Queuing Networks

Jean-Yves Le Boudec

Networks of Queues Stability

- Queuing networks are frequently used models
- The stability issue may, in general, be a hard one
- Necessary condition for stability (Natural Condition)

server utilization < 1

at every queue

Instability Examples

IIE Transactions (1997) 29, 213-219

Simulation studies of multiclass queueing networks

J. BANKS and J. G. DAI

Fig. 1. An example of reentrant lines.

- Poisson arrivals; jobs go through stations 1,2,1,2,1 then leave
- A job arrives as type 1, then becomes 2, then 3 etc
- Exponential, independent service times with mean m_i
- Priority scheduling
 - ► Station 1 : 5 > 3 > 1
 - ▶ Station 2: 2 > 4
- Q: What is the natural stability condition?
- A: $\lambda (m_1 + m_3 + m_5) < 1$ $\lambda (m_2 + m_4) < 1$

Fig. 1. An example of reentrant lines.

$$\lambda = 1$$
 $m_1 = m_3 = m_4 = 0.1$
 $m_2 = m_5 = 0.6$

- Utilization factors
 - ▶ Station 1: 0.8
 - ▶ Station 2: 0.7
- Network is unstable!
- If $\lambda (m_1 + ... + m_5) < 1$ network is stable; why?

Fig. 2. Job size plots at stations 1 and 2.

Bramson's Example 1: A Simple FIFO Network

The Annals of Applied Probability 1994, Vol. 4, No. 2, 414-431

INSTABILITY OF FIFO QUEUEING NETWORKS

By Maury Bramson¹

- Poisson arrivals; jobs go through stations A, B,B...,B, A then leave
- Exponential, independent service times
 - ▶ Steps 2 and last: mean is *L*
 - ▶ Other steps: mean is *S*
- Q: What is the natural stability condition?
- A: $\lambda (L + S) < 1$ $\lambda ((J-1)S + L) < 1$
- Bramson showed: may be unstable whereas natural stability condition holds

Bramson's Example 2 A FIFO Network with Arbitrarily Small Utilization Factor

The Annals of Applied Probability 1994, Vol. 4, No. 3, 693-718

INSTABILITY OF FIFO QUEUEING NETWORKS WITH QUICK SERVICE TIMES¹

By Maury Bramson

- Utilization factor at every station $\leq 4 \lambda S$
- Network is unstable for $S \le 0.01$ $L \le S^8$ m = floor(-2 (log L)/L)

- m queues
- 2 types of customers
- $\lambda = 0.5$ each type
- routing as shown,
 ... = 7 visits
- FIFO
- Exponential service times, with mean as shown

Take Home Message

The natural stability condition is necessary but may not be sufficient

There is a class of networks where this never happens. Product Form Queuing Networks

Product Form Networks

- Customers have a *class* attribute
- Customers visit stations according to Markov Routing routing matrix $Q = \left(q_{c,c'}^{s,s'}\right)_{s,s',c,c'}$
- External arrivals, if any, are Poisson

Chains

Customers can switch *class*, but remain in the same *chain*

Figure 8.11: A Simple Product Form queuing network with 2 chains of customers, representing a machine with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4.

Chains may be open or closed

- Open chain = with Poisson arrivals. Customers must eventually leave
- Closed chain: no arrival, no departure; number of customers is constant

- Closed network has only closed chains
- Open network has only open chains
- Mixed network may have both

3 Stations
4 classes
1 open chain
1 closed chain

Figure~8.11: A Simple Product Form queuing network with 2 chains of customers, representing a machine with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4.

