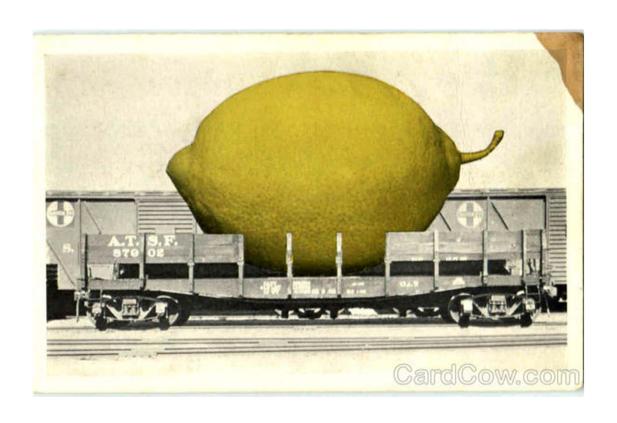
Importance Sampling



What is Importance Sampling?

- A simulation technique
- Used when we are interested in rare events
- **E**xamples:
 - ▶ Bit Error Rate on a channel,
 - ► Failure probability of a reliable system

We saw some of it already

- **Q:** We simulate R = 10 000 samples and find no bit error. What can we say about the bit error rate?
- **A:** with confidence 0.95, BER < $3.7 \cdot 10^{-4}$

Theorem 2.2.4. [37, p. 110] Assume we observe z successes out of n independent experiments. A confidence interval at level γ for the success probability p is [L(z); U(z)] with

$$\begin{cases} L(0) = 0 \\ L(z) = \phi_{N,z-1}\left(\frac{1+\gamma}{2}\right), \ z = 1, ..., n \\ U(z) = 1 - L(n-z) \end{cases}$$
 (2.26)

where $\phi_{n,z}(\alpha)$ is defined for $n=2,3,...,z\in\{0,1,...,n\}$ and $\alpha\in(0,1)$ by

$$\begin{cases}
\phi_{n,z}(\alpha) = \frac{n_1 f}{n_2 + n_1 f} \\
n_1 = 2(z+1), \ n_2 = 2(n-z), \ 1 - \alpha = F_{n_1,n_2}(f)
\end{cases}$$
(2.27)

 $(F_{n_1,n_2}())$ is the CDF of the Fisher distribution with n_1, n_2 degrees of freedom). In particular, the confidence interval for p when we observe z = 0 successes is $[0; p_0(n)]$ with

$$p_0(n) = 1 - \left(\frac{1-\gamma}{2}\right)^{\frac{1}{n}} = \frac{1}{n}\log\left(\frac{2}{1-\gamma}\right) + o\left(\frac{1}{n}\right) \text{ for large } n$$
 (2.28)

Whenever $z \ge 6$ and $n - z \ge 6$, the normal approximation

$$\begin{cases} L(z) \approx \frac{z}{n} - \frac{\eta}{n} \sqrt{z \left(1 - \frac{z}{n}\right)} \\ U(z) \approx \frac{z}{n} + \frac{\eta}{n} \sqrt{z \left(1 - \frac{z}{n}\right)} \end{cases}$$
 (2.29)

can be used instead, with $N_{0,1}(\eta) = \frac{1+\gamma}{2}$.

What is the Problem?

- Assume you can simulate a system
- You want to evaluate the probability of a rare event
- We want to say more than an answer like : $p \in [0, 3.69 \ 10^{-4}]$ i.e. we want a good relative accuracy on p

Assume proba of rare event is 10^{-6} : how many simulation runs do you need to obtain an estimate of p with 10% relative accuracy?

What is the Problem?

Assume proba of rare event is 10^{-6} : how many simulation runs do you need to obtain an estimate of p with 10% relative accuracy?

What is the Problem?

Assume proba of rare event is 10^{-6} : how many simulation runs do you need to obtain an estimate of p with 10% relative accuracy?

