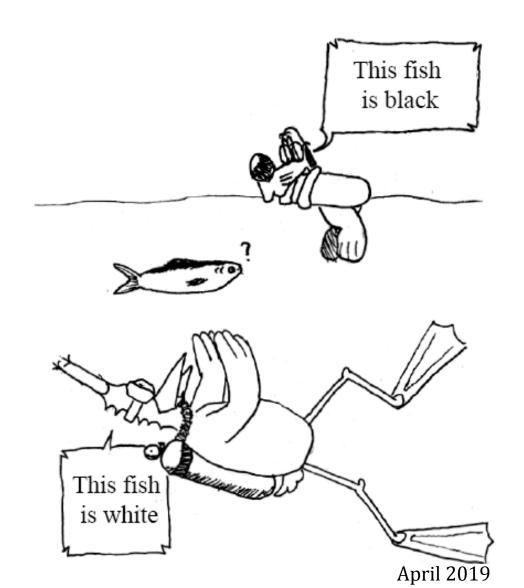
Palm Calculus Part 2 Theory

JY Le Boudec



Contents

- 1. Palm Calculus
- 2. Application to Simulation
 - 3. Perfect Simulation
 - 4. PASTA

1. Palm Calculus: Framework

A stationary process (simulation) with state S_t Some quantity X_t measured at time t. Assume that (S_t, X_t) is jointly stationary

I.e., S_t is in a stationary regime and X_t depends on the past, present and future state of the simulation in a way that is invariant by shift of time origin.

 S_t and X_t are rigt-continuous, i.e. $X_t = X_{t^+}$ and $S_t = S_{t^+}$ Examples

 S_t = current position of mobile, speed, and next waypoint Jointly stationary with S_t : X_t = current speed at time t; X_t = time to be run until next waypoint

Not jointly stationary with S_t : X_t = time at which last waypoint occurred

Arbitrary Point in Time

When X_t , S_t is jointly stationary, $E(X_t)$ is the same at all t It represents the average seen at an arbitrary point in time

It can be shown that it is also the average seen by an external observer who observes the system at a random time, sampled from a Poisson process of any rate, independent of the simulation.

(PASTA: Poisson Arrivals See Time Averages)

Stationary Point Process

Consider some selected transitions of the simulation, occurring at times T_n .

Example: T_n = time of nth trip end

In general: given is a subset $\mathcal{F}_0 \subset \mathcal{S} \times \mathcal{S}$; we say that there is a selected transition at time t, (= an event) i.e. $t = T_n$ for some n if $(S_{t+}, S_{t-}) \in \mathcal{F}_0$

 T_n is a called a stationary point process associated to S_t

By convention, in the inversion formula:

$$\dots < T_{-2} < T_{-1} < T_0 \le 0 < T_1 < T_2 < \dots$$

and time t = 0 is the *arbitrary* point in time.

Palm Expectation

Assume: X_t , S_t are jointly stationary, T_n is a stationary point process associated with S_t

Definition: the Palm Expectation is

$$E^{t}(X_{t}) = E(X_{t} \mid \text{a selected transition occurs at time } t)$$

By stationarity:

$$E^t(X_t) = E^0(X_0)$$

Example:

 T_n = time of nth trip end, X_t = instant speed at time t $E^t(X_t) = E^0(X_0)$ = average speed observed at a waypoint Take home: E^0 (something) = average of something, sampled at an arbitrary event time T_n

 $E(X_t) = E(X_0)$ expresses the time average viewpoint.

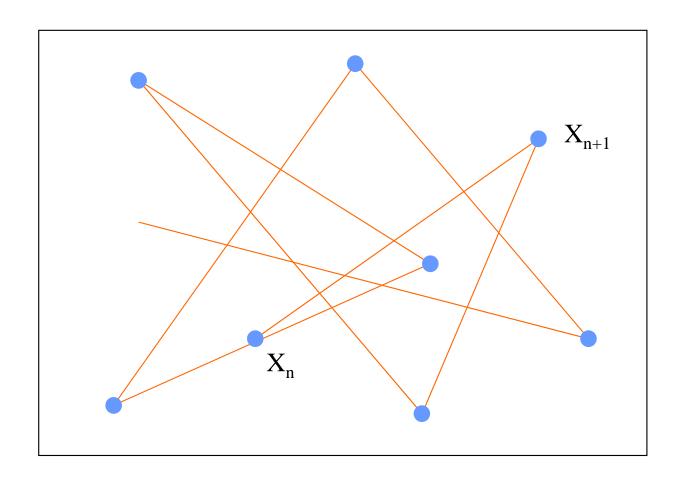
 $E^{t}(X_{t}) = E^{0}(X_{0})$ expresses the event average viewpoint.

