors, network links.
By Loynes’ theorem, stability is for p < 1

The number of customers in system has a geometric distribution

P(N(t) = k) = (1 - p)p"
independent of distribution of service time

Egalitarian property:
X

1-p

E( response time |service time = x) =

39



Fairness of PS:

Expected response time given service time is X
M/M/1/PS versus M/M/1/FIFO

w = 0.1 * =" »x =10
120~ 120, 120
Y=
—__FIFO
100} 100k 100k
8ol 20} a0}
60| 60} 601
A0k 40} 10}
20_ | ED_ / ED_ - .IJ
% T 05 T % 0.5 1 % 0.5 1
P P P
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“;’ Ddpart oy Chddo. : ; 4. A Case Study
i :.w' ies pieles &

Impact of capacity increase ?
VeERBIER N Optimal Capacity ?

i -] |




Methodology

Goal: evaluate impact of doubling capacity of skilift
Factors: ¢ = capacity of ski-lift in people / sec
Metric : waiting time at the lift
Load

Model 1: arrival in burst

Model 2: peak hour stationary regime

42



4.1. Deterministic Analysis

Waiting room

—__ |t

Figure 5.10: Queuing Model of Skilift

] »
>

d._ /2 Doubling

) R Arrival curve capacity =
At) max delay is
divided by 2
And same for
average delay

Service curve

time

»




4.2 Single Queue Analysis

Assume no feedback in the system;

we have an M/Gl/1 queue

Non linearity of response time /
= we need to know where we /
were on the curve before doubling 'J —
capacity 2 4 6 8

We were probably close to asymptote; doubling the capacity
=

very large reduction of waiting time, more than by a factor of 2

44



4.3 Operational Analysis

A refined model, with circulating users;

Waiting room “‘r"‘:a think time

A
[ RN

*““*\\e—s——a ===

——,

Gate has a capacity ¢ customers/sec;

e.g. Gate has K slots, time to go through gate G, ¢ =

A, W to be determined

c,S,Z, N known

Qi R

45



Bottleneck Analysis Waitngroam TS think e

Little: AW +S+Z)=N
= W =

Waiting Time: W >

Utilization: A6 < Kie. A <c

*waiting time

S+7Z 1/c
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Exact solution using queuing network theory

80

T
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60

T

T
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T
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T
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T
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T
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Figure 8.23: First Panel: A Model that accounts for dependency of arrival rate and waiting time. Second
panel: Waiting time in minutes for this model versus l where ¢ is skilift capacity (in people per minute).
The solid line is the approximation by bottleneck analysis. The crosses are obtained by analytical solution
of the queuing network model in Figure 8.24, with the following parameters: population size k' = 800 skiers;
number of servers at gate BB < {1,2,...7,8}; service time at gate S < {2.5,5. 10, 20} seconds; time between

visits to the gate Z = 10 minutes. .



What is the impact of doubling the capacity
on the average waiting time ?

O O ® >

Reduction by more than 2
Reduction by less than 2
No reduction

| don’t know

80

70

60}

| Average waiting time

o 0.02 0.04 0.06 0.08 0.1
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Critical Capacity
The curve shows that there is a
critical capacity ¢*, such that
above c¢* the waiting time is very

small, below c¢* it increases linearly”|
30F

20F

The system should be designed to o

*

operate withc = ¢

N
S+Z
where N is the average number of
skiers in domain and Z is the

average time on slope

Bottleneck analysis gives ¢* =

70}

60}

50F

' Average waiting time

1
F /
W 1/c
% "% 0z 0.04 0.06 008 0.1
t waitingtime
P
1/c
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Conclusions

Queuing is essential in communication and information systems

M/M/1, M/GI/1, M/GI/1/PS and variants have closed forms

Little’s formula and other operational laws are powerful tools, not
just for queuing systems

Bottleneck analysis and worst case analysis are usually very simple
and often give good insights
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