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6. Differencing the Data

We have seen that changing the scale of the data may be important for
obtaining a good model.

Another kind of pre-processing is the application of filters. The idea is
that the filter may remove deterministic patterns and it may be simpler
to forecast the filtered data

A filter (in full, discrete-time causal filter) is a mapping from the set of
finite-length time series to the same set.

By convention, we consider that a filter keeps the length of the time-
series unchanged.

Further, a filter has to be linear, time-invariant and causal. The latter

means that output of the filter up to time t depends only on the input
up to time t.



Differencing filter A4

Differencing filter A;= discrete-time derivative
Y = (Yl' e Yt) e A]_Y — (Y]J YZ — Yl' “er ) Yt — Yt—l)
AY =X © X hassamelengthasY and X; =Y; — Y;_4

with the (matlab) convention that Y; = 0 whenevert < 0
Aq is afilter, thusis linear, A{(Y +Z) =AY + A Z

fY; = Z; + at then (A Y); = (A1Z); + a: A removes linear trends

Repeated application of A; removes polynomial trends



De-seasonalizing filters

De-seasonalizing R: (sum of last s values)
R.Y = X & X has same length as Y and

Xe=VYig1t -+ 1 +Y
with the convention that Y; = 0 whenevert < 0

If Y; is periodic of period s then R,Y is constant

R, removes periodic components

Differencing Ag:
AY =X & X hassamelengthasY and X; =Y; — Y, _g
with the convention that Y; = 0 whenevert < 0



De-seasonalizing filters
As = R4
A, R Ag
this meansthatif Y = Z-=>XandY =X thenX = X’
Proof:
Zi =Y Y4

Xe=Zi+ v+l sy =Ye— Ve 1tV 1Yo+ Vg1 — Vs
=Yy =T



Which matrix is the representation of A,

(over time series of lengthn) ?

A.

B.

C.

D.

(1 5 o
a0 -1 1 0
\o o &
(o 1 1
|0 0 1 -1

\O 0 0
0O O 0
None of these

| don’t know

o)
0

o1/
0

0
0




Which matrix is the representation of R,
(over time series of lengthn = 6) ?

111000

1 1 0 0
{111 1 0 0
A'A_111110
0 1 1 1 1 1
0 0 1 1 1 1
1 0 0 0 0 O
1 1.0 0 0 O
|1 11 0 0 0
33_111100
\011110
0 0 1 1 1 1

C. None of these
D. I don’t know



Say what is true

— T oG mMmoO o P

A

B

C

A,B

A,C

B,C

All

None

| don’t know

A RA, = A,
B A]_RS — AS
C A]_Al — Az
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(c) Differencing at Lags 1 and 16

EXAMPLE 5.3: INTERNET TRAFFIC. In Figure 5.7 we apply the differencing filter A; to the time
series in Example 5.1 and obtain a strong seasonal component with period s = 16. We then apply

the de-seasonalizing filter Ri4; this is the same as applying A to the original data. The result
does not appear to be stationary; an additional application of A; is thus performed.
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Point Predictions from Differenced Data
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Prediction assuming (AA, Y) is iid
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220
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(d) Prediction at time 224

240

250

How are these predictions made ? To answer this question,we need to
see how to use filters.
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7. Filters for Dummies

D.1.1 BACKSHIFT OPERATOR

We consider data sequences of finite, but arbitrary length and call § the set of all such sequences
(i.e. S =, R"). We denote with length(.X') the number of elements in the sequence X.

The backshift operator is the mapping B from S to itself defined by:

length(BX) = length(X)
(BX); = X;1 t=2,..,length(X)

We usually view a sequence X € & as a column vector, so that we can write:

X, 0
gl %2 =] (D.1)
Xn. Xn—l

when length(X) = n.