Example for random waypoint:

 T_n = time of n^{th} trip end, X_t = instant speed at time t

 $E^{t}(X_{t}) = E^{0}(X_{0}) = \text{average speed observed at trip end}$

 $E(X_t)=E(X_0)$ = average speed observed at an arbitrary point in time



Formal Definition

In discrete time, we have an elementary conditional probability

$$\mathbb{E}^{t}(Y) = \mathbb{E}(Y|N(t) = 1) = \frac{\mathbb{E}(YN(t))}{\mathbb{E}(N(t))} = \frac{\mathbb{E}(YN(t))}{\mathbb{P}(N(t) = 1)}$$

In continuous time, the definition is a little more sophisticated uses Radon Nikodym derivative— see lecture note for details

Also see [BaccelliBremaud87] for a formal treatment

Palm probability is defined similarly

The Palm probability is defined similarly, namely

$$\mathbb{P}^0(X(0) \in W) = \mathbb{P}(X(0) \in W | \text{ a point occurs at time } 0)$$

Note that $\mathbb{P}^0(T_0=0)=1$, i.e., under the Palm probability, T_0 is 0 with probability 1.

Ergodic Interpretation

Assume simulation is stationary + ergodic, i.e. sample path averages converge to expectations; then we can estimate time and event averages by:

$$\mathbb{E}(X_0) = \lim_{T \to +\infty} \frac{1}{T} \sum_{s=1}^{T} X_s$$

$$\mathbb{E}^{0}(X_{0}) = \lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} X_{T_{n}}$$

We use the same distinction for probabilities

 P^0 (something) = proba that something happens at an arbitrary event time T_n

P(something) = proba that something happens at an arbitrary time t

Intensity of a Stationary Point Process

Intensity of selected transitions: λ := expected number of events per time unit

To estimate λ in a simulation of duration T_N with N events

$$\lambda \approx \frac{N}{T_N}$$

E.g: (Poisson process:)

events occur at times T_n such that $T_n - T_{n-1} \sim \text{iid Expo}(\lambda)$ (memoriless: next arrival is independent of the past)

For the Poisson process of rate λ , the intensity is also λ

E.g.: RWP times when mobiles reach a waypoint: not a Poisson process; intensity = average nb of waypoints per time unit

Palm Calculus Formula #1

Intensity Formula:

$$\frac{1}{\lambda} = \mathbb{E}^0(T_1 - T_0) = \mathbb{E}^0(T_1)$$

where by convention $T_0 \le 0 < T_1$

Says that intensity = 1 / mean time between events

Example: Poisson process, mean time between events is the

mean of Expo(λ), i.e. $\frac{1}{\lambda}$

Example: RWP: intensity is mean trip duration

The interval between 2 buses is $\sim U(15, 25)$ minutes

- A. There are 2 buses in average per hour
- B. There are 3 buses in average per hour
- C. There are 4 buses in average per hour
- D. None of the above
- E. I don't know

The validity of the formula in the previous question requires that ...

- A. The arrival process is Poisson
- B. The arrival process is stationary
- C. The interarrival times are iid
- D. None of the above
- E. I don't know

Palm Calculus Formula #2

Inversion Formula

$$\mathbb{E}(X_t) = \mathbb{E}(X_0) = \lambda \mathbb{E}^0 \left(\int_0^{T_1} X_s ds \right)$$

Here the quantity X_t is jointly stationary with the simulation state.

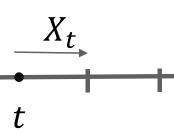
Says that the expectation of X_t , at an arbitrary point in time, is equal to $\lambda \times$ the expectation, at an arbitrary event, of the integral of X_t between two events.

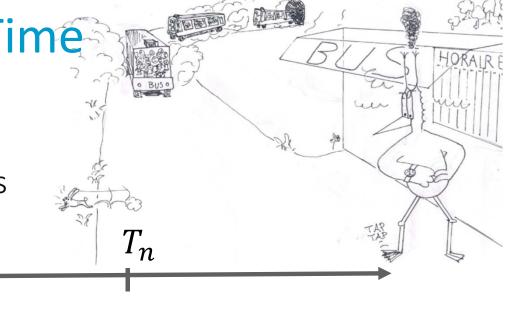
Example: Joe's Waiting Time

 T_n : arrivals of buses

 X_t = waiting time for who arrives

at time *t*





$$E(X_t) =$$
Joe's average waiting time $= \lambda E^0 \left(\int_{0=T_0}^{T_1} X_s \, ds \right)$

For $s \in [T_0, T_1]$, $X_s = T_1 - s$ hence

$$\int_{0=T_0}^{T_1} X_s \, ds = \int_{0=T_0}^{T_1} (T_1 - s) ds = \frac{1}{2} (T_1 - T_0)^2 \text{ and}$$

$$E(X_t) = \frac{\lambda}{2} E^0 ((T_1 - T_0)^2)$$

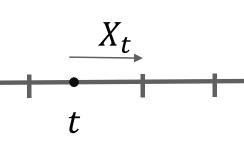
 $E^0((T_1-T_0)^2)$ is the average of the square of the interval

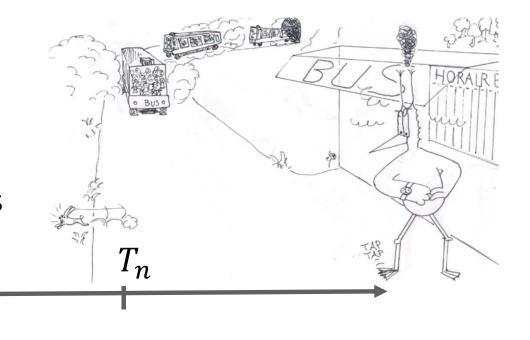
between buses; in a simulation we estimate as $\frac{1}{N}\sum_{n}(T_{n+1}-T_n)^2$

