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Networks of Queues
Stability

B Queuing networks are frequently used models
B The stability issue may, in general, be a hard one

B Necessary condition for stability (Natural Condition)

server utilization < 1

at every queue



Instability Examples

HE Transactions (1997) 29, 213-219

Simulation studies of multiclass queueing networks

J. BANKS and J. G. DAI
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Fig. 1. An example of reentrant lines.

Poisson arrivals ; jobs go
through stations 1,2,1,2,1
then leave

Ajob arrives as type 1, then
becomes 2, then 3 etc

Exponential, independent
service times with mean m,
Priority scheduling

» Station1:5>3>1

» Station 2: 2> 4

Q: What is the natural

stability condition ?

Ar A(m,+m;+m;)<1
A(m,+my)<l1
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Fig. 1. An example of reentrant lines.

=1
m;=my=m,=0.1
m,=mg= 0.6
M Utilization factors
» Station 1: 0.8
» Station 2: 0.7

B Networkis unstable!

B IfA(m,+..+m.)<1
network is stable;
why?
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Fig. 2. Job size plots at stations 1 and 2.
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Bramson’s Example 1: A Simple FIFO Network

The Annals of Applied Probability
1994, Vol. 4, No. 2, 414-431

INSTABILITY OF FIFO QUEUEING NETWORKS

By MAURY BRAMSON!

B Poisson arrivals; jobs go through
stations A, B,B...,B, A then leave

Step 1 ‘ ‘ | ‘ B Exponential, independent service

times

Step 2

» Steps 2 and last: mean is L

» Other steps: meanis S

s ‘ ‘ | B — B Q: What is the natural stability
" " ?
) Step J+3 - Zondl}t\l(()z. S)<1
: + <
Steps 3, ..., J+2 |
eps 3, ..., ACJ-1)S+L)<1

N

B Bramson showed: may be
unstable whereas natural stability
condition holds



Bramson’s Example 2
A FIFO Network with Arbitrarily Small Utilization Factor

The Annals of Applied Probability
1994, Vol. 4, No. 3, 693-718 B nm queues

INSTABILITY OF FIFO QUEUEING NETWORKS WITH M 2 types of
QUICK SERVICE TIMES!

customers
By MAURY BRAMSON B A =0.5eachtype
B routing as
shown,
1592 v 5233 v 53> v M e om ... = 7 Visits
15192 «+ 5253 —= v+ 23> «+ om— - -m-1 B FIFO
s S LS S LS S L S S L B Exponential

service times,
with mean as

B Utilization factor at every station<4 A S shown

B Networkis unstable for
§$<0.01
L<S8
m = floor(-2 (log L )/L)



Take Home Message

B The natural stability condition is necessary but may not be sufficient

B There is a class of networks where this never happens. Product Form
Queuing Networks



Product Form Networks

B Customers have a class attribute

B Customers visit stations according to Markov Routing
routing matrix @ = (q;_j'_‘j,')

B External arrivals, if any, are Poisson

Step 1

~
>

\'%

\'2

N

Steps 3, ...

,J12

Step 2

Step J+3

2 Stations
Class = step, ]J+3 classes

Can you reduce the number
of classes ?




Chains

B Customers can switch class, but remain in the same chain

p,,class 2 Station s=1
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Figure 8.11: A Simple Product Form queuing network with 2 chains of customers, representing a machine
with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4.



Chains may be open or closed

B Open chain = with Poisson arrivals. Customers must eventually leave
B Closed chain: no arrival, no departure; number of customers is constant

B Closed network has only closed chains
B Open network has only open chains
B Mixed network may have both
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3 Stations

4 classes

1 open chain
1 closed chain
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Class 4

Figure 8.11: A Simple Product Form queuing network with 2 chains of customers, representing a machine
with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4.



Bramson’s Example 2
A FIFO Network with Arbitrarily Small Utilization Factor

The Annals of Applied Probability
1994, Vol. 4, No. 3, 693-718

INSTABILITY OF FIFO QUEUEING NETWORKS WITH
QUICK SERVICE TIMES'

By MAURY BRAMSON

15925 «++ 52535 « 232 2m=— = —5m
11252 — «++ 52953 —> ++ 523> - s5m—  =»m-—1
S § L S S L S S L S S L

2 Stations

Many classes
2 open chains
Network is open




Visit Rates

We define the numbers 6* (visit rates) as one solution to

05 =" 05q5"° + v (8.24)

If the network is open, this solution is unique and #¢ can be interpreted!? as the number of arrivals
per time unit of class-c customers at station s. If ¢ belongs to a closed chain, #: is determined only
up to one multiplicative constant per chain. We assume that the array (#),  is one non identically
zero, non negative solution of Eq.(8.24). |
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Fig. 1. An example of reentrant lines.