15



Backshift Operator in Matrix Form

(BX)t= X1

0
1
0
0
0
0

0
0
1
0
0
0

SO O - OO

SO kO OO

OO kO OO

SRk O O OO

SR O O OO

_0 O O O O

_0 O O O O

O O O OO

0

0

0

0
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Filters for Dummies

DEFINITION D.1. A filter (also called “causal filter”, or “realizable filter”) is any mapping, say
F, from S to itself that has the following properties.

1. A sequence of length n is mapped to a sequence of same length.
2. There exists an infinite sequence of numbers h,,, m = 0, 1,2, ... (called the filter’s Impulse
response) such that for any X € S

(FX)t = h()Xt —+ tht—l + ...+ ht_le I = 1, —— length(X) (D4)

In matrix form, if we know that length(X') < n we can write Eq.(D.4) as

[ he 0 o 0 0
hi h L
FX = hs hy . X (D.6)
S T T
\ hoet hns - hi h )
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Operator Notation

Example: (FX); = 3X; — 2X;—1 + X¢ >

Impulse response: hg = 3,hy = —2,h, =1,h; =0,k =3

Matrix form:

)

X3

./

(5 3
1 -2
0 1

\o

In operator notation we write
F =3-2B + B*
where B is the backshift filter.

0
0
3
—2

2
0

w o o O

—2
1

M =31d —2B + B*

w o o o o

—2

o)
0

0

0
3




Filters

Operator notation of F

Input-Output Equation

Impulse Response

Y = FX
1 Y, = X, (1,0,0, ...)
B Y, = X, (0,1,0,0, ...)
Ay=1-B Y, = X, — Xo—4 (1,-1,0,0,...)
A =1-—BS Y, = X, — X, (1,0, ...,0,—1,0,0, ...)
R, =1+B+--+B51 Y, =X+ + Xe_oi1q (1,..,1,0,0,...)
F =hy+ h{B+ h,B? + Y, = hoX; + hyXe_q + - (hg, hy, ...)

1

F
defined when hy # 0

— hOYt + hlyt—l +

l.e.
1 hq
e e

19




Impulse Response

Let F be a filter with impulse response hy, h, ...
Thus Yt = h'OXt + h].Xt—l
If the input X is the impulse

(o)

X=10
0
\.../
then the output it
ho\
hq
Y = h,

")

20



Inverse of a Filter

( ho 0

hl hg

FX = Fis hy
\ hn.—l hn'—Q e

Filter F has an inverse ifand only if hy # 0

Example: Ay = 1 — B is invertible

hy ho)

21



Calculus of Filters

FG means the operator composition (G followed by F):
G F FG
Y>Z->XimpliesY =X
Filters commute: FG = GF Magical !

% means F~1, the inverse of F, defined if hy # 0

G
—=GF =F7G
F

F + G means the algebraic sum: [(F + G)X]; = [FX]; + [GX];

22



Let F be the filter defined by ¥ = FX with
Yt —_ Xt — 3Xt—1 ZXt—Z
Say what is true

A F=1-3B+ 2B
B. The impulse response of F is (1,—3,2,0,0 ...)
C. AandB

D. None

E.

| don’t know
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Let F be the filter defined by ¥ = FX with
Y —3Y, 4 +2Y , =X,
Say what is true

4. - 1—3312 B2

B. The impulse response of F is (1,—3,2,0,0 ...)
C. AandB
D.
E.

None

| don’t know

25



ARMA Filters and matlab’s filter function
Finite Impulse Response (FIR) also called Moving Average (MA)
filter: hy, = 0 for k large enough & Fis polynomial in B
Fxample:A; =1 —BisFIR; A7 =1+ B + B% + ---is not FIR
F =hy+ hyB + -+ h,BP is the generic FIR filter