 T_n : arrivals of buses

 X_t = waiting time for who arrives

at time t





 $E(X_t)$ = Joe's average waiting time = $\frac{\lambda}{2}E^0((T_1-T_0)^2)$

Let v be the variance of the interval between buses:

$$v = E^{0}((T_{1} - T_{0})^{2}) - (E^{0}(T_{1} - T_{0}))^{2}$$

Intensity formula: $\lambda^{-1} = E^0(T_1 - T_0)$

Hence

$$E(X_t) = \frac{1}{2} \frac{1}{\lambda} + \frac{\lambda}{2} v$$

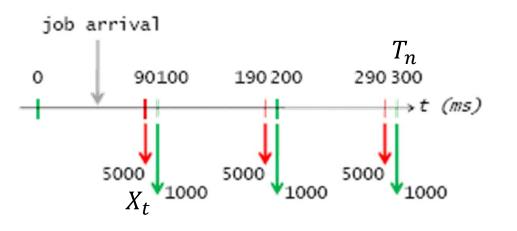
0.5 × mean time between buses system's viewpoint

penalty due to variability

Example: Gatekeeper

 X_t = execution time of a job that would arrive at time t

 T_n : wake up time of gatekeeper

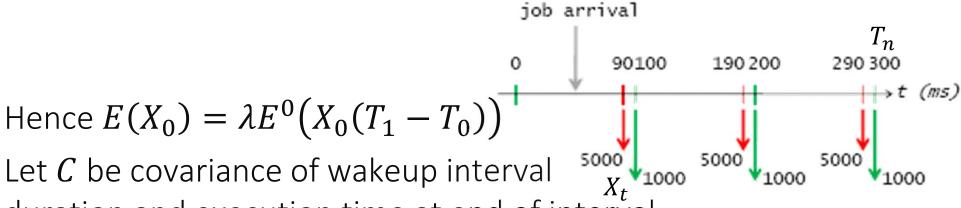


 $E(X_t) = E(X_0)$ = average execution time for a job that arrives at an arbitrary point in time = W_c

Inversion formula:
$$E(X_0) = \lambda E^0 \left(\int_{T_0=0}^{T_1} X_s \, ds \right)$$

 $\int_{T_0=0}^{T_1} X_s \, ds = X_0 (T_1 - T_0)$ because $X_s = X_0 = X_0 + =$ execution time for any job that arrives between the two wake-up times T_0, T_1

Hence
$$E(X_0) = \lambda E^0 (X_0 (T_1 - T_0))$$



duration and execution time at end of interval

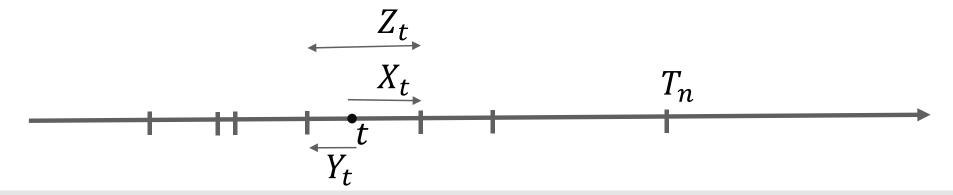
$$C = E^{0}(X_{0}(T_{1} - T_{0})) - E^{0}(X_{0})E^{0}(T_{1} - T_{0})$$

For example here: $E^0(X_0) = \text{execution time for a job that arrives}$ just after a wake-up time, averaged over wake-up times = W_s = 0.5 × 5000 + 0.5 × 1000

Hence
$$E(X_0) = \lambda E^0 (X_0 (T_1 - T_0)) = \lambda (C + W_s E^0 (T_1 - T_0))$$

Intensity formula: $\lambda^{-1} = E^0 (T_1 - T_0)$

Hence
$$W_c = E(X_0) = \lambda C + W_s$$



THEOREM 7.3. Let $X(t) = T^+(t) - t$ (time until next point, also called residual time), $Y(t) = t - T^-(t)$ (time since last point), $Z(t) = T^+(t) - T^-(t)$ (duration of current interval). For any t, the distributions of X(t) and Y(t) are equal, with PDF:

$$f_X(s) = f_Y(s) = \lambda \mathbb{P}^0(T_1 > s) = \lambda \int_s^{+\infty} f_T^0(u) du$$
 (7.28)

where f_T^0 is the Palm PDF of $T_1 - T_0$ (PDF of inter-arrival times). The PDF of Z(t) is

$$f_Z(s) = \lambda s f_T^0(s) \tag{7.29}$$

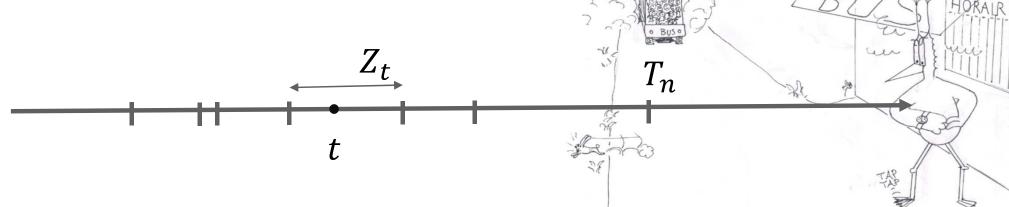
In particular, it follows that

$$\mathbb{E}(X(t)) = \mathbb{E}(Y(t)) = \frac{\lambda}{2} \mathbb{E}^{0}(T_{1}^{2}) \text{ in continuous time}$$
 (7.30)

