Summarizing Performance Data
Confidence Intervals
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1 Summarizing Performance Data

How do you quantify:
» Central value
» Dispersion (Variability)
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EXAMPLE 2.1: COMPARISON OF TWoO OPTIONS. An operating system vendor claims
that the new version of the database management code significantly improves the
performance. We measured the execution times of a series of commonly used pro-
grams with both options. The data are displayed in Figure 2.1. The raw displays and
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Histogram is one answer




ECDF allow easy comparison

Comparing Data Sets is easily done with their empirical cumulative distribution functions
(ECDFs). The ECDF of a data set =4, ..., =,, 1s the function f defined by

1 T
flz) = = Z_; 1<)

(2.1)

so that f(x) is the proportion of data samples that do not exceed x. On Figure 2.2 we see that the

new data set clearly outperforms the old one.
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Summarized Measures

Median, Quantiles
» Median : the data point in the middle:

if nis odd, median = X(nT-I-l) else % (x(g) + X(nT-I-Z))

» Quartiles
» p-quantiles

Mean and standard deviation
1

» Meanm = — di=1%i

» Standard deviation

n n
1 1
s? = —Z(xl- —m)? ors? = Z(xi —m)?
e n—1 i=1

» Coefficient of variation =

= (scale-free)
m



Which are correct interpretations of standard deviation ?
(m = mean, s = standard deviation)

A. With 95% probability, a new data sample
lies in the interval m+1.96s

B. With 99.9% probability, a new data
sample lies in the interval m + 3.30s

C. AandB
D. None

E. |Idon't know



Example

2007

150f

100¢

507

quantiles

dispersion

Clifor median

median

+
| +
150 + 150+
5 - + . 5
+ -H:]f +
100 F o+ | 1004
+ .y I
-+ F 4 | .
o o ] b e
] < .
o + k]
o apt gt EY
0 50 100

mean and standard deviation

200¢ _
l
150 __Iﬁrjeai_c?i;::ﬁ_iﬁtrehal X |
. Cl for mean
|
100t ! + -
______ +
_____________________________ mean
— :
50p = T --------- ! -
U-’!——-—:— —————————— ___;______
Old New

Box plots



Other summarizations commonly used:
Fairness indices

Jain’s fairness index
Lorenz curve gap and Gini index

see |lecture notes for more details
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2. Confidence Interval

Do not confuse with prediction interval
Confidence interval quantifies uncertainty about an estimation
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Confidence Intervals for Mean of Difference

Mean reduction = 26.1 + 10.2

O is outside the confidence intervalsfor mean and for median

Confidence interval for median \\
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How are Confidence Intervals computed ?

This is simple if we can assume that the data comes from an iid
model

iid = Independent Identically Distributed
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What is a confidence interval, really ?

1. Assume the data we have obtained is generated by a simulator,
which has drawn the data from a distribution with CDF F()

2. The distribution F() has a true median mgy s i.e. F(mys) = 0.5,
which we want to estimate.

3. We have obtained X3, ..., X;;; a point estimate m of mg s is
derived using the formula given earlier; m depends on the data
and is also random (hopefully not too much)

4. A confidence interval for my g at confidence level 95% is an
interval [u(Xy, ..., X;,), v(X4, ..., X;;)] such that

P(u(Xq, ..., Xp) S mgs < v(Xq, .., Xp)) = 0.95

15



The formula for Cl for median

THEOREM 2.1 (Confidence Interval for Median and Other Quantiles). Let Xy, ..., X,, be n iid
random variables, with a common CDF F (). Assume that F() has a density, and for() < p < 1 let
m,, be a p-quantile of F'(), i.e. F'(m,) = p.
Let X(1) < X(9) < ... < X(n) be the order statistic, i.e. the set of values of X; sorted in increasing
order. Let B,, , be the CDF of the binomial distribution with n repetitions and probability of success
p. A confidence interval for m,, at level -y is

