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Virus Infection Data

We would like to capture the
growth of infected hosts

(explanatory model)

An exponential model seems
appropriate

How can we fit the model, in
particular, what is the value of a ?
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Least Square Fit of Virus Infection Data
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Least Square Fit of Virus Infection Data In Log Scale
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Compare the Two
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Compare the Two

Which scale should | -
use ?

L3 fit in natural =cale

_ LS fit in log scale

A. The natural scale because it is
the simplest (principle of
parsimony)

B. The log scale because it is better
adapted to exponential growth

C. ldon’t know



What is model fitting ?

Given some data Y; and a parametric model f;(#) we assume that :

Y: = £;(0) + noise

The model fitting problem is to estimate the unknown parameter 6

For example: the model is Y; = ae®t

or
logY; = loga + at;

These two models are equivalent; the parameteris 8 = (a, a)



The signal processing interpretation

Given a model Y; = f;(6) + noise and a score function, find 6 that
minimizes the score

Classical scores
: _ : 2
Least Square: score = );;(noise;)
Weighted Least Square: score = Y.;(w; X noise;)?
£1 score: score = Y; |noise;]
Weighted £ score: score = }; w;|noise;]

Which one should we use ?
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The statistical interpretation

The dataY; is output by a simulator, with parameter 8, which we want
to estimate

This forces us to make some assumption about the noise term; for
example, we could consider any one of the following models

1. Y;=ae%i+¢, ¢€iid~ N(0,0%)
2. Y, =ae%i(1+¢), ¢iid~ N(0,0%)
3. logY; =loga+at; +¢;, ¢ iid~ N(0,0%)

For each of these models, the parameteris now 8 = (a, a, 0)
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Estimating a statistical model: maximum
likelihood

Principle: find 8 that maximizes the pdf fy(y|0), also called likelihood,
where y is the data

This is a robust and consistent estimation method

Example: model 1: Y; = ae%ti +¢;,, ¢ iid ~ N(0,0%)

1 I el
fy(Y|a; a, O') — - e 252 Zl=1(yl ae ) (1)

( Zna)

the problem is to find (a, a, o) that maximizes (1)
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Least Square Score = Gaussian iid Noise

Assume model (homoscedasticity)

Y: = f,-,(_‘,.-‘ +efori=1,..., T with e; ud ~ N 2
THEOREM 3.1.1 (Least Squares). For the model in Eq.(3.5),
1. the maximum likelihood estimator of the parameter (? o) is given by:
. N2
(a) 3 =argming) . (yi — fi(8 ))
L\ 2
) &* =+ 5, (v — £i(9)

i.e. the signal processing method with Least Squares score is the
same as the statistical method with iid gaussian noise
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Example: model 1: Y; = ae%®ti+¢;, € iid ~ N(0,0%)

1 I at; 2
e 207 Zima(Vimae™) T g,

la, a,0) =
fryla,a,o (m),

the problem is to find (a, a, o) that maximizes (1)

Thm 3.3.1=

(@,@) = argming , Yi=,(y; — ae®t)?

I
1 .
5 =70 (vi—ae)’
l
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The residuals can help validate a fitting method

Residuals = estimate of noise terms (after estimation of parameter) —
they should be consistent with the model
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Y; = ae®i + €, ¢; ~ iid N(0,0%)
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logY; =loga+ at; + €;,¢; ~ iid N(0,52)

Model 1 appears not to fit, residuals have a variance that grows with
t;, model 3 appears OK; we should prefer it for fitting this data set
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LS score functions

Given a model to be fitted
Y: = £;(8) + noise
we have the equivalences:

Score Statistical model

Least Square: noise ~ iid N(0, 62)
score = Y ;(noise;)?

score = Y,;(w; X noise;)?

Weighted Least Square: _ B a?
noise; ~iid N | 0,—

l.e. WLS gives a weight inversely proportional to g; of noise



Which score corresponds to which model ?

GG Mmoo O ® >

A1 B2 C3 1. Y;=ae%*i+¢, ¢ iid~ N(0,0%)

A1 B3 C2 2. Y;= ae®ti(1 + €), € iid ~ N(0,0’z)

A2 B1 C3 3. logY; =loga + at; +¢;, ¢ iid~ N(0,0%)
A2 B3 C1 1 "

A3B1C2 A ) (i—ae™)’ B Z( - )

A3 B2 C1 i z

| don’t know C:z(logyi —loga — at)*
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Compare 1. Y;=ae%i+¢, ¢iid~ N(0,0%)
models 2 2. Y, =ae%*i(1+¢), €iid~ N(0,0%)
and 3 3. logY; =loga+ at;+¢€;, ¢ iid~ N(0,0%)

Assume model 2 and take log:
logY; =loga + at; + log(1 + ¢;)
~ loga + at; + €;

So we expect models 2 and 3 to be approximately equivalent.
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Take-Home Message

In order to fit a model you need to find an appropriate score
function.