$$\mathbb{E}(X(t)) = \mathbb{E}(Y(t)) = \frac{\lambda}{2} \mathbb{E}^{0}(T_{1}(T_{1}+1)) \text{ in discrete time}$$
 (7.31)

$$\mathbb{E}(Z(t)) = \lambda \mathbb{E}^{0}(T_1^2) \tag{7.32}$$

Feller's Paradox



 λ buses per hour. Bus company knows λ and claims that average interval between buses is $E^0(T_1-T_0)=\frac{1}{\lambda}$

Joe arrives a bus stop and estimates Z_t (current time interval)

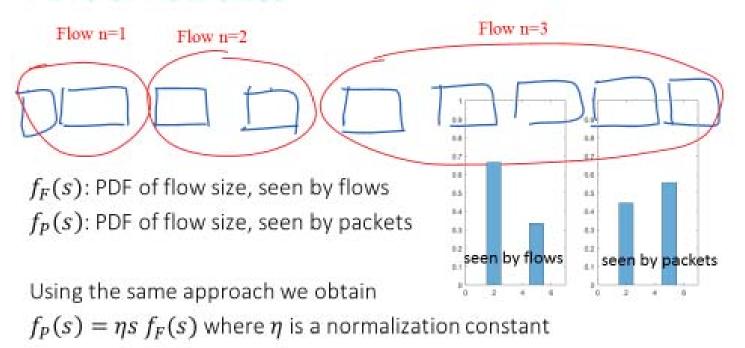
$$E(Z_t) = \lambda E^0 \left((T_1 - T_0)^2 \right) = \frac{1}{\lambda} + \lambda v$$

where $v = var^0(T_1 - T_0)$

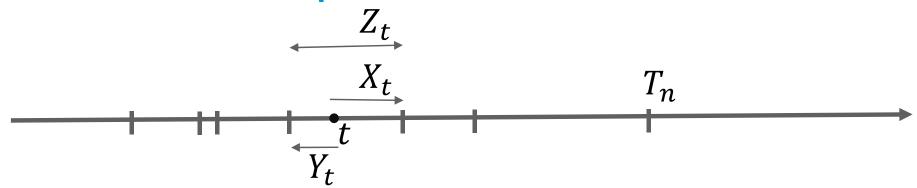
Joe's estimate is always larger than inspector's (Feller's paradox)

We encountered Feller's Paradox Already

PDFs of flow sizes



For a Poisson process...



Under the time average viewpoint:

$$f_X(t) = \lambda e^{-\lambda t}$$
 (exponential, as expected)

$$f_Y(t) = \lambda e^{-\lambda t}$$
 (exponential as well)

$$f_Z(t) = \lambda^2 t e^{-\lambda t}$$
 (Erlang-2, not exponential)

The duration of the time interval we are in is the sum of two independent exponential random variables

$$Z_t = X_t + Y_t$$

In average, we are in an interval of duration $\frac{2}{\lambda}$ (Feller's paradox)

A sensor senses events; the sensing interval is $\sim N(\mu, \sigma^2)$. An engineer comes and checks the current sensing interval. In average, she finds...

A.
$$\mu + \sigma^2$$

B.
$$\mu(1+\frac{\sigma^2}{\mu^2})$$

C.
$$\mu(1 + \sigma^2)$$

D.
$$\frac{1}{\mu} (1 + \frac{\sigma^2}{\mu})$$

E.
$$\frac{1}{\mu}(1+\frac{\sigma^2}{\mu^2})$$

F. I don't know

A sensor senses events; the sensing interval is $\sim \exp o(\lambda)$, i.e. the event process is Poisson. An engineer comes and checks the current sensing interval. In average, she finds...

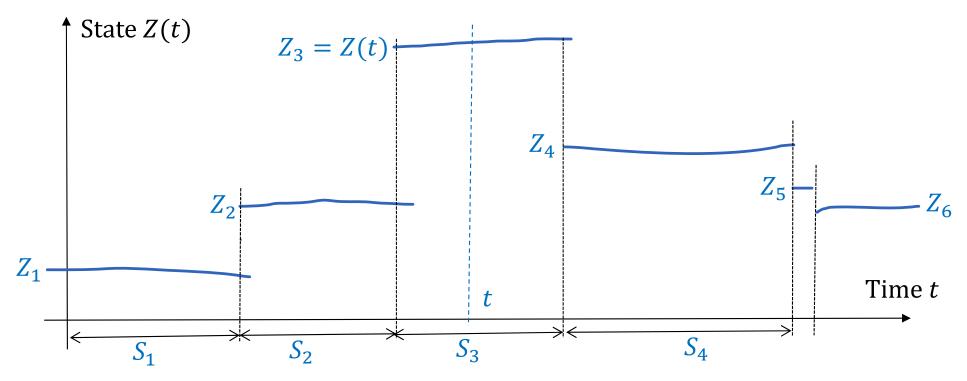
- A. $\frac{1}{\lambda}$
- $B. \frac{2}{\lambda}$
- C. $\frac{1}{\lambda} \left(1 + \frac{1}{\lambda} \right)$
- $D. \ \frac{1}{\lambda} \left(1 + \frac{1}{\lambda^2} \right)$
- E. I don't know