[Xiys Xyl

where j and k satisfy
Bpp(k —1) = Bnp(j — 1) 2 v

See the tables in Appendix A on Page 311 for practical values. For large n, we can use the
approximation

j = |[np—nyvnp(l—p)]
ko= [np+nynp(l—p)]+1

where 1) is defined by Ny 1(n) = HT”" (e.g. n = 1.96 for v = 0.95).
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Using the formula ( level 95%
B

n = 10
We have 10 values X3, ..., X0

[X2); X9

(13 ”n

) \

Simple |
70 27 44 0.959
n>7l | = [0.50n — | = 0.950
0.980+/71] [0.50n+1+
0.980+/7]

I J I k [ » |
n <. 5: no confidence interval possible.
6 | O 0.969
i I 7 0.984
3 l 7 0.961
9 2 8 0.961
10 2 9 0.979
11 2 10 0.988
12 3 10 0.961
13 3 11 0.978
14 3 11 0.965
15 4 12 0.965
16 4 12 0.951
17 S 13 0.951
18 5 14 0.969
19 5 15 0.981
20 6 15 0.959
21 6 16 0.973
22 6 16 0.965
23 7 17 0.965
24 7 7 0.957
25 8 18 0.957
26 8 19 0.971
27 8 20 0.981
28 9 20 0.964
29 9 21 0.976
30 10 21 0.957
31 10 22 0.971
32 10 22 0.965

17



Example n = 100, confidence interval for

L FAN “t LY | i1 L3 =+ .l
70 27 44 0.959 72 25 47 0.990
n>71 | = |050n— | = 0.950 n>73 [ = |050n— | = 0.990
0.980,/71| [0.50n+1+ 1.288./n] [0.50n+1+
0.980y/n] 1.288/n]

Table A.1: Quantile ¢ = 50%, Confidence Levels v = 95% (left) and 0.99% (right)

X(50)+X(51)

The median estimate is

At confidence level 95%
j=150-9.8] =40
k =[514+9.8] =61
a confidence interval for the median is [X(40); X (61)]

At confidence level 99%
j=150—-12.8] =37
k =151+ 12.8] = 64
a confidence interval for the median is [X(37); X (64)]
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ldea of the proof of Theorem 2.1

Sayn = 10, we want to compute P(X(z) <Mmpys < X(g))
Consider the game, done by an oracle who knows m « :

for each data, if X; < my g declare success, else declare failure
Let N be the (random) number of successes

(N=k) e X <mos < Xw+1)

19



ldea of the proof of Theorem 2.1

Sayn = 10, we want to compute P(X(z) <Mmpys < X(g))
Consider the game, done by an oracle who knows m « :
for each data, if X; < my g declare success, else declare failure
Let N be the (random) number of successes
(N =k) e Xu) <mps < Xgesn)

Number of successes s (X 2) < m0_5) true ?
N=1
N =2
N =3

N =10
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ldea of the proof of Theorem 2.1

Sayn = 10, we want to compute P(X(z) <Mmpys < X(g))
Consider the game, done by an oracle who knows m « :
for each data, if X; < my g declare success, else declare failure
Let N be the (random) number of successes
(N =k) e Xu) <mps < Xgesn)

Number of successes [s (m0_5 < X(g)) true ?
N =
N =38
N=9
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ldea of the proof of Theorem 2.1

Sayn = 10, we want to compute P(X(z) <Mmpys < X(g))
Consider the game, done by an oracle who knows m « :
for each data, if X; < my g declare success, else declare failure
Let N be the (random) number of successes
(N =k) e Xu) <mps < Xgesn)

The event (X(z) < m0_5) means: 2 < N
The event (mo.s < X(g)) means: N < 8
The event (X(z) <My < X(g)) means:2 < N <8

The distribution of N is Binomial(n = 10,p = 0.5)
P(X) Smys < X)) =PR<N<8=P(1<NZ<8)
=P(N <8)—P(N =< 1) = By0,5(8) = B1g,05(1)