One easy way to determine one is to consider an explicit model of
the noise, and verify it by looking at residuals

A common mistake is to assume that noise has same variance
when it is obviously wrong (e.g. model 1)

Furthermore, we may be interested in finding confidence intervals
for the estimated parameters.
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2. Least Squares

Very commonly used
Efficient solution, lots of softwares
And gives confidence intervals

Yi= fi(B) +efori=1,... I with €; ud ~ Nj 2

THEOREM 3.1 (Least Squares). For the model in Eq.(3.5),

1. the maximum likelihood estimator of the parameter (@' , ) is given by:

(a) B = arg ming ) . (yi — fz(;))z
) 62 =+ 5 (i~ £:())
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Confidence Intervals

2. Let K be the square matrix of second derivatives (assumed to exist), defined by

1 Of; 0f;

Iij,ﬁ;ZE i Ed_jﬁc

Y

If K is invertible and if the number I of data points is larvge, (3 — [3 is approximately gaussian
with 0 mean and covariance matrix K.

Alternatively, for large I, an approximate confidence set at level «y for the jth component 3
of 3 is implicitly defined by

- - ~

e o T (a(ﬁh ,3_.;-_11.8,?-1.5’%1---.5;:)) > &

. e
where 6%(3) = %Zi (yi - fi{,ﬁ’}) and &, is the v quantile of the \* distribution with I
degree of freedom (for example, for v = 0.95, &4 = 3.92).



Example: model 3 log¥; = loga + at; +€;, ¢ iid ~ N(0,0?)
fi =a' + at; withloga = a’;let f; =aand f, = a’

of _,  fi_
— =, —=1
0p1 iy
1 ) 1 I
K1,1=?Zti :K1,2=K2,1=ﬁ | ti, K3,z =;
fi=a +at;withloga =a’;let ; =aand f, = a’
of of
ﬁ — ti’ ﬁ =1
00 gy
1 5 1 I
Ki1 = o2 ti K12 =Ky1 = ﬁz ti, Kz2 = o2
i ] L
Ztiz zti
K=i i i

0-2
Yo

-1
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Example: model 3 log¥; =loga +at; +¢;, ¢ iid ~ N(0,02)

2. Let K be the square matrix of second derivatives (assumed to exist), defined by

s L s
jrk_f_'f? : d:jj dj;i

If K is invertible and if the number I of data points is large, [3 — 3 is approximately gaussian
with 0 mean and covariance matrix K.

S 3
l l
1 i i | [SE + t2 t] Matlab calls K~ the

0-2 0-2 [ 1 Varlapce-covarlance
t; i matrix

L i

1 1 . o’ 11 —f
1 — . 2:— ;  — 2 _1=— — —_
With =7 ) ti.5; IZ (L—t) =K Is,?[—t St2+t2]
l

[

0.2 2

og° _
> a—a~N 0'1_2 ,a—a~N 0;1—2(t2+5152)

St St
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An approximate 95% confidence interval for a¢ is
(with 62 = =3, (log ¥; — log @ — & t;)? )

A a+196 Z

St
0
\/75t
C &+196 2

ISt

D. None of the above

B. a+1.96

E. I don’t know
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Linear Regression

Model 3 is a special case of linear regression

By definition, a linear regression model (with least squares) means
a model of the form

V;=fi(f)+e, € ~iidN(0,0%)
where f; is linear with respect to 5

For such models, there are closed form solutions in matrix form for
the maximum likelihood estimation solution, including exact
confidence intervals —see thm 3.3

DEFINITION 3.1 (Linear Regression Model).

—

Y; = (XB)i +efori=1,... .1 withe; iid ~ Ny, (3.8)

where the unknown parameter (3 is in R” and X is a [ X p matrix. The matrix X supposed to be
known exactly in advance. We also assume that

H X has rank p



THEOREM 3.3 (Linear Regression). Consider the model in Definition 3.1; let if be the I x 1 column
vector of the data.