2. Application to Simulation

Modulator-based simulation

Modulator: a sequence of states Z_n (e.g. channel state) and durations S_n stationary w.r. n

Modulated process: $Z(t), t \in [0, +\infty)$ such that $Z(t) = Z_n$ whenever $\sum_{i=1}^{n-1} S_i \le t < \sum_{i=1}^{n-1} S_i$



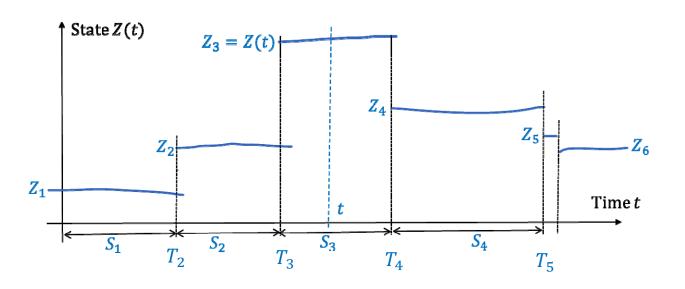
At T_n , channel state is drawn at random and new state is i with proba π_i^0 . When channel state Z(t) is =i, loss proba is p_i and residence time in that state is (non random) r_i . What is the intensity of the point process T_n ?

A.
$$\lambda = \sum_{i} \pi_{i}^{0} r_{i}$$

B.
$$\lambda = \sum_{i} \frac{\pi_i^0}{r_i}$$

$$C. \quad \lambda = \frac{1}{\sum_{i} \pi_{i}^{0} r_{i}}$$

- D. None of the above
- E. I don't know



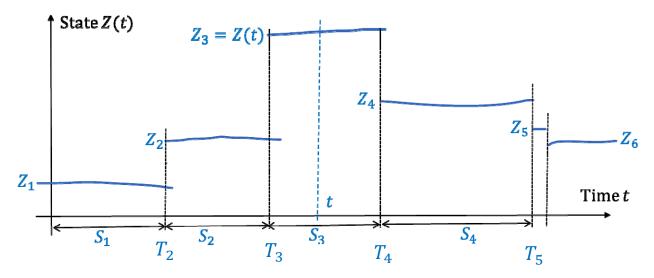
At T_n , channel state is drawn at random and new state is i with proba $\pi^0(i)$. When channel state Z(t) is =i, loss proba is p_i and residence time in that state is r_i . What is the loss probability p for a probe packet sent at an arbitrary point in time t?

$$A. \quad \frac{\sum_{i} \pi_{i}^{0} p_{i} r_{i}}{\sum_{i} \pi_{i}^{0} r_{i}}$$

$$B. \quad \frac{\sum_{i} \pi_{i}^{0} r_{i}}{\sum_{i} \pi_{i}^{0} p_{i} r_{i}}$$

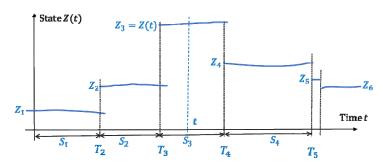
$$C. \quad \frac{\sum_{i} \pi_{i}^{0} p_{i} r_{i}}{\sum_{i} \pi_{i}^{0} p_{i}}$$

- D. None of the above
- E. I don't know



Is the previous simulation stationary?

Seems like a superfluous question, however there is a difference in viewpoint between the epoch n and time t



If there is a stationary regime, by the intensity formula:

$$\lambda = \frac{1}{E(S_n)}$$

So the expectation of S_n must be finite. This is also sufficient:

THEOREM 7.9. Assume that the sequence S_n satisfies H1 and has finite expectation. There exists a stationary process Z(t) and a stationary point process T_n such that

$$I. T_{n+1} - T_n = S_n$$

2.
$$Z_n = Z(T_n)$$

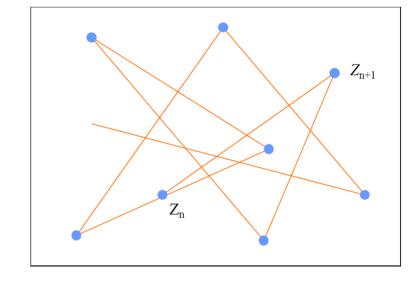
RWP

Modulator: nth trip $Z_n = (M_n, M_{n+1}, V_n)$

Modulated Process: Z(t) = the trip

that we are in at time t

Duration of
$$n$$
th trip $S_n = \frac{d(M_n, M_{n+1})}{V_n}$



Assume waypoints and speed are chosen independently (as in lab)