P(X2) S mos < X(9y) = P(X(2) < mgs < X(g)) if the distribution of X; has a density e



Confidence Interval for Mean

This is the most commonly used confidence interval
But requires some assumptions to hold, may be misleading if they do
not hold

There is no exact theorem as for median and quantiles, but there are
asymptotic results and a heuristic.
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Computing a confidence interval for the mean

1. Assume the data we have obtained is generated by a simulator,
which has drawn the data from a distribution with CDF F( )

2. The distribution F() has a true mean m : f_zo xdF(x) =m

3. We have obtained Xy, ..., X,;; we estimate m using some
formula m(Xy, ..., X;,); our point estimate m depends on the
data and is also random (hopefully not too much)

4. A confidence interval for m at confidence level 95% is an
interval [u(Xy, ..., X;,), v(X4, ..., X;;)] such that

P(u(Xq, -, Xp) Sm < v(Xy, ..., Xn)) = 0.95

26



Cl for mean, asymptotic case

If central limit theorem holds, i.e the sample mean is approx. normal
(in practice: nis large and distribution is not “wild”- not heavy tailed --
see chapter 3)

THEOREM 2.2. Let X, ..., X,, be n iid random variables, the common distribution of which is
assumed to have well defined mean . and a variance o*. Let ji,, and s> by

n _I_ T
fin = ;in (2.19)
$2 = _Z(x iin)? (2.20)

The distribution of \/ﬁ-“:—_"i converges to the normal distribution Ny 1 when n — +00. An approx-
imate confidence interval for the mean at level vy is

"ﬂ
fin £ 1) NG (2.21)
where 1 is the =X quantile of the normal distribution No1, i.e No1(n) = 1;"". For example,

_:—LQﬁﬁ:ﬂr‘T—GJ5aHdr;—258fﬁr”*:[}JQ .



Example

95% confidence level

S
Cl for mean: u * 1-96\/_5 where

U = sample mean
s = estimate of standard deviation

D
150-—r——:————

3 i
amplitude of Cl decreases 100 : 1 z ]
in1//n Lo T 79

T Q-mmﬁﬁﬁﬁﬁﬁﬁﬁ’t‘jﬁﬁﬁﬁ_ﬁﬁ-
L S|
compare to prediction interval () R S I




ldea of Proof
A 1on A A 1 2
Hn = 7 i=1Xn, E(fy) = u, var(dy,) = -0

central limit theorem : approximately, for large n

. 1x 1
,Lln=£ZanN H;EO'
1=1
2 2

Sp RO
.an —HU
1
N
with proba 95%, a standard normal variable is in [—1.96; 1.96],
thus

~ N(0,1)

//’in_.u

—1.96 < < 1.96
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Cl for Mean, Normal Case
Assume data comes from an iid + normal distribution
Not so frequent in reality; Useful for very small data samples (n < 30)
THEOREM 2.3. Let X4, ..., X,, be a sequence of iid random variables with common distribution

."\'r’,ﬂz. Let
Hon -
i=1
n
~ 2
n)

! (X:i — H

|

_— ; B — b . g=1 . ;
o The distribution of \/n*=2—= is Student’s t,,—1, a confiderice interval for the mean at level ~ is
o
- “n
Hon = = ]lﬁ

where 1) is the (1—";1) quantile of the student distribution t,,_1.
/ <

=

e The distribution of (n — 1) is \2_,. A confidence interval at level ~ for the standard deviation is
14y
—tr,

- o 9 2 — 9
where ( and § are quantiles of x 7 _1: x5 _1(¢) = 1—,“ and x% _1(&)

30



Example withn = 100

Theorem 2.2.2

(Large n)
Cl for mean: ﬂ + 0.196 s
_ A\ 2
1oole

Sample variance,

= maximum likelihood estimator of variance

Theorem 2.2.3 (Normal case)
Cl for mean: i + 0.198 &

1
—Z(Xi — [1)?
le

Q>
II

100

Unbiased estimator of variance

In practice both are the same if n = 30
But Theorem 2.2.2 does not require data to be normal

