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1. Choosing a Distribution

Know a catalog of distributions, use the following features to do a
pre-selection

Shape

Kurtosis, Skewness
Power laws

Hazard Rate

Fit
Verify the fit visually or with a test (see later)



Feature 1: Distribution Shape

The distributions with PDFs F (), G() have the same shape iff there

exists some location shift m and some scaling parameter s > 0 s.t.
G(sx +m) = F(x)Vx

i.e. F() is the distribution of random variable X and G () is the
distribution of Y with Y = sX + m



Which distributions have the same shape ?

A. AandB
5 Aand C A: N(O0,1)
SaRal B:N(u,0%)with u#0,0 #1,0 >0
C. BandC C: N(u, 0) with u#0
D. All have the same shape
E. All shapes are different
F. Idon’t know



Location and Scale Parameters

A distribution in a catalog (e.g. Wikipedia) usually has many
parameters; it is important to know which ones are simply location
and scale parameters

E.g. N(u,0%): uis a location parameter, o is a scale parameter



For the exponential distribution expo(4), 1/4
1S ...

A. Alocation parameter
B. Ascale parameter
C. Both

D. None

E

| don’t know



F() and G() have the same shape and F ()
has a pdf f() ...

A. = G also has a pdf g() and
gt = f (-

B. = ( also has a pdf but the formula in A does not hold, in general

- )forsomemands>0

C. It may be that G does not have a pdf
D. I don’t know
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Standard Distribution

In a good catalog of distributions, only distributions with different
shapes are worth mentioning. For each shape, we pick one
particular distribution, which we call standard.

Standard normal: N(O,1)
Standard exponential: Exp(1)
Standard Uniform: U(0O,1)
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Log-Normal Distribution

X has log-normal distribution iff X = e and Z has a normal
(= Gaussian) distribution N, 52

often used as a result of rescaling

Note that the support of X is [0; 4+00)

Furthermore Z = u + 0Z, with Z, standard normal Ny ; hence
X = eﬂ'l'O-ZO — eﬂ(ezo)o-
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6=0.2 (y,=0.678) ©=0.4 (y,=3.26)

PDF

2 i

c =0.8 (’\/2 =31.4)

PDF

2 i

o =1 (v, =111)

6 =0.6 (y,=10.3)

=1.2 (’\{2 =31%5)




For the log-normal distribution...

Log-Normal Distribution

X has log-normal distributioniff X = e and Z has a normal
(= Gaussian) distribution N, ;2

often used as a result of rescaling

A' l/l IS a |Ocatlon parameter Mote that the support of X is [0; +o0)
Furthermore Z = pu + gZ, with Z; standard normal Np  hence
. s +ady FARY
B. o isascale parameter Tl )
C. AandB
D. None

E. I don’t know

15



Feature 2: Skewness and Curtosis

(K, =E(X)
ko = E(X —E(X))* = var(X)
ks =E (X —E(X))

| ke =E (X —E(X))* — 3var(X)?

4567445

SKEWNESS INDEX k5 1s called skewness. The skevwness index 1s

3/2
1= KKy T = = Kg/o®
. 8 &
Measures symmetry of distribution / \
1
/ \ j]
4= » ok
Nagative Skew Fositive Skew

KURTOSIS INDEX k4 1s called Kurtosis. The Kurtosis index 18

transferred from en.wikipedia by Rodolfo Hermans (Godot)., CC BY-
SA 3.0, https://commons.wikimedia.org/w/index.php?curid

By Rodolfo Hermans (Godot) at en.wikipedia. - Own work;

o 42 g4
Vo 1= Ky K5 = Ky/O

Measures departure from the Bell-shape of normal distribution
Equal to 0 for normal distribution
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If F() and G() have the same shape...

A
B.
C.
D
E.

They have the same skewness index

They have the same Kurtosis index
Both

None Feature 2: Skewness and Curtosis

| don’t know s = EiX)

wy=EIX —E(X))? =vwae(X)
ks =E(X -E(X))*
ki =E(X —E[X)* — Svar( X|?

