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1. Palm Calculus : Framework

A stationary process (simulation) with state S;

Some quantity X; measured at time t. Assume that
(S, X¢) is jointly stationary

l.e., §¢ is in a stationary regime and X; depends on the past,
present and future state of the simulation in a way that is
invariant by shift of time origin.

St and X; are rigt-continuous, i.e. Xy = X+ and S¢ = S¢+
Examples
S¢= current position of mobile, speed, and next waypoint

Jointly stationary with S;: X; = current speed at time t; X; =
time to be run until next waypoint

Not jointly stationary with S;: X; = time at which last waypoint

occurred 3



Arbitrary Point in Time

When X, S; is jointly stationary, E(X;) is the same atall t
It represents the average seen at an arbitrary point in time

It can be shown that it is also the average seen by an external
observer who observes the system at a random time, sampled
from a Poisson process of any rate, independent of the simulation.

(PASTA: Poisson Arrivals See Time Averages)



Stationary Point Process

Consider some selected transitions of the simulation, occurring at
times T,,.

Example: T,,= time of nth trip end
In general: given is a subset Fy € § X §; we say that there is a selected
transition at time ¢, (= an event) i.e. t = T,, for some n if (S;+,S;_) € Fy

T;, is a called a stationary point process associated to S;

By convention, in the inversion formula:
<T_2<T_1<T0SO<T1<T2<

and time t = 0 is the arbitrary point in time.



Palm Expectation

Assume: X,, S; are jointly stationary, T, is a stationary point
process associated with §,

Definition : the Palm Expectation is

Et(X,) = E(X, | aselected transition occurs at time t)

By stationarity:
E'(X,) = EO(XO)
Example:
T,, =time of nth trip end, X; =instant speed attimet
Et(X,) = EY(X,) = average speed observed at a waypoint

Take home: E°(something) = average of something, sampled

at an arbitrary event time T,
6



E(X,) = E(X,) expresses the time average viewpoint.
EY(X,) = E9(X,) expresses the event average viewpoint.
Example for random waypoint:
T. =time of n'" trip end, X, = instant speed at time t
EY(X,) = E%(X,) = average speed observed at trip end
E(X,)=E(X,) = average speed observed at an arbitrary point in time




Formal Definition

In discrete time, we have an elementary conditional probability

e _EYN(®) _ E(YN(®)
MO=D=FEwNw) R @ =D

In continuous time, the definition is a little more sophisticated

E((Y)=E(Y

uses Radon Nikodym derivative— see lecture note for details
Also see [BaccelliBremaud87] for a formal treatment

Palm probability is defined similarly

The Palm probability 1s defined similarly, namely

P’(X(0) € W) =P(X(0) € W|a point occurs at time 0)

Note that PY(7, = 0) = 1, i.e., under the Palm probability, T} is 0 with probability 1.



Ergodic Interpretation

Assume simulation is stationary + ergodic, i.e. sample path
averages converge to expectations; then we can estimate time
and event averages by:

E(Xp) = lim
T —+x

i MH

EU ( J\rO ) — Tlilll ~ E | JXrTn
n=

We use the same distinction for probabilities

PP(something) = proba that something happens at an arbitrary

event time T,
P(something) = proba that something happens at an arbitrary

timet
9



Intensity of a Stationary Point Process

Intensity of selected transitions: A:= expected number of events
per time unit

To estimate 4 in a simulation of duration Ty with N events

] N
NTN

E.g: (Poisson process: )
events occur at times T, such that T,, — T,,_; ~iid Expo(A4)
(memoriless: next arrival is independent of the past)

For the Poisson process of rate A, the intensity is also A

E.g.: RWP times when mobiles reach a waypoint: not a Poisson
process; intensity = average nb of waypoints per time unit

10



Palm Calculus Formula #1

Intensity Formula:

== 'LO(Tl — T[]) = ‘LU(Tl)

where by convention T,<0< T,

Says that intensity = 1 / mean time between events

Example: Poisson process, mean time between events is the

mean of Expo(4), i.e. %

Example: RWP: intensity is mean trip duration

11



The interval between 2 buses is ~
U(15,25) minutes

A. There are 2 buses in average per hour

. There are 3 buses in average per hour

B
C. There are 4 buses in average per hour
D. None of the above

E

| don’t know



The validity of the formula in the previous

guestion requires that ...

A. The arrival process is Poisson

m O O W

The arrival process is stationary
The interarrival times are iid
None of the above

| don’t know
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Palm Calculus Formula #2

Inversion Formula

17
‘L(Xt) — *L(XU) — \EY / X ds
0

Here the quantity X; is jointly stationary with the simulation
state.