Auto-Regressive (AR) Filter is the inverse of a FIR filter

1+B+B2+---=$isARﬂlter

F = - with hy # 0 is the generic FIR filter

~ ho+hyB++hy,BP

ARMA Filteris F /G where F, G are FIR

B+--- BP
F = oIt B e generic ARMA filter

~ 1+g1B+-+gqB9
Implemented by Matlab’s filter() function

27



e Y = filter(P,Q,X) computes the output Y = [y; vy y3...y,| of the filter, where P =
[Fo Py P,..P,|. Q = [1 Q1 Q2...Q0] are the filter coefficients and X = [y =3 23...] is the
input. The filter 1s defined by the relation

Uk + Quuk_1 + ... + Quui_p = Poxp + Piap_1 + ... + Pyrp_y,

where weset r; = Oandy;, = Owheni < 0Oori > n.
The polynomial P(&) = PhéF + Pi&% 1 + ... + P, is called the numerator polynomial and
Q&) = &1+ Q18! + ... + Q, the denominator polynomial.

In our terminology. this filter is the mapping

Ri‘i — ]}E-i‘l
X V = Efzﬂ PPBP P(B) X
Id+31_, QB (B)
Matlab Operator Notation Input-Output Equation
Y= filter (0.1 0.2 0.3], Y = 0.1+0.2B+0.3B> Y — 0.2Y;_4
[1-0.2], X) 1-0.2B = 0.1X; + 0.2X;_4
+ 0.3 X;_,

28




0.14+0.2B+0.3B?
1-0.2B

P=[ O.1 o.= O.=] <=[ 1 —0.2]

A sampleof Y =

Q: how can we compute X back fromY ?
1-0.2B

A: inverse the filter X =
0.140.2B+0.3B?2

The inverse of Y = filter(P, Q,X) is X = filter(Q, P, X)
defined if first elementof Q is+ 0

The result is shown with green dots; after t = 60 the results are
incorrect. Why 7

29



To understand what happens, let us compute the coefficients of these
filters (i.e. their impulse responses)

It is obtained by h = filter(P, Q,imp) whereimp =[100 ...]is
called an impulse

Impulse response of Impulse response of
F— 0.1+0.2B+0.3B2 F~1
N 1-0.2B -
o.= — o reeaeaearaecha -,
ek :L‘L
. T T‘?n___s_________ N [ - —

The impulse of F~1 grows exponentially and becomes huge —

numerical computation becomes impossible
30



Filter BIBO Stability: ),,,|h,,| < o

A filter that is unstable usually causes numerical problems
(accumulation of rounding errors)

ap+aiB+:-+a,BP
bo+biB+:-+bgBq’
roots of the denominator polynomial Q(¢) = bpé? + -+ + b,

For an ARMA filter F =

Stable & [ g = 0 (no pole ) or all poles have module < 1]

zplane()
7eroes of F /EL """ _/ Pole of F = L1+0-2B+0.35%
= Poles of F~ \i 1-0.2B
Solatleosn(s) of | Solutionofz— 0.2 =0
0177 +022403=0 | _

(=]
Fe=m Fart

the poles are the g (complex)

31



A filter with stable inverse

P=[ O.5 o.= O.=] <2=[ 1]

P=[0.5 0.3 0.2] Q=[1]

=T 1
. l"‘. ‘ = | jli

| f t I /7 X H.:-'r'_ \P - _U] y \; /‘_\'i‘. A

aaaaaaa




What is true about thlS filter F (whereY = FX)

1]

F=r10.1 ©.21 <=L 1 —o.=21

i

P=[1] Q [050302] .

DA
n ,“ A

Y ‘h

— IO MmO O ® >

"
20

OSYt + 03 Yt—l + O'ZYII—Z — Xt
Yt — Xt — OSYt — 03 Yt—l - O'ZYt—Z
Xt
Yt —
0.5Y;+0.3Y;_1+0.2 Y;_,
A and B
A and C
Band C
All
None

| don’t know
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MA(oc0) and AR(o0) representation of a filter F

Let Y = FX for a filter F with impulse response and h;

The standard input-output equation
Yt —_ h()Xt + tht—l + .-+ ht_1X1
is called MA (oo) representation F.