31



Tables in [Weber-Tables]

% points of N(0.1)

% points of t,

0.995  0.99 0975 0.95
208 233 1.96 1.645
% points of \2

n o 099 0975  0.95 0.9
1 663 5.02 384 2.71
2 921 7.38 5.99 4.61
53 11.34 935 7.831  06.25
4 13.28 11.14 949 7.78
o 15.09 12.83 11.07 9.24
O 106.31 14.45 12.59 10.64
1848 16.01 14.07 12.02
X 2000 175332 15351 13 3G

n 0995 099 0975 095
I 63.66 31.82 12.71 6.31
2 992 069 430 2.92
3 o34 454 318 2.3
4 4060 3.7 2.78 213
5 4.03 336 2,57 2.02
6 3.1 314 245 1.94
300 300 236 1.89
& 336 290 251 1.56
9 325 282 220 1385
10 317 2.6  2.23 1.1
11 311 272 220 1.80
12 3.0 2068 218 1.78




We test a system 10’000 time for failures and
find 200 failures: give a 95% confidence
interval for the failure probability p.

Let X; = 0 or 1 (failure / success); E(X;) =p

So we are estimating the mean. The asymptotic theory applies
(no heavy tail)

—002
ZXZ =—ZX-2—M%=un—u%
i=1..n
—,un(l—,un)—002><098~002
0.02 = 0.14

: : MSn
Confidence Interval: u,, + 715000 — 0.02 + 0.003 at level 0.95

33



We test a system 10 time for failures and find
O failure: give a 95% confidence interval for
the failure probability p.

A. [0:0]

B. [0:0.1]
C. [0;0.11]
D. [0;0.21]
E. [0;0.31]

F. [O; 1]

G. | do not know




THEOREM 2.4. [43, p. 110] Assume we observe z successes out of n independent experiments. A
confidence interval at level ~ for the success probability p is [L(z); U

z)| with
L(0) = 0
L(z) = bno—1 (32 ) (2.26)
U(z)=1—L(n— 2)

where ¢, .(«) is defined forn = 2,3, ..., z € {0,1,...,n} and o € (0; 1) by

{ On(0r) = L 2.27)
ny = 2(2 Sis 1),, Ng = 2(?? — Z), l—a= Fnl,nz(f)

(F,.n,() is the CDF of the Fisher distribution with ny,ny degrees of freedom). In particular, the
confidence interval for p when we observe z = 0 successes is [0; po(n)]| with

1
1—~v\" 2 1
po(n) =1— (—7> = — log, ( ) + 0 (—) for large n (2.28)
2 1 —~ n

Whenever z > 6 and n — z > 6, the normal approximation

) (2.29)
U(z) ~

can be used instead, with Ny 1(n) = 2.

:Slm :3IN
;:}:
)
=,
}_'l
Se | 2w
e

36



When we observe no event in n experiments,

a confidence interval for the probability of
occurrence is [0, po(n)] with

1

1—y\n
po(n) = 1—<Ty)

3.689
n

Fory = 0.95 andn = 20, po(n) =

37



We test a system 10 time for failures and find
O failure: give a 95% confidence interval for
the failure probability p.

A. [0:0]

B. [0:0.1]
C. [0;0.11]
D. [0;0.21]
E. [0;0.31]

F. [O; 1]

G. | do not know




We test a system 10’000 time for failures and find 200 failures: give a
95% confidence interval for the failure probability p.

Whenever z > 6 and n — z > 6, the normal approximation

can be used instead, with No1(n) = Ity

Apply formula 2.29 (z = 200 = 6 andn — z = 6)

1.96

0.02 + J200(1 — 0.02) =~ 0.02 + 1.96 102
T =10000 ST T =110000

~ 0.02 £ 0.003

i.e. in this case it is the same as the classical formula for a confidence
interval for the mean (Theorem 2.2.2).