1. The p x p matrix (X' X) is invertible

2. (Estimation) The maximum likelihood estimator of 5 LS § = Ky with K = (X T )X 1t

3. (Standardized Residuals) Define the ith residual as e; = (1}’— X 3) . The residuals are

zero-mean gaussian but are correlated, with covariance matrix o°(Id; — H), where H =

X(XTX)1XT,
Let 52 = I]—p lell* = II—P N, €7 (rescaled sum of squared residuals). s* is an unbiased
estimator of o°.
The standardized residuals defined by r; := —=== have unit variance and r; ~ t;_,_,.

5 i1
This can be used to test the model by checking that r; are approximately normal with unit
variance.
1 . o s . .
4. (Confidence Intervals) Let G = (X rx ) = KK7; the distribution of /3 is gaussian with
mean 3 and covariance matrix oG, and (3 is independent of e.

In particular, assume we want a confidence interval for a (non-random) linear combi-

nation of the parameters ~v = Zleujﬁj; ¥ = Zj u;3; is our estimator of . Let
2 .
g = Z; L WG = D, (E? U, I{jﬁ) (g is called the variance bias). Then “’-VTE-’: ~tr

This can be used to obtain a confidence interval for .



Example: Joe’s shop

Achieved Throughput (tps)

| | |
2 4 B B 10

Offered Load (ips)

Y; = (a+ bx)1y<e + (¢ +dx) 15z + €, 6 ~ iid N(0,02)
with a + b = ¢ + d¢
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Is this a linear regression
model ?

Achieved Throughput (tps)

Yi — (a + bxl)lxlsg + (C + dxl)lxl>$ + El’ El ~ lld IZV(O’ O-qz)oﬂeredLoad(leS)
witha + bé = c + d¢&
A. Yes
Yes if we assume ¢ is known

B
C. No, even if € is not known
D. Idon’t know



Validate the Assumptions with Residuals

We also computed the residuals ¢; (crosses) and standardized residuals r; (circles).
There is little difference between both types of residuals. They appear reasonably nor-
mal, but one might criticize the model in that the variance appears smaller for smaller
values of z. The normal qgplot of the residuals also shows approximate normality (the
qgqplot of standardized residuals is similar and is not shown).

Residuals
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Non-linear case: use the likelihood function

2. Let K be the square matrix of second derivatives (assumed to exist), defined by

Il

If K is invertible and if the number I of data points is larvge, (3 — [3 is approximately gaussian
with 0 mean and covariance matrix K.

Alternatively, for large I, an approximate confidence set at level «y for the jth component 3
of 3 is implicitly defined by

-

—2I'In(6) + 2[In (5(5"11 i 35—11.5j:.§j+1----5ﬁ)) = &1

. 7
where 62(3) = %Zi (yi - fi(,ﬁ’}) and &, is the v quantile of the \* distribution with I
degree of freedom (for example, for v = 0.95, &4 = 3.92).
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EXAMPLE 3.8: JOE'S SHOP - BEYOND THE LINEAR CASE - ESTIMATION OF £&. In Example 3.6
we assumed that the value ¢ after which there is congestion collapse is known in advance. Now

we relax this assumption. Our model is now the same as Eq.(3.9), except that £ is also now a
parameter to be estimated.

To do this, we apply maximum likelihood estimation. We have to maximize the log-likelihood
lg(a,b,d, &, ), where g, the data, is fixed. For a fixed £, we know the value of (a,b,d, o) that
achieves the maximum, as we have a linear regression model. We plot the value of this maximum
versus ¢ (Figure 3.2) and numerically find the maximum. It is for & = 77.

To find a confidence interval, we use the asymptotic result in Theorem B.3.1. It says that a 95%
confidence interval is obtained by solving 1(£) — I(£) < 1.9207, which gives £ = [73, 80].

-190

e

-230} /
el /

-250 = ] ] 1 L L 1
10 20 30 40 50 60 70 80 S0

Figure 3.2: Log likelihood for Joes' shop as a function of ¢.
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3. #1- Norm Minimization
Laplace Noise

Recall that the pdf of the exp(A) distribution is f(x) = Ae **1,.5,
and its CDFis F(¢) =1 — e~4¢

Consider the following sampling method:
Draw Y ~ exp(A)

With probability 0.5, let X =Y,
with probability 0.5 let X = =Y

The output X is called Laplace Noise

What is its pdf ?

36



The PDF of Laplace noise is ...