Bramson's Example 2 A FIFO Network with Arbitrarily Small Utilization Factor

The Annals of Applied Probability 1994, Vol. 4, No. 3, 693-718

INSTABILITY OF FIFO QUEUEING NETWORKS WITH QUICK SERVICE TIMES¹

By Maury Bramson

2 StationsMany classes2 open chainsNetwork is open

Visit Rates

We define the numbers θ_c^s (*visit rates*) as one solution to

$$\theta_c^s = \sum_{s',c'} \theta_{c'}^{s'} q_{c',c}^{s',s} + \nu_c^s \tag{8.24}$$

If the network is open, this solution is unique and θ_c^s can be interpreted¹² as the number of arrivals per time unit of class-c customers at station s. If c belongs to a closed chain, θ_c^s is determined only up to one multiplicative constant per chain. We assume that the array $(\theta_c^s)_{s,c}$ is one non identically zero, non negative solution of Eq.(8.24).

Fig. 1. An example of reentrant lines.

2 Stations5 classes1 chainNetwork is open

Visit rates

$$\theta_1^1 = \theta_3^1 = \theta_5^1 = \theta_2^2 = \theta_4^2 = \lambda$$

 $\theta_c^s = 0$ otherwise

Figure~8.11: A Simple Product Form queuing network with 2 chains of customers, representing a machine with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4.

15

Constraints on Stations

- Stations must belong to a restricted catalog of stations
- See Section 8.4 for full description
- We will give commonly used examples
- Example 1: Global Processor Sharing
 - One server
 - ▶ Rate of server is shared equally among all customers present
 - ► Service requirements for customers of class *c* are drawn iid from a distribution which depends on the class (and the station)
- Example 2: *Delay*
 - ▶ Infinite number of servers
 - ▶ Service requirements for customers of class *c* are drawn iid from a distribution which depends on the class (and the station)
 - ▶ No queuing, service time = service requirement = residence time

- Example 3 : *FIFO with B servers*
 - ▶ *B* servers
 - ▶ FIFO queueing
 - ► Service requirements for customers of class *c* are drawn iid from an *exponential* distribution, *independent* of the class (but may depend on the station)

- Example of Category 2 (MSCCC station): *MSCCC with B servers*
 - ▶ *B* servers
 - ► FIFO queueing with constraints

 At most one customer of each class is allowed in service
 - ► Service requirements for customers of class *c* are drawn iid from an *exponential* distribution, *independent of the class* (but may depend on the station)
- Examples 1 and 2 are *insensitive* (service time can be anything)
 Examples 3 and 4 are not (service time must be exponential, same for all)

Say which network satisfies the hypotheses for product form

B (FIFO, Exp)

C (Prio, Exp)

The Product Form Theorem

- If a network satisfies the « Product Form » conditions given earlier
 - ▶ The stationary distrib of numbers of customers can be written explicitly
 - ▶ It is a product of terms, where each term depends only on the station
 - ► Efficient algorithms exist to compute performance metrics for even very large networks
 - ► For PS and Delay stations, service time distribution does not matter other than through its mean (*insensitivity*)
 - ► The natural *stability* condition holds

8.3.3 THE PROCESSOR SHARING QUEUE, M/GI/1/PS

$$\mathbb{P}(N(t) = k) = (1 - \rho)\rho^{k}$$

M/M/B QUEUE

For more specific system, one can say more. A frequently used system is the M/M/B queue, i.e. the system with Poisson arrivals, B servers, exponential service times and FIFO discipline. The system can be studied directly by solving for the stationary probability. Here when $\rho < 1$ there is a unique stationary regime, which is also reached asymptotically when we start from arbitrary initial conditions; for $\rho \geq 1$ there is no stationary regime.

When ρ < 1 the stationary probability is given by

$$\mathbb{P}(N(t) = k) = \begin{cases} \eta \frac{(B\rho)^k}{k!} & \text{if } 0 \le k \le B \\ \eta \frac{B^B \rho^k}{B!} & \text{if } k > B \end{cases}$$
 (8.21)

QUESTION 8.11.5. In Section 8.4 we mention the existence of a network in [16] which is unstable with utilization factor less than 1. Can it be a product-form multi-class queuing network? Why or why not? 25

 $^{^{25}}$ It cannot be a product-form multi-class queuing network because they are stable when utilization is less than 1. It violates the assumptions because of FIFO stations with class-dependent service rates.