2 Stations Visit rates

5 classes 0, =06%,=61.=02,=0%,=2A
1 chain 0s. = 0 otherwise

Network is open




Class 1: 6} = v 2 = 0; 6 = 0
1
Class2: 6} = y(pﬁ,ﬁll—%); 02 = 0; 6 = 0
Class 3: 6'% = ul_lm (pa +agm+ag,:'3lff%); 9§ = 0 6‘5‘ = 0
Class4: 0] = 1; 7 = 1; 6 = 1
p,,class 2 Station s=1
! MSCCC os| | oy +By
X ,class 3 I B
y Ps - gl - Q )i .
n—--r:::z'- :1: » |||| L .
T — ¥ > W
p,,class 1 > O

Class 4

@l — &

station s=3 station s=2

Figure 8.11: A Simple Product Form queuing network with 2 chains of customers, representing a machine
with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4. 15



Constraints on Stations

B Stations must belong to a restricted catalog of stations
B See Section 8.4 for full description

B We will give commonly used examples

B Example 1: Global Processor Sharing

» One server
» Rate of server is shared equally among all customers present

» Service requirements for customers of class ¢ are drawn iid from a distribution
which depends on the class (and the station)

B Example 2: Delay
» Infinite number of servers

» Service requirements for customers of class ¢ are drawn iid from a distribution
which depends on the class (and the station)

» No queuing, service time = service requirement = residence time
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B Example 3 : FIFO with B servers
» B servers
» FIFO queueing

» Service requirements for customers of class ¢ are drawn iid from an exponential
distribution, independent of the class (but may depend on the station)

B Example of Category 2 (MSCCC station): MSCCC with B servers
» B servers
» FIFO queueing with constraints
At most one customer of each class is allowed in service

» Service requirements for customers of class ¢ are drawn iid from an exponential
distribution, independent of the class (but may depend on the station)

B Examples 1 and 2 are insensitive (service time can be anything)
Examples 3 and 4 are not (service time must be exponential, same for all)
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B Say which network
satisfies the A

hypotheses for _
product form e / “hseec™™ \ T
. Ps,class 3 l l O ‘ i :

e >
—T r -
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Class 4 \
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station s=3 station s=2

B (FIFO, Exp)

Step 1

C (Prio, Exp)

- ] a |
‘\ Step 2 Station 1 Station 2

A=]

| m /l ~ =

B
/ ‘\ Step J+3

<

Steps 3, o o s ‘ “ig. 1. An example of reentrant lines.




The Product Form Theorem

B If a network satisfies the « Product Form » conditions given earlier

4
4
>

The stationary distrib of numbers of customers can be written explicitly
It is a product of terms, where each term depends only on the station

Efficient algorithms exist to compute performance metrics for even very large
networks

For PS and Delay stations, service time distribution does not matter other than
through its mean (insensitivity)

The natural stability condition holds
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8.3.3 THE PROCESSOR SHARING QUEUE, M/GI/1/PS
P(N(t)=k) = (1—p)p*

M/M/B QUEUE

For more specific system, one can say more. A frequently used system is the M/M/B queue, i.e.
the system with Poisson arrivals, B servers, exponential service times and FIFO discipline. The
system can be studied directly by solving for the stationary probability. Here when p < 1 there
is a unique stationary regime, which is also reached asymptotically when we start from arbitrary
initial conditions; for p > 1 there is no stationary regime.

When p < 1 the stationary probability is given by

P(N(t) = k) = { ”B_gi (8.21)
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Step 1

RS
e

Steps 3, ..., J+2

QUESTION 8.11.5. In Section 8.4 we mention the existence of a network in [16] which is unstable
with utilization factor less than 1. Can it be a product-form multi-class queuing network ? Why or
why not ? #

251t cannot be a product-form multi-class queuing network because they are stable when utilization is less than 1. It
violates the assumptions because of FIFO stations with class-dependent service rates.
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