40



Take Home Message

Confidence interval for median (or other quantiles) is easy to get
from the Binomial distribution
Requires iid-ness, No other assumption

Confidence interval for the mean
requires iid-ness and

»Either if data sample is normal

» Or data sample is not wild (heavy-tailed) and n is large
enough

Confidence interval for success probability requires special
attention when success or failure is rare

41



3. The Independence Assumption

Confidence Intervals require that we can assume that the data
comes from an iid model

Independent Identically Distributed

How do | know if this is true ?

» Controlled experiments: draw factors randomly with
replacement

» Simulation: independent replications (with random seeds)

» Else: we do not know —in some cases we can test it using auto-
correlation plots (Chapter 5)

42



What happens if data is not iid ?

If data is positively correlated
» Neighboring values look similar
» Frequent in measurements

» Confidence Interval is underestimated: there is less information in
the data than one thinks

Doing 10 positively correlated measurements gives less
information than doing 10 independent measurements

43



What is true when X4, ... X,, are independent ?

Observing X1, ..., X,;—1 gives no information about X,

B. Observing X, ..., X;,_1 gives no information about
X,, when we know the distribution of X,

C. P(X,, =x,|X{ =x¢..,X,,_1 = x,,_1) is a function of
Xy, only

. AandB
Aand C
BandC
All
None

T I o mMmMmo

| don’t know



4. Prediction Interval

Cl for mean or median summarize
» Central value + uncertainty about it
Prediction interval is often used to summarize variability of data

DEFINITION 2.2, Let X,..... X,,, X, 11 be a sequence of random variables. A prediction interval
at level v is an interval of the form [u( Xy, .... X)), v(Xy, ..., X,,)| such that

P (:”'(){1-. ){n) < X—n-|—1 < T»’(J{lf }{ﬂ)) >

46



Prediction Interval based on Order Statistic

Assume data comes from an iid model|

Simplest and most robust result (not well known, though):

THEOREM 2.5 (General IID Case). Let X, .... X,,, X,,.1 be an iid sequence and assume that the

common distribution has a density. Let X{l}, . X{:L} be the order statistic of X1,..., X,,. For
1<j<k<n:

n n k— ?
P (X < Xnp1 < Xy) = — i (2.32)
thus for a > —=5, [X{L{nﬂ} X(”HHH}(I__}H] is a prediction interval at level at least v = 1 —

For example: n = 999 ; a prediction interval at level 0.95 is
[ X (25) 5 X (975)]

47



Prediction Interval for small n

Forn = 39, |x

Forn < 39 there is no prediction interval at level 95% with this
method

» But there is one at level 90% forn > 18

» Forn = 10 we have a prediction interval [x
81%

i Xmax 1S @ prediction interval at level 95%

i Xmay] @t level

48



Prediction Interval based on Mean

Very often used — but see later

THEOREM 2.6 (Normal IID Case). Let X, ..., X,, X,,11 be an iid sequence with common distri-

bution N,, 2. Let [i,, and 6> be as in Theorem 2.3. The distribution of . /—= Xntl M o Student’s
I, H n n+1 On
t._1, a prediction interval at level 1 — «v is

1
fin 277\ [1+ =5 (2.33)

where 1 is the ( — %) quantile of the student distribution t,, .
For large n, an approximate prediction interval is

fln N0, (2.34)

where 1) is the (1 — %) quantile of the normal distribution N ;.

Prediction interval at level 95% =u+196s

49



Prediction Intervals for File Transfer Times

mean and
order statistic standard deviation

thm 2.4.1
\ /

T T E‘r m\‘
a ]
- g
c,
3 c
T [
5!
T =
e
T il
...... Method
(a) (Data) (c) (Prediction Inter-

vals)



Wthh one |S d mean and

order statistic  standard deviation

“valid” prediction thm 2.4.1
interval ?