If F is invertible, let h; be the impulse response of F~1 so that
Xy = hyYy + hyY;_1 + - hy_,Y; and thus

1 h; h- hi_
h’Xt h:IlYt 1 hIZYt 2 T ;lf)l

This is called the AR (o) representation of F.

Yy =

6
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600r
° ° ° ° 500+
8. How is this prediction done ? ’
400r N
t [ A - L Ay
3000 / f N VPN R A
,s"! \"\ o \"’\}3) ‘,-*" ":,‘
. 200}/ N N W B
Recall that X = LY with | \J N/
100¢ 7 R
L =A;{A;{z and we assume X ~ iid F() e
. 10 220 230 240 250
t h U S (d) Prediction at time 224
Xe=Ye =Y 1 — Y16 + Yi-17 o ' l
Vi=XetYe 1+ Y16 — Y17 o !
(MA representation of L) ol tﬂ,.,m.;',.r,aﬁ.,,-w.ﬁ.\.,;L\l ,-1.'|‘~.-.,,|-._ I\ 1‘*
o ! AR |
. . 100}
Prediction at lag £ = 1: Y S
0 50 100 150 200 250

assume we knOW Y]_; T Yt (¢) Differencing at Lags 1 and 16

Vi1 = Xeva &"‘ Yg—}s — Vg

( known

Given the past up to time ¢, this is
random with distribution F ()

36



600r
Point Prediction at lag 1
400f Yt | .
Prediction at lag £ = 1: W \__\ T IN
assume we know Yy, ..., ¥; | N\ NS
\, /@ N /
_ 1097 / S 4
Yier =Xep1 + Yo+ Yioqs = Va6 | =
" 220 230 240 250
( known ~ , o
Given the past up to time ¢, this is |
100}
random with distribution F () Xt ' l
50t , I
Assume X ~ iid F() with zero mean, o t*«,.,m;",.r,.aﬁ.,..-w.ﬁ.\.,fol Al ol
. ‘I - f i y |
the mean of Y; 1 given the past up to -s0} I
time t is (point prediction) 1oof

?t(]_) — Yt + Yt—15 —_ Yt_164500 50 100 150 200 250

(¢) Differencing at Lags 1 and 16
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Point Predictions
400r Yt | _ |
P red iCtiO N at |a g f — 2: 300-f_,,-"ﬂ'\\\ “ {d q N, @’/m
assume we know Y3, ..., Y; 200/ \ . \
Yiio = Xipo + Vg1 + Y94 1_ODYt—15l

L/-vg-m—\.u@’ 230 240 250
( (d) Prediction at time 224
known

Given the past up to time t, the

- . . 100
conditional expectation is 0 (F() Given the past up to time t, the Xt ‘ l

=4 T

!

has zero mean) conditional expectation is ¥, (1) ) . ,L RPN
of | _I‘.:"‘“,' .-r,."'.'.f"”"f"(“ k'f.' ‘.'.l |v'.~|‘~,¥ Ly e l: W
Therefore : (point prediction at lag 2) sof I
Yi(2) =Y,(1)) + Y14 — Y15 ™
150 50 00 150 200 250

At lag £: use the formula

Yeve = Xewo + Yero1 t Viip—16 — Vito-17
in which you replace
Y, by Y, (s) fors > 0 and X;,, by O (= the mean of F())

for example Y. (17) = ¥,(16) + ¥, (1) = Y,

(¢) Differencing at Lags 1 and 16
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PROPOSITION J5.1. Assume that X = LY where L is a differencing or de-seasonalizing filter
with impulse response gy = 1,q1,..., 9, Assume that we are able to produce a point prediction

Xt(f) Jor Xy given that we have observed X, to X,. For example, if the differenced data can be
assumed to be iid with mean i, then X,({) = p.