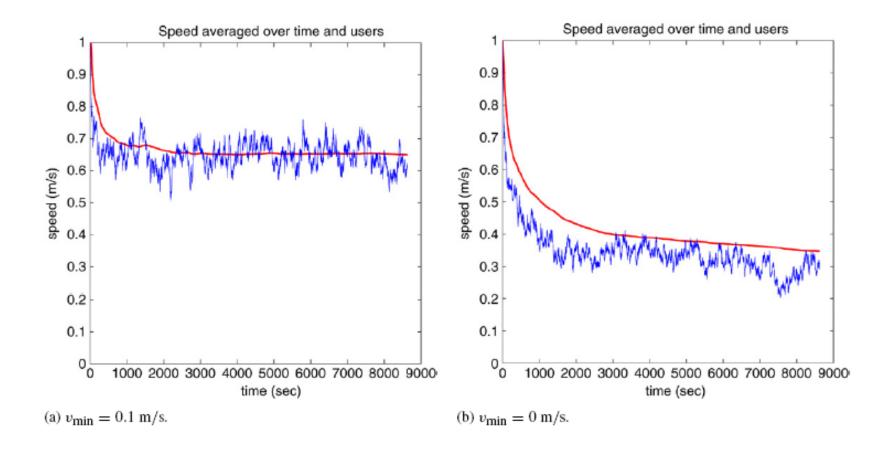
$$E(S_n) = E(d(M_n, M_{n+1})) E\left(\frac{1}{V_n}\right)$$

Assume speed is chosen uniformly between $v_{\min} \geq 0$ and $v_{\max} > 0$

$$E\left(\frac{1}{V_n}\right) = \frac{1}{v_{\text{max}} - v_{\text{min}}} \int_{v_{\text{min}}}^{v_{\text{max}}} \frac{1}{v} dv = \frac{1}{v_{\text{max}} - v_{\text{min}}} (\log v_{\text{max}} - \log v_{\text{min}})$$

There is a stationary regime $\Leftrightarrow v_{\min} > 0$

Time Average Speed, Averaged over *n* independent mobiles



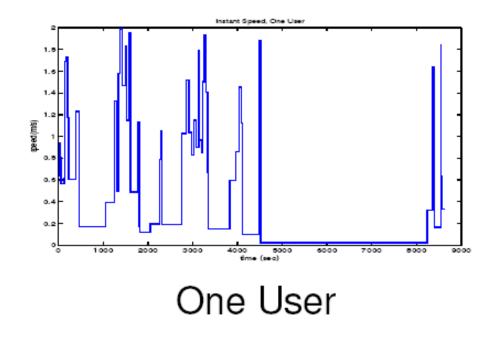
Blue line is one sample; Red line is estimate of E(V(t))

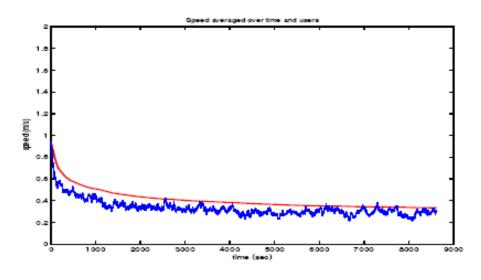
A Random waypoint model that has no stationary regime

When $v_{\min} > 0$ there is no stationary regime.

But this model was often used in practice "considered harmful" [YLN03]

Simulation becomes old and "freezes" – average speed $\rightarrow 0$



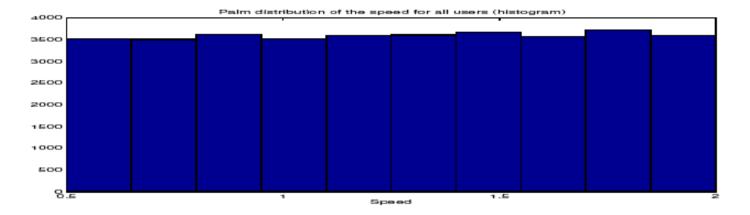


Instant Speed + Empirical speed, both averaged over users

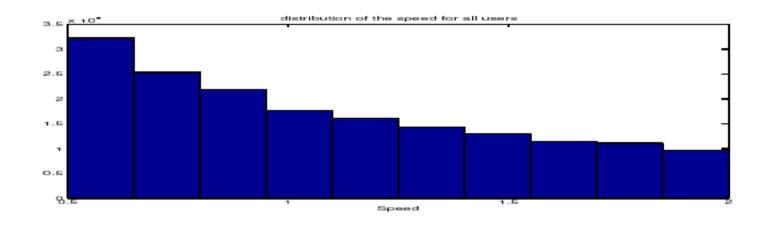
Stationary Distribution of Speed (For model with stationary regime)

Random Waypoint on Rectangle, without Pause:

Speed observed at waypoints (Event average)



Speed observed at an arbitrary time (Time average)



Closed Form

Assume a stationary regime exists and simulation is run long enough

Apply inversion formula and obtain distribution of instantaneous

speed V(t)

$$\mathbb{E} \left(\phi(V(t)) \right) = \lambda \mathbb{E}^{0} \left(\int_{0}^{T_{1}} \phi(V(t)) dt \right)$$

$$= \lambda \mathbb{E}^{0} \left(\phi(V_{0}) T_{1} \right)$$

$$= \lambda \mathbb{E}^{0} \left(\phi(V_{0}) \frac{\|M_{1} - M_{0}\|}{V_{0}} \right)$$

$$= \lambda \mathbb{E}^{0} \left(\|M_{1} - M_{0}\| \right) \mathbb{E}^{0} \left(\frac{\phi(V_{0})}{V_{0}} \right)$$

