Importance Sampling




What is Importance Sampling ?

B A simulation technique
B Used when we are interested in rare events

B Examples:
» Bit Error Rate on a channel,
» Failure probability of a reliable system



We saw some of it already

B Q: We simulate R =10 000 samples and find no bit error. What can we say
about the bit error rate ?

M A: with confidence 0.95, BER < 3.7 10~*



THEOREM 2.2.4. [37, p. 110] Assume we observe z successes out of n independent experiments
A confidence interval at level ~y for the success probability p is [L(z); U(z)] with

L(0) =0
L(z) = ¢np—1 (B2), 2=1,..,m (2.26
U(z) =1- L(n - 2)

where ¢, . () is defined forn = 2,3,..., 2 € {0,1,....,n} and a € (0; 1) by

A\ e i
N =2(Z+ ].), 19 :2(71-—3), I —a— -Fnl,ng(f) 4

(Fy ns() is the CDF of the Fisher distribution with n, n, degrees of freedom). In particular, the
confidence interval for p when we observe » = 0 successes is [0; po(n)] with

1
1—~\" 1 2 1 ‘
po(n) =1-— (—2 ) = Elog (—1 = ,},) + 0 (H) r large n (2.28

Whenever z > 6 and n — z > 6, the normal approximation

(2.29

can be used instead, with No1(n) = 1—*2'7-



What is the Problem ?

B Assume you can simulate a system

B You want to evaluate the probability of a rare event

B We want to say more than an answer like : p € [0,3.69 107%]
i.e. we want a good relative accuracy on p

B Assume proba of rare eventis 10~°: how many simulation runs do you need
to obtain an estimate of p with 10% relative accuracy ?
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What is the Problem ?

B Assume proba of rare eventis 10~°: how many simulation runs do you need
to obtain an estimate of p with 10% relative accuracy ?

R replications _ _ ) }
N events Confidence interval p + 1.96

,_N 0%~ p(1—p)
P=7R

109 — 1,96 P = 196 1P

Relative accuracy =

VRp VR RpP
-9 2
Relative accuracy = 10% < 1.96 /1—? =01 R~—r x 20
Rp 0.1¢p 1Y



The Goal of Importance Sampling

B Obtain small probability p with good accuracy
B .. while keeping R small

B In the previous example, the direct approach requires R = 4. 108 runs to
estimate p =~ 107 with 10% accuracy

B We can do much better with Importance Sampling



The Idea of Importance Sampling

Formally. assume we simulate a random variable X in R, with PDF fy (). Our goal is to estimate
p = E(¢(X)), where ¢ 1s the metric of mnterest. Frequently, ¢(x) 1s the indicator function, equal
to 1 1f the value x corresponds to a failure of the system. and 0 otherwise.

We replace the origimal PDF fx () by another one, f (), called the PDF of the importance sam-
pling distribution, on the same space R?. We assume that

if fx(x) > 0then fg(x) >0

1.e. the support of the importance sampling distribution contains that of the original one. For x 1n
the support of fx (), define the weighting function

w(r) == (7.15)



The Idea of Importance Sampling (cont’d)

M If we simulate X, how do we estimate p ?

B [f we simulate X instead of X, we cannot use E (¢(X))

m But: £ (¢(X)w(X)) =p
Show this!



Importance Sampling Monte Carlo

which 1s the fundamental equation of importance sampling. A Monte Carlo estimate of p 1s thus
given by

R
= 1 A ¥ : ¥
pP= ﬁ ?:1 Q)(X.,-)'U?(X.,-) (7.17)

where X, are R independent replicates of X .
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Example: Bit Error Rate (BER)

EXAMPLE 7.16: BIT ERROR RATE AND EXPONENTIAL TWISTING. The Bit Error Rate
on a communication channel with impulsive interferers can be expressed as [23]:

p=PXo+Xi+..+Xg>a) (7.18)

where Xy ~ N, 2 is thermal noise and X, j = 1,....d represents impulsive inter-
ferers. The distribution of X; is discrete, with support in {fx; .k = 1,....n} U {0}
and:

P(X; =xx;k) = ¢
P(X;=0) = 1-2ng

where n = 40, ¢ = 5}2 and the array {+x; .k = 1,....n} are given numerically by

channel estimation (Table 7.2, for d = 9). The variables X ;,j = 0.....d are indepen-
dent. For large values of d, we could approximate p by a gaussian approximation, but
it can easily be verified that for d of the order of 10 or less this does not hold [23].

k] =1 =2 j=3 j=4  j=5  j=6  j=r  j=8  j=9
1 [0.4706 0.0547 0.0806 0.0944 0.4884 0.3324 0.4822 0.3794 0.2047
0.8429 0.0683 0.2684 0.2608 0.0630 0.1022 0.1224 0.0100 0.0282
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A direct Monte Carlo estimation (without importance sampling) gives the following
results (R is the number of Monte Carlo runs required to reach 10% accuracy with
confidence 95%, as of Eq.(7.14)):

o a BER estimate R
0.1 3 (6.45+0.6) x107° 6.2 x 10°
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X

A

X - (XO;X:[) "'IXd)
XO ~ N(Ol 0-2)
X; discrete, on {x; 1, ..., X 0}
P(Xjx = xx) = qx
Estimate p = P(Xo + -+ X4 > a)
¢(X) — 1X0+-"+Xd>a

R X = (XO,X]_, ...,)?d)
X, on (—oo, +00)
X; discrete, on {x; 1, ..., X; o}

Estimatep = E (W(Y)fﬁ()?))
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X

A

X - (XO;X:[) "'IXd)
XO ~ N(OI 0-2)
X; discrete, on {x; 1, ..., X 0}
P(Xjx = xx) = qx
Estimate p = P(Xo + -+ X4 > a)
¢(X) — 1X0+-"+Xd>a