A point prediction for Y; ., can be obtained iteratively by:

Yi(0) = Xi(0) =gVt —1)— ... = g1 Yi(1) — goye — - ..
—GqYi—q+e forl1 <0 <gq (5.14)
Yi(l) = Xi(6) = gVl =1) — ... — g,Yi({ — q) for £ > g (5.15)
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, 600f

Use of the alternative representatign

(MA representation of L™1) IR
o 300+ / \ ,} |
Prediction atlag £ = 1: ol N A5 S L
assume we know Yy, ... Y, od N4 N

250

+3(Xp—31 + Xpzp + o+ Xpye) + -+
/

Given the past up to time ¢, this 1S
random with distribution F ()

therefore ?t(l) = Xt + .-+ Xt—14- + Z(Xt—15 + Xt—16 + -4
Xi_20) +3Xia1+ Xean + -+ X_sg) + -
Note it would not be a good idea to use this formula to compute

Yt(l) because we accumulate a large number of errors — but it can
be used to compute prediction intervals
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Computation of Prediction Intervals
(example with £ = 3) dA AV A
Prediction at lag £ = 3: assume we know Y3, ..., Y% f:; N\
Since the filter L is causal and invertible, knowing 4
Y1, ..., Yy is equivalent to knowing X4, ..., X; L
. "X !
Yt+ 3 — X t+3 + X 2 ~+ X t [ -+ X £ + -+ X th 0 ‘.L'jl""‘*J:t"r“'""-""‘"'i’“’r‘\L'Jf’{'.:l;“'“|',':"*[-‘J*""”‘f'fﬂ'
+2(Xp—13 + Xp—qa + -+ Xi_28) \| 'l
+3(Xz9 + Xpmzo + o+ Xpog) +

t¢) Differencing ai_Lags 1l and 1

Known at time
— Yt(3)

Therefore

(innovation formula):

Viez = Xpyz + Xepo + Xepq + ¥:(3)

41



Yits = Xpyz + Xpqp + Xpgq + ?t(B)

Given the past up to time t, the distribution

of Yy, 3 is given by

- a constant ¥, (3)

- plus the sum of 3 independent random variables
each with distribution F() (the assumed distribution
of X¢)

Example: assume X; ~ iid N(0,c?)
the distribution of Xpy3 + X402 + X411 is N(0,30%)

G800

GO0

400r

100F

200}/

Y;
aoof /N
0 20 20 740
i Pradiction af tia 4
] *
IOC" X ’
t
ol |
| i [
hooN a1
0 [ UM L pefnlie -’L."\.f,'f Vet 0 % Wt
\f \"F"h rrt ful |',“

) 00 160 200

(¢) Differencing at Lags 1 and 1

i.e. the distribution of Y;, 3 given the past up to time t is normal with

mean Y;(3) and variance 3 ¢
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800

A 95%-prediction interval atlag 3is... 7]

400t Y

300+ __;‘ N

A. Yt (3) -I__ 1_96 0) 200}/ "\E 9 Y,

100 N

B Y,(3)+1.96 xV30 s

C Y,(3)+196%x30 - ‘ 1
100F Xt
A~ o sol * :
D. Yt (3) i 1 9 6 X 3 \/_ﬁ o .La("*e':"}”"“':""p'f‘lufﬁ.ilit"""|:','-"’ _-W"H!m
o (]
E. None of the above ol

(¢) Differencing at Lags 1 and 1
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Prediction assuming differenced data
is iid N(0, %)

600F AN

500} ; _
400} N f :
300}

200

100

Y0 220 230 240 250

(d) Prediction at time 224

Figure 6.7: Differencing filters A; and A, applied to Example 6.1 (first terms removed). The forecasts are
made assuming the differenced data is iid gaussian with 0 mean. o = actual value of the future (not used

for fitting the model).
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PROPOSITION 5.2. Assume that the differenced data is iid gaussian. i.e. X; = (LY ); ~ iid N (u,0?).