A f(x) = % et +% e ¥
B. f(x) =2e !
C. f(x)= %e"”’d +%e‘lx

2 2
D f(x)= Ee_’”x' +Eel|x|

E. | don’t know
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#1-Norm Minimization = Laplace Noise

Assume model (homoscedasticity)

Y; = f; (?) + ¢; with ¢;iid ~ Laplace(\)

THEOREM 3.2 (Least Deviation). For the model in Eq.(3.7), the maximum likelihood estimator of
the parameter (3, \) is given by:

- £(8)]

1. 3= arg min g

i3
¢ A

- fi(B) \

i.e. the signal processing method with #1score is the same as the
statistical method with iid Laplace noise.

‘The ¢! norm of a sequence z = (21, ...,z,,) is ||z]|; = >0, | 7]
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LS and #1score functions

Given a model to be fitted
Y: = £;(8) + noise
we have the equivalences:

Score Statistical model

Least Square: noise ~ iid N(0, 62)
score = Y ;(noise;)?

score = Y.,(w; X noise;)? w2

Weighted Least Square: _ B a?
noise; ~iid N | 0,—

£1 score = Y, |noise;| noise ~ iid Laplace(4)

£1 score = Y.; Wi|noise;| | noise; ~ iid Laplace(Aw;)




LS versus £1- norm minimization
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Virus propagation example: both fits give the same result in log-scale
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21_ norm minimization is more robust to « Outliers »
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15
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Figure 3.1: Fitting an exponential growth model to the data in Example 3.1, showing the fits obtained
with least square (plain) and with ¢! norm minimization (dashed) . First panel: original data; both fits are
the same; Second panel: data corrupted by one outlier; the fit with /1 norm minimization is not affected,
whereas the least square fit is.

Least Square (' norm minimization
rate prediction rate prediction
no outlier | 0.3914 30300 0.3938 32300
with one outlier | 0.3325 14500 0.3868 30500
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To understand the difference between LS and #1
consider the simple example y; = m + noise
i.e. fit a cloud of data to a single value

Least Square L1 Norm Minimization
Model: Model:
yi = m + €;,€; iid yi = m + €;,€; iid
~ N(0,0%) ~ Laplace(1)
Whatism? Whatism ?

Confidence interval ? Confidence interval ?
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What is the LS fit of m iny; = m + noise ?

A. m = median of y;

B. m =79y wherey = mean of y;

€ m =73+ where 62 = 1 N{(y; — ¥ )’
_ . 0?2 ~2 1 oI —\2
D. m=y+;wherea =:Zi()’i_Y)

E. Idon’t know
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What is the £ ! fit of m in y; = m + noise ?

A. m = y where y = mean of y;
B. m = median of y;

_ o1 _

C m=y+%where 62 ==Xio (i —¥)?
_ . 0?2 ~2 1 oI —\2

D. m=y+;wherea = —2i=1 (i =)

E. Idon’t know
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Linear Regression with #1 norm minimization

= £1 norm minimization + linear dependency on parameter
More robust than LS linear regression
Less traditional

DEFINITION 3.2 (Linear Regression Model with Laplace Noise).

—

Y, =(X0); +¢ fori=1,..., [ withe; iid ~ Laplace (\)
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This is convex programming

THEOREM 3.3.1. Consider the model in Definition 3.2.1; let ij be the I x 1 column vector of the
data. The maximum likelihood estimator of 3 is obtained by solving the linear program:

minimize E Uu;

over FeRP uecR!

subject to the constraints U; =Y — (X ,3)
i

52



Achieved Throughput (bps)

Residuals

Figure 3.3: Modelling congestion collapse in Joe's
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Confidence Intervals

No closed form

We can use an approximate
solution based on simulation
(“Bootstrap”)

Achieved Throughput (bps)

0 20

40 60 20

Offered Loas (tps)

0 oo

1.32 £ 0.675
0.0791 + 0.0149
11.7 = 3.24
—0.0685 £ 0.0395
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4. Bootstrap : Computation of Confidence

Interval

We have a parametric model with parameters [, A and
want to find a confidence interval |U, V] for, say, By ; let f; be our
estimator of [y

Recall that U, V is a function of the data (hence is random);
we want to have Pp 2 (U < f; < V) = 0.95forany 5,4

Assume someone tells us the true value of 5, 4; in theory,
we can compute the quantiles of the distribution of fy; let

Up 2 = 2.5% quantile of ,@1 and Vg 2= 97.5% quantile of ,@1
We have

P,B,A(Uﬁ,l < ,él < V,B,/l) — 0.95

We have computed an estimator E,/T; we take as approximate
confidence interval U = Uﬁi and V = Vﬁi
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Parametric Bootstrap Computation of Cl (cont’d)
Let Up 2 = 2.5% quantile of 3, and Vg 2= 97.5% quantile of B,
We take as approximate confidence interval U = Uﬁj and I/ = Vﬁj
How can we practically compute Up 3, Vg 3 ?