Says that the expectation of X, at an arbitrary point in time, is
equal to 4 X the expectation, at an arbitrary event, of the integral
of X; between two events.
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Example: Joe’s Waiting Tlme

\.%-2“‘4-?

T,,: arrivals of buses

X, = waiting time for who arrives

attime t ¥ F
Il T,
t

E(X,) = Joe’s average waiting time = AE° (fOTiTO X ds)
Fors € [Ty, T1],Xs = T; — s hence

T T 1
oy Xsds = [i% (Ty = $)ds =3 (T; — Ty)? and

yl
E(X,) = EEO((T1 —Ty)?)

E°((T, — Ty)?) is the average of the square of the interval

. . . . 1
between buses; in a simulation we estimate as Nzn(Tnﬂ —T,)*
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T,,: arrivals of buses

X; = waiting time for who arrives
attime t X,

[ | B | =

I H | ! !
t
E(X,) = Joe’s average waiting time = %EO((Tl —Ty)?)
Let v be the variance of the interval between buses:
2
UV = EO((T1 — To)z) — (EO(T1 — To))
Intensity formula: A1 = EO( Ty — Ty)

11 A
Hence E(X;) = >3 +€7/
0.5 X mean time between buses penalty due to variability
system’s viewpoint
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Example: Gatekeeper job arrival

Ty
0 20100 190200 290 300
. . . f i -% ldiat (ms)
X; = execution time of a job that l l l
would arrive at time ¢ soool soool soool
] X 1000 1000 1000
T;,: wake up time of gatekeeper t

E(X;) = E(X,) = average execution time for a job that arrives at
an arbitrary point in time = W,

Inversion formula: E(X,) = AE° (f;)l:OXS ds)

fTTl o Xsds = Xo(Ty — Tp) because Xy = Xy = X+= execution

0=
time for any job that arrives between the two wake-up times
TO' Tl

Hence E(X,) = }LEO(XO(T1 - To))
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job arrival

Ty
) 20100 190200 290 300
0 i i - >t (ms)
Hence E (X)) = AE°(Xo(Ty — Tp)) ll ll ll
Let C be covariance of wakeup interval % %1000 """ V1000 " %1000

. . . . X
duration and execution time at end of interval

C =E°(Xo(Ty — Tp)) — E°(Xo)E®(Ty — Tp)
For example here: E%(X,) = execution time for a job that arrives

just after a wake-up time, averaged over wake-up times = W,
=0.5 x 5000 + 0.5 x 1000

Hence E(Xy) = AE°(Xo(Ty — Ty)) = A(C + WLEO (T, — T))
Intensity formula:A™! = EO(T; — T,)
Hence W, = E(X,) = AC + W,

20
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THEOREM 7.3. Let X (t) = T™(t) — t (time until next point, also called residual time), Y (t) =
t — T (t) (time since last point), Z(t) = T (t) — T~ (t) (duration of current interval). For any t,

the distributions of X (t) and Y (t) are equal, with PDF:
+ o0

fx(8) = fy(s) = APYT} > 5) = A fi(uw)dhu (7.28)

L

where f2 is the Palm PDF of Ty — Ty, (PDF of inter-arrival times). The PDF of Z(t) is

fz(8) = Asfp(s) (7.29)
In particular, it follows that
E(X(t) =E(Y(t) = %IE”(TF) in continuous time (7.30)
E(X(t) =EY(t) = %Eﬂ(ﬂ (T7 + 1)) indiscrete time (7.31)
E(Z(t)) = AE°(T7) (7.32)
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Feller’s Paradox

— A

A buses per hour. Bus company knows A and claims that average

1

interval between buses is EY(T; — Ty) = -

Joe arrives a bus stop and estimates Z; (current time interval)
1
E(Z,) = AE°((T; — Ty)?) = S+ Av

where v = var®(T; — Ty)

Joe’s estimate is always larger than inspector’s (Feller’s paradox)

22



We encountered Feller’s Paradox Already

PDFs of flow sizes

Flow n=1 Flow n=2 Flow n=3

- @Q =

[r(5): PDF of flow size, seen by flows u
i b?'l‘ﬂ :ffsulbvlclmt:

fe(s) = ns fr(s) where n is a normalization constant

fp(s): PDF of flow size, seen by packets

Using the same approach we obtain

P

23



For a Poisson process...