SKEWNESS INDEX iy is called skewness, The showness index is

32

1 = .h_|___'..h ¥ a

= N3 _."ﬂ'

Measures symmetry of distribution

KUrTOosIs INDEX  #y is called Kwtosis, The Kuriosis index is

g 1= Ky .".-.'g = py /e

Measures departure from the Bell-shape of normal distribution
Equal to 0 for normal distribution

17
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HeOress+

Appendix A

A Compendium of Common Probability Distributions

Michael P. McLaughlin
Beta(A,B,C,D) McLean, VA y<B, C,D>0
September, 1999

3.0

(0,1,6, 2)

[McLaughlin]

skewness < 0

25

A

2.0- 0,1,1,2)

(OI 1! 2! 2)

PDF

1.5

1.0-

kurtosis >0

skewness = 0

0.5 —

0.0 | 7 - T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

kurtosis < 0
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Log-normal distributions

o =0.2 (72 =0.678) ©=04 (“{2 =3.26) ¢ =0.6 (“{2 =10.3)

2l 12 2]
s || s :
0 1 || I|I ] 0 1 III-"I 'I 2l 1 \
|I ,"I \-\\
| I\ \_
0 0~ 0 —=
0 5 0 5 0
X X X
c =0.8 (’}’2 =31.4) c =1 (’\{2 =111) c=1.2 (’\{2 =513)
2| | 2 | 2
: : L
a T a T\ |z 1
|I .-'\_\ | l.l\'&
AN [\ N\
0 —= 0 — 0 —
0 5 0 5 0
X X X

shape is independent of u - u chosen such that meanis 1
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Jarque Bera test of normality (Chapter 4)

Based on Kurtosis and Skewness
Should be O for normal distribution

JARQUE-BERA. The Jarque-Bera statistic 1s used to test whether an 11d sample comes from a
normal distribution. It 1s equal to (*}12 + ’Tﬁ) the distribution of which is asymptotically y3 for
large sample size n. In the formula, ~; and ~5 are the sample indices of skewness and kurtosis.
obtained by replacing expectations by sample averages in Equation (6.3).

k= E(X)

ke =E(X —E(X))” = var(X)
ry =E (X —E(X))

ke =E(X —E(X))" — 3var(X)?
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File Transfer Times Log of File Tranasfer Times

Quanles of Inpul Sample

1 & [
Quanles of Inpun Sample
|

- o

+
"
} ‘g?
' -
=2 g
= +
P g

= " L N = " L N
Za —= o = 4 —a —= o =2 a
Standard Rormal Suantiles

Standard MNMormal Quantiles

Figure 4.4: Normal qgplots of file transfer data and its logarithm.

EXAMPLE 4.18: APPLICATION TO EXAMPLE 4.17. We would like to test whether the data in
Example 4.17 and its transform are normal.

Original Data h =1 p = 0.0010
Transformed Data h =20 0.19132

o
I

The conclusions are the same as in Example 4.17, but for the original data the normality assump-
tion is clearly rejected, whereas it was borderline in Example 4.17.
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Feature 3: Power Laws

Zipf's “law”: probability that the jth most popular object in a
catalog (e.g. movies on Netflix): is chosen is proportional to 1/j
for some index p.

p+1

Empirically found to for recommendation systems, for distribution
of file sizes, of cluster groups in facebook, of incomes in a
population etc...

Model 1 (Zipfian distribution): user picks one out of N objects;

proba that objectj € {1, ... N} is selected is 6; = jpnﬂ

where n is

some constantand p = 0.

Model 2 (Zeta distribution): user picks one out of an infinite

collection of objects; proba that object j € N¥ is selected is 8, =

n
jp+i

where 1 is some constantandp > 0

25



Pareto Distribution

Model 3 (Pareto distribution): user picks one object with feature
x € |1,00); PDF of feature x is f(x) = withp > 0

xp+1
Pareto distribution is the continuous approximation of Zeta and
Zipf. Is much easier to use:

Standard Pareto with indexp > 0:

PDF: f(x) = Br lpxeny; COF:F(x) = (1 - %) Lz
Complementary CDF (CCDF, Survival function):

P(X >x) =F(x) = —forx > 1

PDF and CCDF of Pareto follow a power law
i.e. a relation of the form y = ax? for some a, b.