The conditional distribution of Y; ¢ given that Y1 = vy, ..., Y, = vy is gaussian with mean ?}(f)
obtained from Eq.(5.14) and variance

MSE; () = o® (h§ + -+ -+ h{_,) (5.16)

where hy, hy, ho, . . . is the impulse response of L1, A prediction interval at level 0.95 is thus

Y, (0) + 1.964/ MSE?(0) (5.17)
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Compare the Two

600

500

/14300

.1 400

1] 200}

100

= 1 1 1 1 1 1
TZ05 o 2156 220 225 2320 235

1
245

. 810

Linear Regression with 3 parameters + variance

220 230 240 o

Assuming differenced data is iid
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9. Using ARMA Models for the Noise

This technique is used when the differenced data appears
stationary but not iid — the correlation structure can be used to
gain some information about futures

The differenced data can be modelled as an ARMA process instead
of iid

150

100

—
5
—
E =
=
=
—

50
L il 'ﬁ| ‘
B HJI"I.I"IH 'I 3 by Il"*.. "rllll Pl i W rl'n'-'r |,,~|
.| ‘-' llll"rﬂdll” 'I.\lfw FI ||| '|J |

—50F

—100¢

150 50 100 150 200 750

(c) Differencing at Lags 1 and 16
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Deciding whether a stationary X; is iid

Assume differenced time series X; looks stationary

Sample auto-covariance 7y = Yr—t(Xys — X)(Xs — X)

_ 7

Sample Auto-Correlation Function (ACF) p >
0

It nislarge and X isiid, around 95% of the the values of ACF lie

. 1.96
within iﬁ

See also tests (Ljung-Box test)
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(d) Prediction at time 224
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Figure 5.10: First panel: Sample ACF of the internet traffic of Figure 5.1. The data does not appear to
come from a stationary process so the sample ACF cannot be interpreted as estimation of a true ACF
(which does not exist). Second panel: sample ACF of data differenced at lags 1 and 16. The sampled data
appears to be stationary and the sample ACF decays fast. The differenced data appears to be suitable for

modelling by an ARMA process.
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ARMA Process

DEFINITION 5.1. A O-mean ARMA(p, q) process X; is a process that satisfies fort = 1,2.--- a
difference equation such as:

Xt -+ AlXt—l + -+ ApXt—p = € + ClEt_l + -+ qut—q €t iid ~ N@Jﬂz (5.21)

Unless otherwise specified, we assume X _,,1 = --- = X = 0.

An ARMA(p, q) process with mean Ju is a process X; such that X; — p is a 0 mean ARMA process
and, unless otherwise specified, X_, ;1 = --- = Xg = [L.

The parameters of the process are Ay, - - -, A, (auto-regressive coefficients), C1,---,C, (mov-

ing average coefficients) and o? (white noise variance). The iid sequence ¢, is called the noise
sequence, or innovation.

An ARMA(p, 0) process is also called an Auto-regressive process, AR(p); an ARMA(O, q) pro-
cess is also called a Moving Average process, MA(q).

X =p+ Fe

14 CiB ...+ CB"
14+ A B+...+ A,Br
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HYPOTHESIS 5.1. The filter in Eq.(5.23) and its inverse are stable.

In practice, this means that the zeroes of 1 + Ajz7 '+ ...+ A,z Pandof 1+ Ci 27 4. ..+ C 21
are within the unit disk.

10 a
| o |
5 ' l"ll | ﬁll | 2 ‘P [ | " I F | |
'
'l ‘l‘ | H |||H||||§ 1 '|‘\ I |'\ M“'H ‘ : ‘I! |l
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IV i (Y |
-5 l 1 ‘Il 1" = [“, 1l ' | F. 1R I
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- 20 40 60 80 100 o 20 40 60 80 100

(a) ARMA(2,2) X; = —04X,;,_1+045X;_2+ (b) AR2Q) X; = —-0.4X;_1+0.45X;_2 + €
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(c) MA(2) Xt = €1 — 0.der—1 + 0.95€¢; 2

Figure 5.8: Simulated ARMA processes with 0 mean and noise variance ¢ = 1. The first one, for example,
is obtained by the matlab commands Z=randn (1, n) and X=filter ([1 -0.4 +0.95],[1 0.4
_O . 4 5] ’ Z) . 52



Which of these matlab scripts produce a
sample X of an ARMA process ?