R replications
N events

Confidence interval
$$\hat{p} \pm 1.96 \frac{\sigma}{\sqrt{R}}$$

$$\hat{p} = \frac{N}{R}$$

$$\sigma^2 \approx \hat{p}(1 - \hat{p})$$

Relative accuracy =
$$\frac{1.96 \sigma}{\sqrt{R} \hat{p}} = 1.96 \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{R}} = 1.96 \sqrt{\frac{1-\hat{p}}{R\hat{p}}}$$

Relative accuracy = $10\% \Leftrightarrow 1.96 \sqrt{\frac{1-\hat{p}}{R\hat{p}}} = 0.1 \Leftrightarrow R \approx \frac{1.96^2}{0.1^2 p} \approx \frac{400}{p}$

The Goal of Importance Sampling

- \blacksquare Obtain small probability p with good accuracy
- \blacksquare ... while keeping R small

In the previous example, the direct approach requires $R=4.10^8$ runs to estimate $p\approx 10^{-6}$ with 10% accuracy

We can do much better with Importance Sampling

The Idea of Importance Sampling

Formally, assume we simulate a random variable X in \mathbb{R}^d , with PDF $f_X()$. Our goal is to estimate $p = \mathbb{E}(\phi(X))$, where ϕ is the metric of interest. Frequently, $\phi(x)$ is the indicator function, equal to 1 if the value x corresponds to a failure of the system, and 0 otherwise.

We replace the original PDF $f_X()$ by another one, $f_{\hat{X}}()$, called the PDF of the *importance sampling distribution*, on the same space \mathbb{R}^d . We assume that

if
$$f_X(x) > 0$$
 then $f_{\hat{X}}(x) > 0$

i.e. the support of the importance sampling distribution contains that of the original one. For x in the support of $f_X()$, define the weighting function

$$w(x) = \frac{f_X(x)}{f_{\hat{X}}(x)} \tag{7.15}$$

The Idea of Importance Sampling (cont'd)

If we simulate X, how do we estimate p?

If we simulate \hat{X} instead of X, we cannot use $E(\phi(\hat{X}))$

But: $E\left(\phi(\hat{X})w(\hat{X})\right) = p$ Show this!

Importance Sampling Monte Carlo

which is the fundamental equation of importance sampling. A Monte Carlo estimate of p is thus given by

$$\hat{p} = \frac{1}{R} \sum_{r=1}^{R} \phi(\hat{X}_r) w(\hat{X}_r)$$
 (7.17)

where \hat{X}_r are R independent replicates of \hat{X} .

Example: Bit Error Rate (BER)

EXAMPLE 7.16: BIT ERROR RATE AND EXPONENTIAL TWISTING. The Bit Error Rate on a communication channel with impulsive interferers can be expressed as [25]:

$$p = \mathbb{P}(X_0 + X_1 + \dots + X_d > a) \tag{7.18}$$

where $X_0 \sim N_{0,\sigma^2}$ is thermal noise and X_j , j=1,...,d represents impulsive interferers. The distribution of X_j is discrete, with support in $\{\pm x_{j,k}, k=1,...,n\} \cup \{0\}$ and:

$$\mathbb{P}(X_j = \pm x_{j,k}) = q$$

$$\mathbb{P}(X_j = 0) = 1 - 2nq$$

where n=40, $q=\frac{1}{512}$ and the array $\{\pm x_{j,k}, k=1,...,n\}$ are given numerically by channel estimation (Table 7.2, for d=9). The variables $X_j, j=0,...,d$ are independent. For large values of d, we could approximate p by a gaussian approximation, but it can easily be verified that for d of the order of 10 or less this does not hold [25].

k	j=1	j=2	j=3	j=4	j=5	j=6	j=7	j=8	j=9
1	0.4706	0.0547	0.0806	0.0944	0.4884	0.3324	0.4822	0.3794	0.2047
2	0.8429	0.0683	0.2684	0.2608	0.0630	0.1022	0.1224	0.0100	0.0282

A direct Monte Carlo estimation (without importance sampling) gives the following results (R is the number of Monte Carlo runs required to reach 10% accuracy with confidence 95%, as of Eq.(7.14)):

$$\frac{\sigma}{0.1} = \frac{a}{3} = \frac{\text{BER estimate}}{(6.45 \pm 0.6) \times 10^{-6}} = \frac{R}{6.2 \times 10^{7}}$$