In log-log scale, logy =loga + blogx : alinear relation
26



For the Pareto distribution with index p...

Standard Pareto with indexp > 0:
1
POF: f(x) = o lpary COFF(0) = (1= 5) Tpeay

Complementary COF: P(X > x) = F(x) = ;—pforx =1

A. p isalocation parameter

B. p isascale parameter
C. AandB

D. None

E. Idon’t know
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Complementary Distribution Functions in Log-log Scales
Say which is what

G m Mmoo O ® >

A-lognormal, B- pareto, C-normal

A-p, B-I, C-n £-
A-l, B-n, C-p
A-n, B-l, C-p
A-p, B-n, C-|
A-n, B-p, C-|
| don’t know

10~-2
I N N (N BN

1

1

10~12 1010 10~8 10*-6 104
1

1 5 10 50 100 500 1000

29



Feature 4: Hazard Rate

A property of the tail of the distribution

Definition: A(x) = llmo—xP(X <x+dx|X>x)

1
= lim —Px <X <x+dx|X > x)
 dx—0dx

interpret X as a lifetime; A(x) is the rate of death given reached

age x

Alx) = f(x(l) where f = pdfand F = CDF

Used to classify distributions

Aging: lim A(x) = o
X — 00

Memoryless: imA(x) =c¢ >0

X—00

Fat tail (Vanishing Hazard Rate): limA(x) = 0

X — 00

31



Which is what ?

G m m o O o >

Exponential: aging; Pareto: memoryless, Normal: fat-tailed
E-M; P-A; N-F

E-A; P-F; N-M

E-F; P-A; N-M

E-F; P-M; N-A

E-M; P-F; N-A

| don’t know
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The Weibull Distribution with shape parameter c

Standard Weibull F(x) = 1 — e~®*"

. =0.5 (v,=84.7 =0.8 (y,=12.7 =1 (7,=6
Aging forc > 1 . ¢ =05 (1,=84.7) . ¢ =08 (p=12.7) 1 ¢ =16
Memoryless forc=1

. 6| |
Fat tailed for c <1 2} |
(. L \
QO 4} 1 0O » a 05 \
a a || \
1 Lo \
2t
X \ \\\
0 - 0 — 0 —
0o 2 4 0 2 4 0 2 4
X X X
¢ =1.2 (1,=3.24) ¢ =3.3601 (v,=-0.289) ¢ =10 (1,=0.57)
0.8 1.5 4
0.6f | \ - 3|
| \ 11 I jl
| L [ L I
0 0.4 | 6 [ o2 |
2 |/ 27 |
0.2 "\.\' 0.5¢ Il' ': 1 “ *
' b P |
\\\ \
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2. Heavy Talil

Recall what fat tail / vanishing hazard rate is -- Heavier than fat tail
is heavy tail

A property found in many high resolution data sets: financial data,
network measurements at second time scale, power grid
measurements at 50 Hz, etc where rare but very large values exist

A distribution defined on [a, o) with CDF F is heavy tailed with
indexp, 0 <p <2if

1—F(x) ~

= Variance is infinite

k
> for x > oo for some constant k

= for 0 < p < 1 meanis also infinite

NB: we use the terminology used e.g. by Taggu and Crovella. Other
(confusing) definitions exist. Our definition of heavy tail always
implies infinite variance.
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Examples

Pareto distribution: 1 — F(x) = P*lis heavy tailed for0 < p < 2

xP
Log-normal distribution is not heavy tailed (its variance is finite)

Weibull distribution: 1 — F(x) = e~*%) is not heavy tailed
2
T(1+x2)

One-sided Cauchy distribution f(x) = Lxs0y is heavy

tailed withp =1

36



Heavy Tail means Central Limit does not hold

Central [imit theorem:

a sum of n independent random variables with finite second
moment tends to have a normal distribution, when n is large

this explains why we can often use normal assumption

But it does not always hold. It does not hold if random variables
have infinite second moment.