X=filter([1; -0.4],[1;0.4],randn(1,n))
X=filter([1; 0.4],[1;-0.4],randn(1,n))
A and B

None

m o O w »

| don’t know
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ARMA Processes are Gaussian (non iid)

ARMA PROCESS AS A GAUSSIAN PROCESS Since an ARMA process is defined by linear
transformation of a gaussian process €, it is a gaussian process. Thus it is entirely defined by its
mean E(X,;) = p and its covariance. Its covariance can be computed in a number of ways, the
simplest 1s perhaps obtained by noticing that

X, = p+ hoer + ...+ hy_eg (5.24)

where h is the impulse response of the filter in Eq.(5.23). Note that, with our convention, hy = 1.
It follows that for¢ > 1 and s > 0:

t—1

cov(Xe, Xors) = 0% hjhj (5.25)
j=0
For large t
cov(Xy, Xiys) &y, =07 Zh_jh_f—i—s (5.26)
7=0

The convergence of the latter series follows from the assumption that the filter is stable. Thus,

for large ¢, the covariance does not depend on ¢. More formally, one can show that an ARMA
process with Hypothesis 5.1 is asymptotically stationary [19, 97], as required since we want to
model stationary data’.
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X2

var(X,) ~ o° Z hi =o%(1+ Z h?) > o°

j=0 j=1

L

The Auto-Correlation Function (ACF) is defined as p; = 7;/70. °. The ACF is quantifies depar-
ture from an 11d model; indeed, for an ud sequence (1.e. hy = ho = ... =0), py = 0fort > 1. The
ACF can be computed from Eq.(6.26) but in practice there are more efficient methods that exploit
Eq.(6.23), see [36], and which are implemented 1n standard packages. One also sometimes uses
the Partial Auto-Correlation Function (PACF), which 1is defined in Section A.5.2 as the residual
correlation of X, and X, given that X, . .... X;,,_{ are known.°
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(€) MA(2) X; = ¢; — 0.46,_1 + 0.95¢;_o
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ARIMA Process

Y; is called an ARIMA process if X = LY is an ARMA process, where
L is a combination of differencing and deseasonalizing filters

How to fit an ARIMA process ?
Apply differencing filters until appears stationary

Fit the differenced process X = LY using the ARMA fitting
procedure (Thm 5.2, Matlab’s armax);

Check ACF of residuals; residuals are
e, = X, — X;_1(1) (innovation formula)

Be careful with overfitting problem — use AIC or BIC; ACF of X
may give an idea of order

58



Fitting an ARMA process is a non-linear
optimization problem

Usually solved by iterative, heuristic algorithms,
may converge to a local maximum
may not converge

Some simple, non MLE, heuristics exist for AR or MA models

Ex: fit the AR model that has the same theoretical ACF as the
sample ACF

Common practice is to bootstrap the optimization procedure by

starting with a “best guess”
AR or MA fit, using heuristic above
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Example

@
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EXAMPLE 5.3:INTERNET TRAFFIC, CONTINUED. The differenced data in Figure 5.10 appears to be
stationary and has decaying ACF. We model it as a 0 mean ARMA(p, ¢) process with p, ¢ < 20 and
fit the models to the data. The resulting models have very small coefficients 4,, and C,,, except
for m close to 0 or above to 16. Therefore we re-fit the model by forcing the parameters such that