$$X = (X_0, X_1, \dots, X_d)$$

$$X_0 \sim N(0, \sigma^2)$$

$$X_j \text{ discrete, on } \{x_{j,1}, \dots, x_{j,9}\}$$

$$P(X_{j,k} = x_{j,k}) = q_k$$
Estimate $p = P(X_0 + \dots + X_d > a)$

$$\phi(X) = 1_{X_0 + \dots + X_d > a}$$

$$\hat{X} = (\hat{X}_0, \hat{X}_1, ..., \hat{X}_d)$$

$$\hat{X}_0 \text{ on } (-\infty, +\infty)$$

$$\hat{X}_j \text{ discrete, on } \{x_{j,1}, ..., x_{j,9}\}$$
Estimate $p = E\left(w(\hat{X})\phi(\hat{X})\right)$

$$X = (X_0, X_1, \dots, X_d)$$

$$X_0 \sim N(0, \sigma^2)$$

$$X_j \text{ discrete, on } \{x_{j,1}, \dots, x_{j,9}\}$$

$$P(X_{j,k} = x_{j,k}) = q_k$$
Estimate $p = P(X_0 + \dots + X_d > a)$

$$\phi(X) = 1_{X_0 + \dots + X_d > a}$$

$$\hat{X} = (\hat{X}_0, \hat{X}_1, ..., \hat{X}_d)$$

$$\hat{X}_0 \text{ on } (-\infty, +\infty)$$

$$\hat{X}_j \text{ discrete, on } \{x_{j,1}, ..., x_{j,9}\}$$
Estimate $p = E\left(w(\hat{X})\phi(\hat{X})\right)$

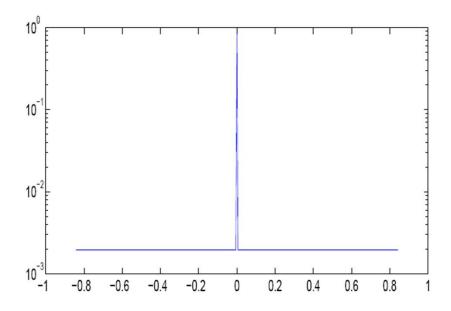
EXPONENTIAL TWIST

$$P(\widehat{X}_{j} = x_{j,k}) = e^{\theta x_{j,k}} P(X_{j} = x_{j,k}) \times ct$$

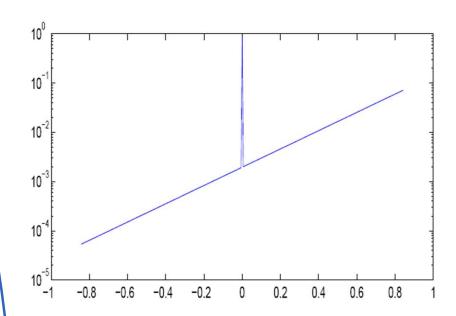
= $e^{\theta x_{j,k}} q_{k} \eta_{j}(\theta)$

$$\eta_j(\theta)^{-1} = \sum_k e^{\theta x_{j,k}} q_k$$

PDF



PDF



$$\hat{\chi}_{0}$$

$$X = (X_0, X_1, \dots, X_d)$$

$$X_0 \sim N(0, \sigma^2)$$

$$f_{X_0}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

$$\hat{X}_0$$
 on $(-\infty, +\infty)$
 $EXPONENTIAL$ TWIST

$$\hat{\chi}_{o}$$

$$X = (X_0, X_1, \dots, X_d)$$

$$X_0 \sim N(0, \sigma^2)$$

$$f_{X_0}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

$$\hat{X}_0$$
 on $(-\infty, +\infty)$
 $EXPONENTIAL$ TWIST

$$f_{\hat{X}_0}(x) = \eta e^{\theta x} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

$$= e^{-\frac{x^2}{2\sigma^2} + \theta x} \times \eta \frac{1}{\sqrt{2\pi}\sigma}$$

$$= e^{-\frac{x^2 - 2\sigma^2 \theta x}{2\sigma^2}} \times \eta \frac{1}{\sqrt{2\pi}\sigma}$$

$$= e^{-\frac{x^2 - 2\sigma^2 \theta x + \sigma^4 \theta^2}{2\sigma^2}} \times e^{\frac{\sigma^4 \theta^2}{2\sigma^2}} \times \eta \frac{1}{\sqrt{2\pi}\sigma}$$