37



Central Limit Theorem for Heavy Tails

2000
1000
|

* .
.
=00
logippointsik))
4 =2

Q 500 1000

o z0a
-6 -

normal qgplot histogram complementary d.f.
log-log

One Sample of 10000 points
Paretop =1
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Central Limit for heavy tailed distributions

What we saw on previous example is an application of a general
theorem that say: the aggregation X; + ---+ X,, of n iid random
variables has approximately, for large n,

a normal distribution if not heavy tailed

a “stable” distribution if heavy tailed ; the limit is heavy tailed
with same index p

The stable distribution is a family of distributions with two shape
parameters p and . It is closed by aggregation.

Heavy tail is conserved by aggregation

40



Standard Stable Distributions with Index p

For p €]0,2], there is one standard stable distribution for each p
and for each f € [—1,1], a shape parameter similar to skewness;
they are all heavy-tailed (or constant).

No closed form for the pdf or CDF, no easy computation of CDF or
inverse CDF.

Closed form for Fourier transform of CDF.

Hard to use in practice -- you can replace it by a mixture with
Pareto tail

Forp = 2, stable = normal

41



X is the mean of n iid random variables X, ... X, ,
n is large (X is not constant) Say what is true.

A.

— IO M moOO W

If X; is heavy tailed with index p (<2), then X has
approximately a stable distribution with index p

If X; is Pareto with index p, then X is also Pareto with index p
If X; is Pareto with index p, then X is heavy tailed with index p
Aand B
Aand C
Band C

. All
. None

| don’t know
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X is the mean of niid random variables X¢, ... X, n
is not large. Say what is true.

A. If X; is stable with index p, then X is also stable with index p
B. If X;is normal then X is normal
C. AandB
D. None

E. I don’t know



Application to Confidence Intervals

X; ~ iid Standard Paretop = 1.25

e, fx(x) = x12'_2255 forx =1

True mean of X; isu = 5 and true median is 1.74

Assume we don’t know the model and have received a sample of
n values, where n is large; we want to compute the mean and the

median of X;

EXAMPLE 2.7: PARETO DISTRIBUTION. This is a toy example where we generate artificial data,
1

iid, from a Pareto distribution on [1,+oc). It is defined by its cdf equal to F'(c) := P(X > ¢) = 5
with p = 1.25; its mean is = 5, its variance is infinite (i.e. it is heavy tailed) and its median is 1.74.

Assume we would not know that it comes from a heavy tailed distribution and would like to use the
asymptotic result in Theorem 2.2 to compute a confidence interval for the mean.
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Which formula is correct (confidence level =0.95)?

A. An approximate confidence interval for the meanis x +

-1 1 _
1.96\/%Wlth X= - Y. X; and s = gZi(xi — X)*

B. An approximate confidence interval for the median is
[X(i),X(j)] withi = [0.5n — 0.980y/n]andj =[0.50n+ 1+
0.980+/n]

C. AandB
D. None
E. Idon’t know
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Deciding for Heavy Talil

Assume you have very large data set and you suspect your
distribution has infinite variance --- hard to test because everything
we do is finite

An alternative is to look for heavy tail by plotting CCDF in log-scale

O T T - - - n T T g 3

-1 b

log 10P[X > x]

-(‘ A A A A
o 1 2 3 4 5 6 7 8 9 10
log 10 File Size)

Estimating the index p can be done with Taggu’s method (see
lecture notes)
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3. Fitting A Distribution

Assume iid
Use maximum likelihood

We know how to do this (model
fitting)

-> maximum likelihood estimation

Frequent issues
Censoring

Combinations

51



Censored Data

Example: We want to propose a distribution for file sizes
transferred over a network; we think a lognormal distribution is
adequate but we can never observe very large values, by the
nature of the experiment

Lognormal is fat tailed so we cannot ignore the tail

ldea: we assume that what we observed is produced by the
following simulator

sample X ~ Fy() ( alog-normal distribution)

if X < a deliver X else drop X

52



The samples produced by this model have the
following pdf... (fo = pdf of Fy)

A. f(x) = fo(x) X 1rx<qy X constant
Idea: we assume that what we observed is produced by the

B. f(x)=/folx—a)
1 X following simulator

C, f(X) — f (—) sample X ~ Fy() { a log-normal distribution)
a a

if X < a deliver X else drop X

D. None of the above
E. I don’t know
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EXAMPLE 3.10: CENSORED LOG-NORMAL DISTRIBUTION. Figure 3.7(a) shows an artificial data
set, obtained by sampling a log-normal distribution with parameters ;. = 9.357 and o = 1.318,
truncated to 20000 (i.e. all data points larger than this value are removed from the data set).