—

Xt T,
— 1 i i >

Yi

-
A

Under the time average viewpoint:
fx(t) = 2e~*t (exponential, as expected)

fy () = et (exponential as well)
f7(t) = A2te*t (Erlang-2, not exponential)

The duration of the time interval we are in is the sum of two
independent exponential random variables

ZtZXt_l_Yt

. . .2 ,
In average, we are in an interval of duration 7 (Feller’s paradox)

24



A sensor senses events; the sensing interval is ~
N(u, o %). An engineer comes and checks the

current sensing interval. In average, she finds...
A u+o?
2

B p(1+3)
C u(l+o?)

1 o2
D. =(1+—

u( T u)

1 a?
E —(1+73)

F. Idon’t know



A sensor senses events; the sensing interval is ~
expo(A), i.e. the event process is Poisson. An
engineer comes and checks the current sensing
interval. In average, she finds...

1
p)
2
A
1
p)
1
)
|

on’t know
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2. Application to Simulation

Modulator-based simulation

Modulator: a sequence of states Z,, (e.g. channel state) and
durations §,, stationary w.r. n
Modulated process: Z(t),t € [0,4+) such that Z(t) = Z,
whenever Yo' S; <t < Y11 S;

' State Z(t)

—h

Zz = Z(t)

29



At T,,, channel state is drawn at random and new state is i

with proba 7y. When channel state Z(t) is = i, loss proba
is p; and residence time in that state is (non random) 7.

What is the intensity of the point process T,,?

m o o &

None of the above
| don’t know

* State Z(t)

Zg = Z(t)

30



At T,,, channel state is drawn at random and new state is i
with proba % (i). When channel state Z(t) is = i, loss
proba is p; and residence time in that state is r;. What is

the loss probability p for a probe packet sent at an
arbitrary point in time ¢?

* State Z(t
A Y TP DiT; te2(0) Z3=1(t)

Zi ”?ri

0
B 2T T

0 Z i Z
2 T DTy 2 ' ¢

. Zi 77::j)pi “©
T. T
D. None of the above 2 3 ) Ts

E. Idon't know
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Is the previous simulation stationary ?

t State Z(¢) 7y = Z(2) _____li______

Seems like a superfluous question, .

however there is a difference in viewpoint | " T I
between the epoch n and time t S N N

If there is a stationary regime, by the intensity formula:

1 = 1
~ E(Sp)

So the expectation of S,, must be finite. This is also sufficient:

THEOREM 7.9. Assume that the sequence S, satisfies HI and has finite expectation. There exists
a stationary process Z(t) and a stationary point process T,, such that

1. II:FL+1 o T;fa — Sﬂ
2. Z, = Z(T,)
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RWP

Modulator: nth trip Z,, = (M,,, M,,41,V},)

Modulated Process: Z(t) = the trip -
that we are in attime t

d (MnrMn+1)
Vn

Assume waypoints and speed are chosen independently (as in lab)
1
E(Sn) = E(d(Mn, Mp11)) E (7)
n

Assume speed is chosen uniformly between vpin = 0 and Vg, > 0

1 1 Vmax ] 1
El—] = f —dv = (108 Vmax — 108 Vimin)

Vn Umax — Vmin (% Umax — Vmin

Duration of nth trip §,, =

VUmin

There is a stationary regime & vy,jn > 0



Time Average Speed, Averaged over n independent
mobiles

Spead averaged over time and users

Speed averaged over time and users

Dn 1E:~IE|CI 2000 3000 4000 5000 6000 7000 BOOO 9000 Ulf: 1000 2000 3000 4000 5000 6000 7000 8000 9000
time (sec) time (sec)
{a) vyin = 0.1 m/s. (b} vgin = 0 m/s.

Blue line is one sample; Red line is estimate of E(V(t))
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A Random waypoint model that has no
stationary regime

When vyiq > 0 there is no stationary regime.

But this model was often used in practice “considered harmful”
[YLNO3]

Simulation becomes old and “freezes” — average speed — 0

Impzers S oasd. Ol Liner

Sossd praraped cer Sme and assre
T T T

mmmmmm

Instant Speed + Empir-
ical speed, both aver-
aged over users
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Stationary Distribution of Speed

(For model with stationary regime)
Random Waypoint on Rectangle, without Pause:

® Speed observed at waypoints (Event average)

® Speed observed at an arbitrary time (Time average)