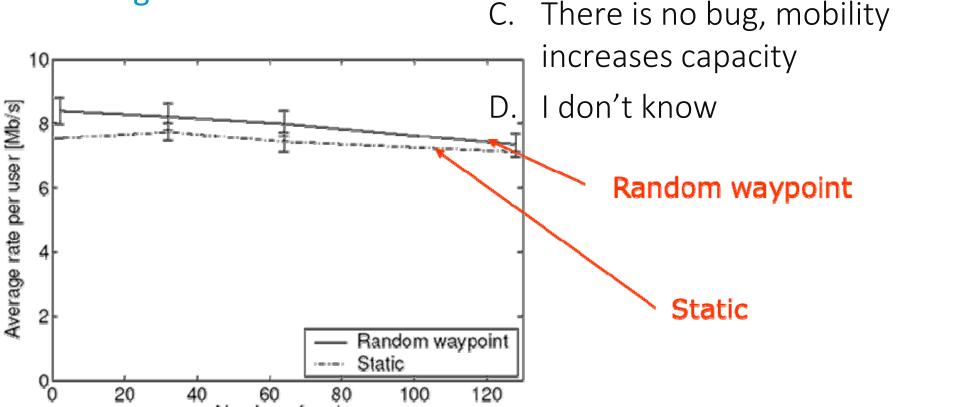
$$= C \int_{v_{\min}}^{v_{\max}} \frac{\phi(v)}{v} f_{V_{0}}^{0}(v) dv$$

$$f_{V(t)}(v) dv = \frac{C}{v} f_{V_{0}}^{0}(v) dv$$

A (true) example: Compare impact of mobility on a protocol: Experimenter places nodes uniformly for static case, according to random waypoint for mobile case.

Finds that static is better Find the bug!

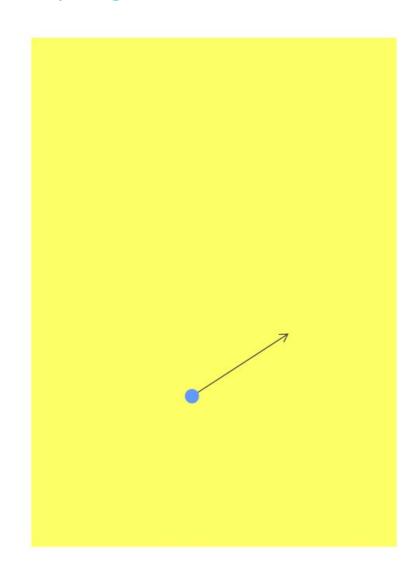
- Spatial distribution of nodes is different for mobile case than for static case
- B. Spatial distribution of nodes is same for mobile and static cases but speed is more often small than large



Does this model have a stationary regime?

A mobile moves as follows

- pick a random direction uniformly in $[0, 2\pi]$ pick a random trip duration $T \sim \text{Pareto}(p)$
- go in this direction for duration T at constant speed; if needed reflect at the boundary.
- A. Yes if p>1
- B. Yes if p > 2
- C. Yes for all p
- D. No
- E. I don't know



3. Perfect Simulation

Def: a simulation that starts with a sample from the stationary distribution

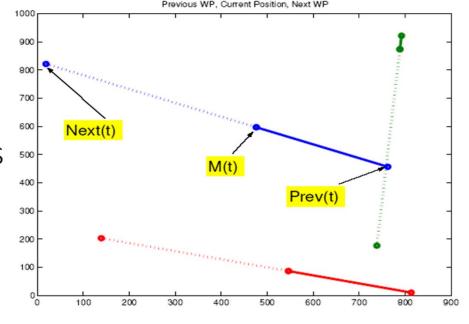
An alternative to removing transients

Usually difficult except for modulated models, e.g. RWP

Perfect simulation of RWP:

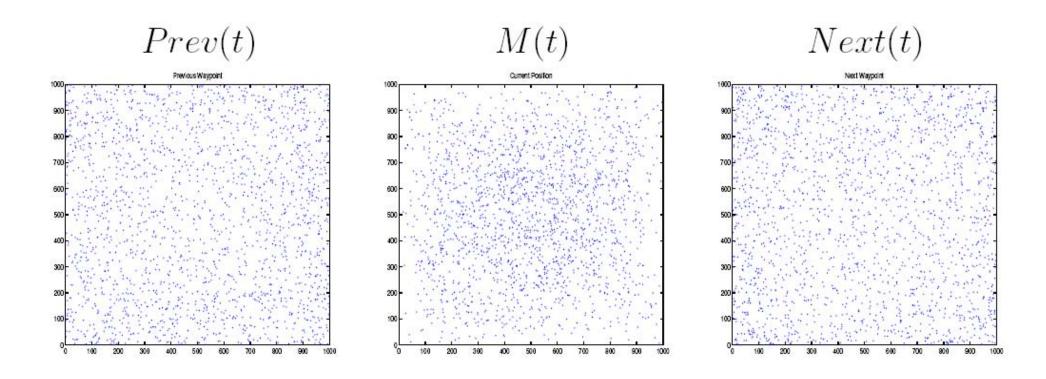
[Prev, Next]