4 4 B
The left one g
The middle one 'g
Both %f
| don’t know =

=]
=

30

Method

(¢) (Prediction Inter-
vals)
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Re-Scaling

Many results are simple if the data is normal, or close to it (i.e. not
wild). An important question to ask is: can | change the scale of my
data to have it look more normal.

» Ex: log of the data instead of the data

A generic transformation used in statistics is the Box-Cox
transformation:

, s+ 0
bs(x)_< S

\log(x), s=20

» Continuousin s

s=0: log
s=-—1:1/x
s = 1: identity

53



Prediction Intervals for File Transfer Times

mean and
order statistic standard deviation

thm 2.4.1 /

|
IH'.I'H (L] Jl'.'ll
Interval

Prediction

1 o | 1 1 | 1 1 1 I 1 1 1 1 1 1 1 1 1
1 K a X g = = 3 | o = K 1 | r 1 I £ = o [} T r I

(a) (Data) (b) (Log of data) Inter-

mean and
standard deviation
on rescaled data
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How is the prediction interval mean aud

standard deviation

|U, V]computed when re-scaling ? N, /

A U=u—-—1960, V=u+ 196,

W is the mean, o is the std-deviation of 1 .
the log of the data Y
B. U=¢e"V = e’ with 0 i e
u=u—1960,v=u+ 196, eamand
i is the mean, o is the std-deviation of o esald s
the data

C U=¢e“"V =e"with
u=u—196o0,v=u+ 1960,
u is the mean, o is the std-deviation of
the log of the data

D. None of these
E. | don’t know



QQplot is common tool for verifying normal
assumption

Normal Qgplot
» X-axis: standard normal quantiles x; = F~1 (ﬁ)

» Y-axis: Ordered statistic of sample: X (1), X(2), ---» X(n)

If data comes from a normal distribution, ggplot is close to a
straight line (except for end points)

» Visual inspection is often enough
» If not possible or doubtful, we will use tests later (Chapter 4)

57



(a) (Data)

S0 Ploft of Zzmple Cala verses 2lasdasd Heemel
T T T

(b) (Log of data)
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(a) (QQ-plot)

(b) (QQ-plot of log of data)

QQPlots of File
Transfer Times

20 Plot of Zamyie Dol verses SRR MM
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"
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1 o
(e
LA
L]
hih
E .
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i
T
H
£as
a
e
+-I*
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ERErERIT Moy QuaTiey

(c) (normal sample)

Figure 2.13: Normal qqgplots of file transfer times in Figure 2.12 and of an artificially generated sample
from the normal distribution with the same number of points. The former plot shows large deviation from

normality, the second does not.
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Prediction Interval
versus
Confidence Interval

If data is assumed normal

1 = estimated mean
s? = estimated variance

Confidence interval for mean atlevel 95 % =

Prediction interval at level 95% =

59



5. Which Summarization to Use ?

Issues
» Robustness to outliers
» Distribution assumptions

60



A Distribution with Infinite Variance

Cl based on std dv

g =ls %IEE

True mean

Cl based on bootsrp
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=5
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L
Y el L
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Outlier in File Transfer Time
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Outlier in File Transfer Time
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Robustness of Conf/Prediction Intervals
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Robustness

Methods based on quantiles and order statistics are robust to
outliers and do not make any distributional assumption other than
iid

Methods based on mean and standard deviation are sensitive to
outliers and make assumptions about distributions

--- use with care
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Since methods based on mean and standard
deviation are less robust, why are they used
at all ?

By intellectual laziness
Because they are easier to compute
They are more compact

o0 w >

| don’t know
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Take-Home Message

Use methods that you understand

Mean and standard deviation make sense when data sets are not
wild

» Close to normal, or not heavy tailed and large data sample

Use quantiles and order statistics if you have the choice

Rescale if needed
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