$$= e^{-\frac{(x - \sigma^2 \theta)^2}{2\sigma^2}} \times ct$$

$$\hat{X}_0 \sim N(\sigma^2 \theta, \sigma^2)$$

$$\eta = e^{-\frac{\sigma^2 \theta^2}{2}}$$

$$X = (X_0, X_1, ..., X_d)$$

 $X_0 \sim N(0, \sigma^2)$
 X_j discrete, on $\{x_{j,1}, ..., x_{j,9}\}$
Estimate $p = P(X_0 + \cdots + X_d > a)$
 $\phi(X) = 1_{X_0 + \cdots + X_d > a}$

$$\widehat{X} = (\widehat{X}_0, \widehat{X}_1, \dots, \widehat{X}_d)$$

$$\widehat{X}_0 \text{ on } (-\infty, +\infty)$$

$$\widehat{X}_j \text{ discrete, on } \{x_{j,1}, \dots, x_{j,9}\}$$

$$P(\widehat{X}_j = x_{j,k}) = \eta_j(\theta) e^{\theta x_{j,k}} P(X_j = x_{j,k})$$

$$f_{\widehat{X}_0}(x) = \eta_0(\theta) e^{\theta x} f_{X_0}(x)$$

$$w(x_0, ..., x_d) = \frac{f_X(x)}{f_{\hat{X}}(x)} = \frac{e^{-\theta(x_0 + \dots + x_d)}}{\eta_0(\theta) \dots \eta_d(\theta)}$$

Estimate $p = E\left(w(\hat{X})\phi(\hat{X})\right)$

Estimate
$$p = E\left(w(\hat{X})\phi(\hat{X})\right)$$

Importance Sampling Monte Carlo

We perform R Monte Carlo simulations with \hat{X}_j in lieu of X_j ; the estimate of p is

$$p_{est} = \frac{1}{R} \sum_{r=1}^{R} w\left(\hat{X}_0^r, ..., \hat{X}_d^r\right) 1_{\{\hat{X}_0^r + ... + \hat{X}_d^r > a\}}$$
(7.20)

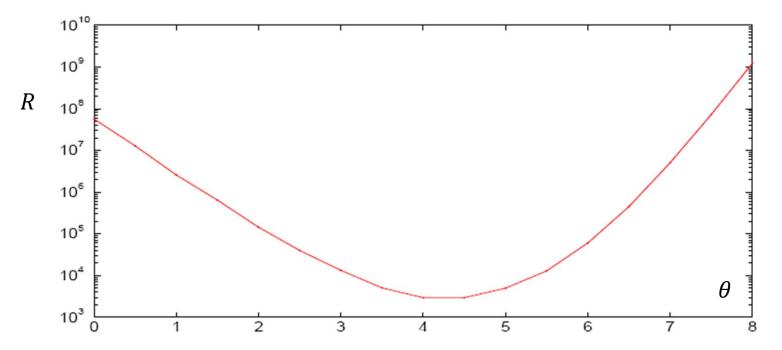
- We do this for several values of θ and find the same estimate $p \approx 6.45 \ 10^{-6}$
- What is different?

Importance Sampling Monte Carlo

We perform R Monte Carlo simulations with \hat{X}_j in lieu of X_j ; the estimate of p is

$$p_{est} = \frac{1}{R} \sum_{r=1}^{R} w\left(\hat{X}_0^r, ..., \hat{X}_d^r\right) 1_{\{\hat{X}_0^r + ... + \hat{X}_d^r > a\}}$$
(7.20)

- We do this for several values of θ and find the same estimate $p \approx 6.45 \ 10^{-6}$
- What is different? Hopefully *R*, the number of runs



Choosing an Importance Sampling Distribution

- What is a good importance sampling distribution?
 One that minimizes the number of runs
- This can be quantified with the variance of the importance sampling estimator

More formally, we can evaluate the efficiency of an importance sampling estimator of p by its variance

$$\hat{v} = \operatorname{var}\left(\phi(\hat{X})w(\hat{X})\right) = \mathbb{E}\left(\phi(\hat{X})^2w(\hat{X})^2\right) - p^2$$

Assume that we want a $1 - \alpha$ confidence interval of relative accuracy β . By a similar reasoning as in Eq.(7.14), the required number of Monte Carlo estimates is

$$R = \hat{v} \frac{\eta^2}{\beta^2 p^2} \tag{7.21}$$

Thus, it is proportional to \hat{v} . In the formula, η is defined by $N_{0,1}(\eta) = 1 - \frac{\alpha}{2}$; for example, with $\alpha = 0.05$, $\beta = 0.1$, we need $R \approx 400\hat{v}/p^2$.