Sample speed V from its time stationary distribution
Sample Prev and Next waypoints from their joint stationary distribution
Sample M uniformly on segment

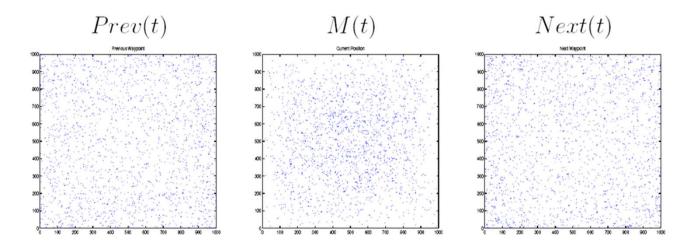


Stationary Distrib of Prev and Next

- Let M(t): position at time t
- Let Prev(t), Next(t): previous and next waypoints

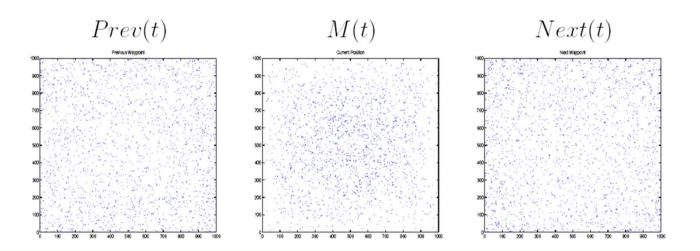


Is M(t) uniformly distributed?



- A. Yes
- B. No
- C. It depends on the distribution of speed
- D. I don't know

Is **Next**(**t**) uniformly distributed?



- A. Yes
- B. No
- C. It depends on the distribution of speed
- D. I don't know

Stationary Distribution of Location Is also Obtained By Inversion Formula

- **Joint** distribution of (Prev(t), M(t), Next(t)) has a simple closed form [NavidiCamp04]:
 - 1. ((Prev(t), Next(t))) has density over area A

$$f_{Prev(t),Next(t)}(P,N) = K \|P - N\|$$

2. Distribution of M(t) given Prev(t) = P, Next(t) = N is uniform on segment [P, N]

 $K^{-1}=\operatorname{vol}(A)^2\bar{\Delta}(A)$, with $\bar{\Delta}(A)=$ average distance between two points in A. For $A=[0;a]\times[0;a],$ $\bar{\Delta}(A)=0.5214a$ [Gosh1951].

Proof. For any bounded, non-negative function ϕ :

$$\mathbb{E}(\phi(\operatorname{Prev}(t), M(t), \operatorname{Next}(t))) = \lambda \mathbb{E}^{0} \left(\int_{0}^{T_{1}} \phi \left(M_{0}, M_{0} + \frac{t}{T_{1}} (M_{1} - M_{0}), M_{1} \right) dt \right).$$

By a simple change of variable in the integral, we obtain

$$\lambda \mathbb{E}^{0} \left(T_{1} \int_{0}^{1} \phi(M_{0}, M_{0} + u(M_{1} - M_{0}), M_{1}) du \right).$$

Now given that there is an arrival at time 0, $T_1 = \frac{\|M_1 - M_0\|}{V_0}$ and the speed V_0 is independent of the waypoints M_0 an M_1 thus

$$= \lambda \mathbb{E}^{0} \left(\frac{1}{V_{0}} \right) \mathbb{E}^{0} \left(\|M_{1} - M_{0}\| \int_{0}^{1} \phi(M_{0}, M_{0} + u(M_{1} - M_{0}), M_{1}) du \right)$$

$$= K_{2} \int_{A} \int_{A} \int_{0}^{1} \phi(M_{0}, (1 - u)M_{0} + uM_{1}, M_{1}) \|M_{1} - M_{0}\| du dM_{0} dM_{1}$$

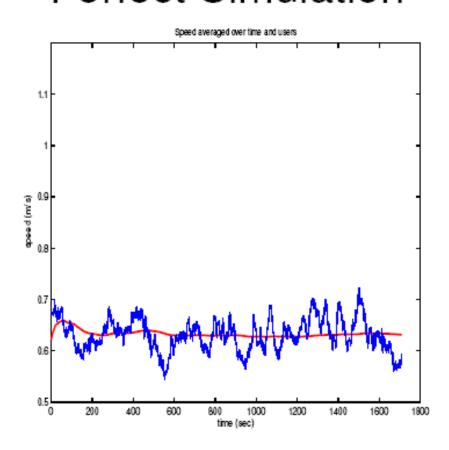
which shows the statement. \Box

No Speed Decay

Standard Simulation

Speed averaged over time and users (a/m) peed (m/s) 0.8 0.7 400 600 1000 1200 1400 1600 time (sec)

Perfect Simulation



Perfect Simulation of RWP: How do you sample the speed?

- A. By rejection sampling
- B. By CDF inversion
- C. By an ad-hoc method
- D. I don't know

$$f_{V(t)}(v)dv = \frac{C}{v}f_{V_0}^0(v)dv$$

Perfect Simulation of RWP: How do you sample the current segment (P, N)?

1. ((Prev(t), Next(t))) has density over area A

$$f_{Prev(t),Next(t)}(P,N) = K \|P - N\|$$

- A. By rejection sampling
- B. By CDF inversion
- C. By an ad-hoc method
- D. Idon't know