A = (]-:Ala--'aA'pa[J!"'50',/416-,---aAlﬁ-l-p)
g = 1,64,...,0,0,... 0,05, .., Cigiy)

for some p and ¢q. The model with smallest AIC in this class is for p = 1 and ¢ = 3.
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Forecasting with an ARIMA Process Y

By composition of filters, Y = L™ 1X = L 'Fe where F is the filter of
the ARMA process and L is the differencing filter. Using the impulse
response of L™1F and its inverse we obtain formulas similar to those
we saw previously. See Prop 5.4 and forecast-exercise

600+ 600+
500+ 500+
400} - | | 400F
f ! 2N / { ) | ‘.f N /|

3001 / i, W STy \ PN /[
2001 \ BTN T [ sey 200( . T -
100f ¢ : N 1001 NS At

O 1 1 1 8 L g 1 ‘

210 225 230 235 10 230 240 250

(a) Prediction at time 224

(d) Prediction at time 224

Figure 6.7: Differencing filters A, and A, applied to Example 6.1 (first terms removed). The forecasts are
made assuming the differenced data is iid gaussian with 0 mean. o = actual value of the future (not used
for fitting the model).
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Improve Confidence Interval If Residuals are
not Gaussian (but appear to be iid)
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(c) ACF of Residuals

0 0%

(d) PACF of Residuals

Assume residuals are not
gaussian but are iid

How can we get prediction
intervals ?

Bootstrap by sampling from
residuals
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Algorithm 3 Monte-Carlo computation of prediction intervals at level 1 — « for time series Y; using re-
samplig from residuals. We are given: a data set Y;, a differencing and de-seasonalizing filter L and an
ARMA filter F" such that the residual e = F~'LY appears to be iid; the current time ¢, the prediction lag ¢
and the confidence level o.. 1 is the algorithm’s accuracy parameter.

l:
2:
3

= AR U

10):
11:

R=[2ry/a] -1 > For example ry = 25, R = 999
compute the differenced data (zy, ..., x;) = L(yy, ..., y)
. compute the residuals (e,,....e;) = F‘l(:rq, ....xy) where ¢ is an initial value chosen to

remove initial inaccuracies due to differencing or de-seasonalizing (for example ¢ = length of
impulse response of L)
forr=1: Rdo
draw ¢ numbers with replacement from the sequence (e, ....e;) and call themej, |, ..., €,
mo__ r r
lete" = (eq,..., € €41, €4p)

» L T -3 p y L T — r
compute X/, ..., X[, using (zq, ..., 2, X/ (. ... . X[ ) = F(e) )
~ compute Y, ,...., Y/, using Proposition 5.1 (with X/, and Y}, in lieu of X,(s) and
Yi(s))
. end for

(Y, - Yimy) = sort (Vi ..., Vi)
Prediction interval is [Y(,) 1 Yiri1-ry)]
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With gaussian assumption
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10. Other

We have seen a few forecasting recipes
regression models
use of differencing filters to make noise stationary
use of ARMA models to make noise iid
use of bootstrap

This can be combined or extended. For example: linear regression
with ARMA noise
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Linear Regression with ARMA Noise

Assume a linear regression model

Yy = X Bi x{l + €; where we find that €; does not look iid at all.
We can model €; as an ARMA process and obtain

Y, = Y; B; xt + Fw, where F is an ARMA filter and w; is iid
N(0,0%)

Apply the inverse filter and obtain a linear regression model

(F71y), = z B; (F‘lxi)t + W, withw, ~ iid N(0,0%)
i

If we know F we can estimate S; if we know [ we can estimate F
= iterate and hope it converges

Prediction formulae can be obtained using the calculus of filters
exactly as we did above.
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Sparse ARMA Models

Problem: avoid many parameters when the degree of the Aand C
polynomials are high

Based on heuristics
Multiplicative ARIMA, constrained ARIMA
Holt Winters

See section 5.6
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Constrained ARIMA

Sparse models give less
accurate predictions but have
much fewer parameters and
are simple to fit.
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