EXAMPLE 7.17: BIT ERROR RATE, RE-VISITED. We can apply Algorithm 2 directly. With the same notation as in Example 7.16, an estimate of \hat{v} , the variance of the importance sampling estimator, is

$$\hat{v}_{est} = \frac{1}{R} \sum_{r=1}^{R} w \left(\hat{X}_0^r, ..., \hat{X}_d^r \right)^2 1_{\{\hat{X}_0^r + ... + \hat{X}_d^r > a\}} - p_{est}^2$$
 (7.22)

We computed \hat{v}_{est} for different values of θ ; Figure 7.12 shows the corresponding values of the required number of simulation runs R (to reach 10% accuracy with confidence 95%), as given by Eq.(7.21)).



Choosing an Importance Sampling Distribution (1)

Rule of thumb:

▶ The events of interest, under the importance sampling distribution should be

not rare

not certain

Choosing an Importance Sampling Distribution (2)

The optimal importance sampling distribution is the one that minimizes

$$\mathbb{E}\left(\phi(\hat{X})^2 w(\hat{X})^2\right)$$

Is this the same as minimizing the variance of the importance sampling estimator?

```
1: function MAIN
        \eta = 1.96; \beta = 0.1; pCountMin= 10;
                                                              \triangleright \beta is the relative accuracy of the final result
2:
        GLOBAL R_0 = 2\frac{\eta^2}{\beta^2};

    ▷ Typical number of iterations

 3:
                                                                     \triangleright R_0 chosen by Eq.(7.14) with p = 0.5
 4:
        R_{\text{max}} = 1E + 9;
                                                                            5:
        c = \frac{\beta^2}{n^2};
 6:
 7:
        Find \theta_0 \in \Theta which minimizes varest(\theta);
 8:
9:
        pCount0= 0; pCount= 0; m_2 = 0;
10:
        \quad {\bf for} \ \ r=1:R_{\rm max} \ \ {\bf do}
11:
             draw a sample x of \hat{X} using parameter \theta_0;
12:
             pCount0=pCount0+\phi(x);
13:
             pCount=pCount+\phi(x)w(x);
14:
            m_2 = m_2 + (\phi(x)w(x))^2;
15:
             if r \geq R_0 and pCountMin < pCount < r – pCountMin then
16:
                 p = \frac{\text{pCount}}{r};
17:
                 v = \frac{m_2}{r} - p^2;
18:
                 if v \leq cp^2r then break
19:
                 end if
20:
             end if
21:
        end for
22:
        return p, r
23:
24: end function
```

```
ightharpoonup Test if \mathbb{E}\left(\phi(\hat{X})\right) \approx 0.5 and if so estimate \mathbb{E}\left(\phi(\hat{X})^2 w(\hat{X})^2\right)
26: function VAREST(\theta)
          CONST \hat{p}_{\min} = 0.3, \hat{p}_{\max} = 0.7;
27:
          GLOBAL R_0;
28:
         \hat{p} = 0; m_2 = 0;
29:
        for r = 1 : R_0 do
30:
                draw a sample x of \hat{X} using parameter \theta;
31:
         \hat{p} = \hat{p} + \phi(x);
32:
           m_2 = m_2 + (\phi(x)w(x))^2;
33:
          end for
34:
        \hat{p} = \frac{\hat{p}}{R};
35:
        m_2 = \frac{m_2}{R};
36:
          if \hat{p}_{\min} \leq \hat{p} \leq \hat{p}_{\max} then
37:
                return m_2;
38:
          else
39:
40:
                return \infty;
          end if
41:
42: end function
```

A Generic Algorithm

- Ideas : empirically find importance sampling distribution such that
 - ► Average occurrence of event of interest is close to 0.5
 - Minimizes $\mathbb{E}\left(\phi(\hat{X})^2 w(\hat{X})^2\right)$
 - ► Can be computed by Monte Carlo with small number of runs

The algorithm does not say how to do one important thing: which one?

Conclusion

- If you have to simulate rare events, importance sampling is probably applicable to your case and will provide siginificant speedup
- A generic algorithm can be used to find a good sampling distribution