Fit ignorilfg the censoring _7 10
(i.e. fit log|of data to anormal -~
distributityn) 10"
0.6 P
I 10
it with
0.4 correct technique .
107}
0.2
107} |
|
0 ;
0 0.5 i 15 2 40 ,
x10° 10’ 10° 10° 10' 10°
(a) CDF (b) CCDF in log-log scales
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Combinations

We want to fit a log normal

distrib to the body and pareto to b
the tail Al
10 3
Often used when the tail is well
identified 107}
This corresponds to the pdf |
. hi=x) |  fo(x) 107}
[\ (r) =q Fl ((l) 1{:_4!} + ‘l o q}l - F_g((I] 1{!:1}
10_45'
: 10-{” 3 8
with g € [0,1] 10 10° 10 10
(a) CCDFs
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This pdf corresponds to the following
simulator output

A' A P N
B B IDDraawww U —LJCO,AL)
. IF IV = g dravwww X fromxm M~ uantil X = o
else dra~w X fromxm Fo uvantil X = cx
C. None Deliver X
D. Both
E. ldon’t know

A:
Draw U ~U(0,1)
if U < qdraw X from F; until X < a

else draw X from F, until X > a
Deliver X

B:

Draw X from F; until X < a

Draw Y from F, until Y > a

With proba g deliver X else deliver Y
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Maximum Likelihood estimation of combination

Solved by brute force, after observing that the MLE satisfies § =

nq(a)
- where ny(a) = Xi=1.n 1xisa
10° ¢
: 9.8025%10 —
‘10_1 3 . \/
9.8034} o
10~ / A\
Z 9.8033+ / —
3: ‘/\/: \/
10 asoazt )
107} { 98031}
107 - — — - 5 9803 2 13 14 15 16
10 10 10 10 10 x 10°
(a) CCDFs (b) Profile log-likelihood of breakpoint @

Figure 3.8: Fitting a combination of Log-Normal for the body and Pareto for the tail. Dashed vertical line:
breakpoint. 60



4 [llustration A Load Generator: Surge

Designed to create load for a web server
Sophisticated load model by Crovella and Barford

It is an example of a well constructed benchmark.
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User Equivalent Model

|dea: find a stochastic model that represents user well

User modelled as sequence of downloads, followed by “think time”
Tool can implement several “user equivalents”

Used to generate real work over TCP connections

Page URL Embedded Item URL  Active OFF

s
URL1 |OFFJURL 2| OFF JURL3 OFF
et
/ / 4
R . Time
ON Object — Inactive OFF —

User Fequests Page Bequested Page Feceived  User Bequests Next Page
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Characterization of UE

-2

b

. One UE alternates between ON-object periods and “Inactive OFF periods™. Inactive OFF

periods are 11d with a Pareto distribution (Table 6.1).

During an ON-object period. a UE sends a request with embedded references. Once the
first reference (URL1) 1s received. there is an “Active OFF period”. then the request for the
second reference 1s sent, and so on, until all embedded references are received. There 1s
only one TCP connection at a time per UE, and one TCP connection for each reference (an
assumption that made sense with early versions of HTTP).

. The active OFF times are modelled as iid random variables with \Weibull dsitributions

The number of embedded references 1s modelled as a set of 11d random variables. with a
Pareto distribution.
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Fitting the distributions

o = =
o o | s
[ o o
o o o
L= =] L=
{
o =] =
o o o
o ] !
] o Q
o =] =
[ . . [ . . . . r oL r T T T
10 158 0.0 0.2 04 08 0.a 1.0 0 1 2 3 4
logifile sizes) seconds logicounts)

(a) (b) (c)

Figure 2: CDF of (a) Log-transformed File Sizes vs. Fitted Normal Distribution (b) Active OFF Times vs. Fitted
Weibull Distribution (¢) Embedded Reference Count vs. Fitted Pareto Distribution
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