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1. What is forecasting ?

Assume you have been able to define the nature of the load
for your study

It remains to have an idea about its intensity

It is impossible to forecast without error

Good
days are
coming

The good engineer should “

Forecast what can be forecast

Give uncertainty intervals

The rest is outside our control




Forecasting = finding conditional distribution
of future given past

Assume we observe some data ¥y, t = 1,2,3 ...

We have observed Vi, ..., Y3 and want to forecast Y,
A full forecast is the conditional distribution of Y, given Y3, ..., Y;

A point forecast is (e.g.) the mean, i.e. Y, (¥) = E(Y;ys|Yq, ..., ¥3)
(or the median)

A prediction interval [A; B] at level 95% is such that
P(A S Yt+€ S Blyl, ...,Yt) 2 095



2. Use of Regression Models

Simple, often used

Based on a model fitted over the past, assumed to hold in the future

Example:

T T

Y, = 238.2475 — 871876 cos (§ t) - 4.2961 sin (§ t) + €
with €, ~ iid N(0, c2), ‘ | | | e
and o = 38.2667 | ‘




Prediction

We have obtained the model

Y, = 238.2475 — 871876 cos (% t) — 4.2961sin (% t) + e

with €, ~ iid N(0,0%),0 = 38.2667

The conditional distribution of Y;,p given Yy, ..., Yy is
Yese = 238.2475 — 871876 cos (% (t + £) ) — 4.2961 sin (= (¢ +

3)) T €cye
with €4, ~ N(0,0%),0 = 38.2667

because €;,p isindependent of Y7, ..., ¥; (iid assumption)
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A point prediction is:

3
Yi(€) =) B3;f;(t+1) =238.2475 — 87.1876 cma{%{t +0)) — 4.2961 sin(%{t +0))

J=1

and a 95%-prediction interval can be approximated by ﬁ{ﬁ} + 1.960.



Virus Growth Data

We have obtained the model
logY; =loga + at + ¢
with €; ~ iid Laplace(4), 4 =6.2205

A 95%-prediction interval is
logY;,p, =loga+ a(t+ ) +n
where 1 is the 97.5% quantile of the Laplace(A) distribution;

In natural scale: Point prediction: Y,4; = ae®®+?)

95%-prediction interval: [ae®t+ e~ gea(t+6) gn]
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Say what is true, for this model =

A.

The width of prediction interval is
constant and equal to 2X1.960

A is true and o is the root mean

square of the residuals up to time t =
224

A is true and o is the root mean
square of the forecast errors if we
apply the model up to time t = 224

BandC
None of the above
| don’t know
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3. How about the estimation error ?

In practice we estimate the model parameter 8 fromy,, ..., V¢

When computing the forecast, we pretend & is known, and thus make
an estimation error (ie we ignore confidence intervals on 68— it is
hoped that the estimation error is much less than the prediction
interval).

Let us return to an example we already saw. Assume we observe
X1, ... X, and want to forecast X,, 1. Assume that we believe in
the model X; = u + €;,¢; ~ iid N(0,0%). We estimate and
obtainfi,o.

Point prediction for X,, 1 if we ignore estimation uncertainty: (i ;

%

Jn

95%-prediction interval for X,, ;1 if we ignore estimation uncertainty:
a+19606

if we account for estimation uncertainty, i + 1.96
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THEOREM 2.6 (Normal IID Case). Let X, ..., X,,, X,,11 be an iid sequence with common distri-
bution N, ,2. Let [i, and 02 be as in Theorem 2.3. The distribution of /nil X'”t}ln_“ ~ is Student’s
tn—1, a prediction interval at level 1 — « is

1
i £y /1 + ~ (2.33)

where 1’ is the (1 — %) quantile of the student distribution t,,_.
For large n, an approximate prediction interval is

fin £ 16, (2.34)

where 1 is the (1 — %) quantile of the normal distribution N ;.

Thm 2.6 says that (forn = 100) an exact interval that accounts for
estimation uncertainty is g4+ 1.99¢
—comparetof + 1964

L .1 .
The estimation error decays in — and is small for large n

\/ﬁ
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Exact Formulas exist for Linear Regression with LS

THEOREM 5.1. Consider a linear regression model as in Eq.(5.1) with p degrees of freedom for ,5"
Assume that we have observed the data at n time points t, ..., t,,, and that we fit the model to these
n observations using Theorem 3.3. Assume that the model is regular, i.e. the matrix X defined
by Xi; = [ilt;), i =1,....,n, j = 1,...,p has full rank. Let .."?j be the estimator of 3; and s* the
estimator of the variance, as in Theorem 3.3.