By Monte-Carlo simulation:

Assume you know [, A

Dor =1:R
simulateY; ,i = 1...1 from the model

obtain an estimate 37

end
Ug 5 = 2.5% quantile of Bl Vg2 = 97.5% quantile of B7

e.g. with R =999,Up ) = IBAL.(ZS) and Vg 5 = Bi(975)
Do the above with (8,4) = (,é, /T) — this is called Parametric Bootstrap
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Example

We have obtained 1 = 1.0055

For r = 1:999 we draw I residuals ~
Laplace(1.0055)

and simulate n artificial data

points y;/,i = 1...1 from the

fitted model

For each replay experiment we
estimate a, b, c,d and obtain R =

999 estimates @, b", ¢7, d"

A confidence interval for d is
[a(25)’a(975)]

Achieved Throughput (bps)

20

40 60 80 100
Offered Loas (ips)

o QL

(@

1.49 + 0.601
0.079 £ 0.0143
11.2 + 2.96
—0.062 + 0.0368
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Bootstrap with Resample From Residuals

Instead of simulating the noise from the model (by drawing from
Laplace(A) assume we draw I noise samples from the residuals
with replacement

This method is called Bootstrap with Resampling from Residuals
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Algorithm 2 The Bootstrap with Re-Sampling From Residuals. The goal is to compute a confidence

interval for some function a,;r(ﬂ) of the parameter of the model in Definition 3.2.1. ry is the algorithm’s
accuracy parameter.

—f2ru/1— v)] =1 > For example ro = 25, v = 0.95, R =999
estimate 3 using Theorem 3.3.1; obtain 3

compute the residuals e; = y; — (X 3)
T

forr=1: Rdo > Re-sample from residuals
draw I numbers with replacement from the list (eq, ..., er) and call them EY, ..., Ey
generate the bootstrap replicate Y|, ..., Y; from the estimated model:

Y7 = (Xj) v E fori=1..1

re-estimate 5” using Y." as data, using Theorem 3.3.1; obtain 3”"‘
end for

(o) = or (), .. (79

. confidence interval for i?-’.?{j) iS [©(rg) 5 P(R41—r0)]
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Achieved Throughput (bps)

0 20 20 60 50 100
Offered Loas (ips)

CI with Parametric Bootstrap, CI with Bootstrap, Resampling
999 replays from Residuals, 999 replays
a 1.49£0.601 a  1.32+0675
b 0.079 + 0.0143 b 0.0791 £ 0.0149
c 11.7 4+ 3.24
c 11.2£2.96 d  —0.0685 + 0.0308

d —0.062 £ 0.0368
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Other Uses of the Bootstrap

The idea of the bootstrap is to use the data itself as estimate of the
unknown distribution of the data

Can be used to obtain confidence or predictions intervals in a very
simple way --- tends to underestimate

Example: Cl for the mean of a data set y;

the model is Y; ~ iid F () and the problem is to estimate the mean
of F( )

with the bootstrap we replace the unknown F () by the empirical
distribution of the data itself, i.e. the distribution that puts

probability% ateveryy; , i =1...1
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Which algorithm is a correct implementation of the
bootstrap for a 95% Cl of the mean of y4, ...,y ?

m O O W

A

B
Both
None

| don’t know

Algorithm A Algorithm B
forr =1:999 forr =1:999
forn=1:1 draw a random permutation
draw one integer oof{l,..,1}
K ~ unif {1, ..., I} Xnr = Yomp N = 1.1
Xnr = VK end
end end
end forr =1:999
forr = 1:999 m, = mean(Xxy ,, ..., Xy )
m, = mean(xy ,,..,X;+)  end
end Cl =[m25), M(975)]

Cl =[m(25), m(975)]
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Example: Compiler Options,

150 |

100}

is normal (Thm
2.3)

Mean Execution Time

S —3 m=nSay SN

100 200

Cl for mean
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ind variance is
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