R X = (XO,X]_, ...,)?d)
X, on (—oo, +00)
X; discrete, on {x; 1, ..., X; o}

Estimate p = E (W(X)‘P(X)) ,
ExpanNENTIAL Tw15T

(%, = 214 = P94 P(X; = x3) X c
= %%k qxn;(6)

n;j(@)~ "= Z e%%ik q

k
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X

A

X = (Xo,Xl, "'le)
XO ~ N(OI 0-2)
X; discrete, on {x; 1, ..., X o}
Estimate p = P(Xy, + -+ X4 > a)
Cb(X) — 1X0+---+Xd>a

) X = (X0 Xy, ., Xa)

X, on (—oo, +00)

X; discrete, on {X; 1, ..., Xj o}

P(%; = x14) = (@) 1k P(X; = x,,.)
fz,(x) = no(0)e fy, (x)

fX(x) B 6—9(x0+---+xd)
fz () 1o(6) ..na(6)

w(xg, ) Xq) =

Estimate p = E (W(X)Qb()?))
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Importance Sampling Monte Carlo

We perform R Monte Carlo simulations with X in lieu of X ;; the estimate of p is

R
1 A‘ A.
Pest — E E w (XS, suig X(’i‘) 1{'('5++_Y§>a} (720)
r=1

B We do this for several values of & and find the same estimate
p = 6.45 10-°

M Whatis different ?
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Importance Sampling Monte Carlo

We perform R Monte Carlo simulations with X in lieu of X ;; the estimate of p is

R
]_ A A.r
Pest — E E w (XS, suig Xd) 1{(-5_!__'_‘(-;)0} (720)
r=1

B We do this for several values of 8 and find the same
estimate p =~ 6.45 107°

B Whatis different ? Hopefully R, the number of runs

10'°

107 k
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Choosing an Importance Sampling
Distribution

B Whatis a good importance sampling distribution ?
One that minimizes the number of runs

B This can be quantified with the variance of the importance sampling
estimator

More formally, we can evaluate the efficiency of an importance sampling estimator of p by its
variance

b =var (¢(X)w(X)) = E (6(X)*w(X)*) - p’

Assume that we want a 1 — o confidence interval of relative accuracy 3. By a similar reasoning as
in Eq.(7.14), the required number of Monte Carlo estimates is

(7.21)

Thus, it is proportional to @. In the formula, 7 is defined by Ny 1(n) = 1 — 3. for example. with
a = 0.05,3 = 0.1. we need R =~ 4000 /p.
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EXAMPLE 7.17: BIT ERROR RATE. RE-VISITED. We can apply Algorithm 2 directly.
With the same notation as in Example 7.16, an estimate of v, the variance of the
importance sampling estimator, is

R

& 1 - o 2 9

Vest = o E w (Xa Aé) 1{.‘{'5+...+.‘§'§>a} — Viont (7.22)
r=1

We computed v, for different values of ¢; Figure 7.12 shows the corresponding val-
ues of the required number of simulation runs R (to reach 10% accuracy with confi-
dence 95%), as given by Eq.(7.21)).
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101°= T T I I

- R (proportional to variance)

B The smallest
variance is
for

E (@(X)) ~ 0.5

0.8
0.7F B
0.6 N
0.5+ N
0.4 N
0.3F 3
0.2 N
0.1F N

23



Choosing an Importance Sampling
Distribution (1)

B Rule of thumb:
» The events of interest, under the importance sampling distribution should be

notrare

not certain
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Choosing an Importance Sampling
Distribution (2)

B The optimal importance sampling distribution is the one that minimizes

E (6(X)20(X)?)

L .

B [s this the same as minimizing the variance of the importance sampling
estimator ?
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1: function MAIN

2: n = 1.96; 5 = 0.1: pCountMin= 10; > (3 1s the relative accuracy of the final result
3 GLOBAL Ry = 2%2;: > Typical number of iterations
4: > Ry chosen by Eq.(7.14) with p = 0.5
5: > - = 1E +9; > Maximum number of iterations
6: c= -7%2-

7}

8: Find y € © which minimizes varest(6):

9:

10: pCount0= 0; pCount= 0; mo = 0;
11: for r=1: R, do

12: draw a sample = of X using parameter 6;;
13: pCountO=pCount0+¢(x);

14: pCount=pCount+a¢(z)w(zr):

5: ma = ma + (¢(z)w(z))*:

16: if » > Ry and pCountMin < pCount < r— pCountMin then
5 g EC(:unt:

18: v="2 —p*

19: if v < cp?r then break

20: end if

21: end if

32 end for

23: return p. r

24: end function
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26: function VAREST(#)
21
28:
29:
30:
31:
32:
33:
34.
S
36:
37:
38:
39:
40:
41:

CONST puin = 0.3, Prax = 0.7:

GLOBAL Ry:

p=0:mg=0;

forr=1:R,do
draw a sample = of X using parameter 6;
p=p+ é):
my = my + (@(1‘)11:(17))2;

end for

p= %

mo = 52,

if Pmin < P < Pmax then
return mo:

else
return oo;

end if

42: end function

> Testif E (c,b(f()) ~ 0.5 and 1if so estimate | (@(X)Qw(X)Q)
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A Generic Algorithm

B [deas: empirically find importance sampling distribution such that
» Average occurrence of event of interest is close to 0.5

» Minimizes ]E(é(j()?w(j{')?)

» Can be computed by Monte Carlo with small number of runs

B The algorithm does not say how to do one important thing: which one ?
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Conclusion

B If you have to simulate rare events, importance sampling is probably
applicable to your case and will provide siginificant speedup

B A generic algorithm can be used to find a good sampling distribution

29