Closed Form

Assume a stationary regime exists and simulation is run long enough

Apply inversion formula and obtain distribution of instantaneous

speed V(t) T
E(op(V(t))) = AEY (/ o(V (1)) dt)
0

= AE' (¢(Vo)Th)
. /\Eo(( 1~ ol
Vo

'[,T
_ U“H EO ( (;{))
16
— / o) / {},ﬂ (v)dv
Voo U

min

. C
fp(t) (v)dv = = j%} (v)dv

= AE" (|| M




A (true) example: Compare impact A Spatial distribution of nodes is

of mobility on a protocol: different for mobile case than
Experimenter places nodes for static case

uniformly for static case,

_ _ B. Spatial distribution of nodes is
according to random waypoint for

same for mobile and static

moblle case. o cases but speed is more often
Finds that static is better small than large
Find the bug !
. C. Thereis no bug, mobility
10 Increases capacity
g‘ afT___ ; % D.| I don’t know
% 6} ‘\ﬁ\ Random waypoint
&
g 4 .
&
2 2| . Static
“ —— Random waypoint
0 ‘ --= Slatic \

20 40 60 80 100 120
Number of nodes

o
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Does this model have a stationary regime ?

A mobile moves as
follows

- pick a random direction
uniformly in |0, 277

- pick a random trip
duration T ~Pareto(p)

- go in this direction for
duration T at constant
speed ; if needed reflect

at the boundary. /

Yes if p>1
Yesifp > 2
Yes for all p
No

| don’t know

m O O ® >
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3. Perfect Simulation

Def: a simulation that starts with a sample from the stationary
distribution

An alternative to removing transients
Usually difficult except for modulated models, e.g. RWP

Pravicus WP, Cumrant Pesition, Next WP

Perfect simulation of RWP: ol
Sample speed V from its time \
stationary distribution

80 Next(t) . |
Sample Prev and Next waypoints s Mm/x

from their joint stationary Prev(®)
distribution mf e ;
Sample M uniformly on segment °° . T

200 300 400 500 600 700 800

|Prev, Next]
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Stationary Distrib of Prev and Next

® Let M (¢): position at time ¢

® Let Preu(t), Next(t): previous and next waypoints

Preuv(t) M(t) Next(t)

L]
]
oo et Pesilon Ml Waypsn

: & &

. 8 88 s 88 gy

= 8 8 8 8 8 8 &
- B 8 B 8 8 B




Preuv(t) M(t) Neuxt(t)

Is M(t) uniformly == 7 T
distributed ? ey Jiae i o

§ 8 5 & 53 308 8

......................

................
G T E owe W W 0 W0 w0 0 M0 M 0@ 0 W0 M X0 H0 W 0 W W9 w0 0

Yes
No

It depends on the distribution of
speed

=

D. | don’t know
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Is Next(t) Preu(t) M (#) Neat()

uniformly ]
distributed ? ] ]

Vo EFCRIE AN, | SRR N AC S Ry C5 PRt |
B. No

It depends on the distribution of

speed

D. | don’t know
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Stationary Distribution of Location Is also Obtained
By Inversion Formula

# Joint distribution of (Prewv(t), M(t), Next(t)) has a simple
closed form [NavidiCamp04]:

K~ =vol(A)2A(A), with A(A) = average distance between two points in A. For
A =1[0;a] x [0;a], A(A) = 0.5214a [Gosh1951].
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Proof. For any bounded, non-negative function ¢:
n

I
(}l) (1”1]1 My + — (M — Myp), 1”]) L'].ir) .
0 T

By a simple change of variable in the integral, we obtain

| |
2" (T] / (Mo, My + u(M, —M{}].M]}Llu).
0

Now given that there is an arrival at time 0, 7y = W and the speed Vp is independent of the waypoints My an
M thus
1 1 |
= LE" (F) EY | | M, — My f d (Mo, My + u(M; — Mg), My)du
0 0

|
= Kg/ f f @My, (1 —uwyMo+uM, M) ||My — My du dMydM,
AJAJO

which shows the statement. L]
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No Speed Decay

Standard Simulation

Epeed averaged over time and usars
1 L] I
= 04
E
=
E 0ar
i)
asF
I:l.s '] 1 1 'l 1 1 'l 1
0 A 400 ] i 1000 1200 1400 1600 1300
time {aec]

Perfect Simulation
;;-13- .

1400 1600 1800
tmne {zec]



Perfect Simulation of RWP: How do you
sample the speed ?

A. By rejection sampling

O O W

By CDF inversion
By an ad-hoc method
| don’t know

fvy(v)dv =

C

U

fgo (v)dv
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Perfect Simulation of RWP: How do you
sample the current segment (P,N) ?

By rejection sampling
By CDF inversion
By an ad-hoc method

o0 ® P

| don’t know
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Conclusions

s

rifff A metric should specify the sampling

;-J‘rgﬁ‘j method
Ea

| ﬂfﬁd} Different sampling methods may give
R

JF very different values
Palm calculus contains a few important
formulas

Freezing simulations are a pattern to be
aware of