1. The point prediction at time t,, + { is ﬁn{f) = Z?_l Ix';'jfj(tn + {)
2. An exact prediction interval at level 1 — «v is

Vi, () £&/T+gs (5.3)
with
p P
9= filta+ OGC;sfu(tn +0)
i=1 k=1

where G = (XTX) ' and € is the (1 — =) quantile of the student distribution with n — p
degrees of freedom, or, for large n, of the standard normal distribution.
3. An approximate prediction interval that ignores estimation uncertainty is

Y, (6) £ ns (5.4)

where 1 is the 1 — o quantile of the standard normal distribution.
14
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Figure 5.2: Left: Same example as Figure 5.1, showing the prediction interval computed by Theo-
rem 5.1(dot-dashed lines) and the confidence interval for the point prediction (plain lines around center
values). The predictions intervals computed by Eq.(5.3) and Eq.(5.4) are indistinguishable. Right: same
except only the last 24 points of the past data are used to fitting the model (instead of 224). The confidence
interval for the point prediction is slightly larger than in the left panel; the exact prediction interval computed
from Theorem 5.1 is only slightly larger than the approximate one computed from Eq.(5.4).
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Take-Home Message

When we use a fitted model there is some uncertainty that adds to
the prediction intervals

In most cases we can ignore the model uncertainty because it
impacts the prediction intervals only marginally

In some rare cases (e.g. linear regression with gaussian errors)
there are exact formulas
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4. The Overfitting Problem

Assume we want to improve our model by adding more parameters:
add a polynomial term + more harmonics
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harmonics). with the hope of improving the fit, thus the prediction. The new model has the form

d h . .
Y; = Z a;t' + Z (E}j cos % + ¢; sin j;t) (6.5)

i=0 j=1
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Prediction for the better model

Figure 6.4 shows the resulting fit for a polynomial of degree d = 10 and with /2 — 1 = 2 harmonics.
The fit is better (o = 25.4375 instead of 38.2667), however, the prediction power is ridiculous. This
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This is the overfitting problem: a better fit is not the best predictor —in

the extreme case, a model can fit exactly the data and is unable to

model it
18



How to avoid overfitting

Method 1: reserve some data for testing

The idea 1s to reserve a small fraction of the data set to test the model prediction. Consider for
example Figure 6.5. We fitted the model in Eq.(6.5) with A~ — 1 = 2 harmonics and a polynomial
of degree d = 0 to 10. The prediction error is defined here as the mean square error between the
true values of the data at =225 to 250 and the point predictions given by Theorem 6.2.1. The
estimation error is the estimator s of o. The smallest prediction error is for d = 4. The fitting
error decreases with d. whereas the prediction error i1s minimal for d = 4. This method is quite
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Method 2: Information Criteria

The log-likelihood log fy-(v) was used to derive a score function to be
minimized for model fitting. E.g. for a linear homoscedastic model
with n data points: score = —log fy(y) = nlog & + constant,

with & = maximum likelihood estimator of o

To avoid overfitting, add a penalty term to the score

Akaike’s Information Criteria: AIC = —2log fy (y) + 2k where k is
the number of (continuous) free parameters to be fitted.

E.g. for a linear homoscedastic model with parameter B € RP we
have k =p + 1and AIC = 2nlogd + 2p + constant

AlIC can be interpreted as the amount of information required to

describe a new hypothetical sample when we estimate the model

from one sample.
20



Other information criteria are also used. They are defined
empirically.

For example, the Bayesian Information Criterion (BIC) is defined for
linear regression models

BIC=2nlogd + 2plogn + constant

(gives more weight than AIC to model dimension p when the
sample size n is large)

21



Best Model for Internet Data, d = 1, h up to 10
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Information criterions are able to identify the best model
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Best Model for Internet Data, h = 3, d up to 10

h=3
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Information criterions are not able to identify the best model,
the polynomial models are not a good class of models
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Say what is true

A. When doing the fit and if we use an information criterion, we can
use all data available up to time t

B. When doing the fit and if we use a score + test data we can use all
data available up to time t

C. AandB
D. None

E. | don’t know

24



5. Use of Bootstrap

Assume we have a prediction model Y; = f:(B) + €,
The estimation of § is done assuming some distribution for €;;

Assume this distribution is only approximately known; we can improve
the prediction intervals if we use a better approximation of this
distribution.

For example, we can use the principle of the Boostrap, i.e. estimate
the distribution of €; by its empirical distribution.

26



THEOREM 2.5 (General IID Case). Let X4, ..., X,, X,,+1 be an iid sequence and assume that the
common distribution has a density. Let Xa), s an) be the order statistic of X4, ..., X,,. For
1< <EkE<n:

P (X{) < Xns1 < Xfy) = ——1 (2.32)
thus for o > RL_H, [X?L(nﬂ)%n? X?((HH)(I—%)U] is a prediction interval at level at least v = 1 — a.

Assume Y; = f;(B) + €; and apply theorem 2.5 to
Xl = €1, JXn — Et'Xn+1 = €t+e

This gives the algorithm:
1. Estimate 8 by some method

2. Estimate residuals e; = Y; — ft(,@)
3. (Thm 2.5) n = el(t+21)aJ;€ — e[(t+1)(1—%)J

(fora = 5%,t = 100: n = e(2), ¢ = e(99))
4. Prediction interval for Yy p: [ftH)(,BA) + n,ftH)(,BA’) + €]

27



Example

For this example, the bootstrap (done in log scale) gives asymmetric
prediction interval
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For this example, the bootstrap gives slightly
smaller intervals than the ones based on
gaussian noise

\
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Assuming gaussian noise
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