PERFORMANCE EVALUATION EXERCISES ## MODEL FITTING 2 Jean-Yves Le Boudec, Spring 2021 - 1. We have a data $set x_i$, i=1:n with n large, for which we found that the hazard rate $\lambda(x)$ becomes small when x is large. From this observation, which of the following distributions could be envisioned to model the data? - (a) □ A normal distribution - (b) $\ \square$ A Weibull distribution with shape parameter 0 < c < 1 - (c) \square An exponential distribution - (d) \square A Weibull distribution with shape parameter c > 1 - (e) \Box A Pareto distribution with index 0 - (f) \square A Pareto distribution with index $p \ge 2$ - 2. (Continued) We plot the survival function of the data set in the previous question (i.e. the complementary CDF (CCDF)). We obtain the following plots in various scales. Which distribution do you propose to model this data set? - (a) \square A Pareto distribution with 0 - (b) \square A Pareto distribution with 2 < p - (c) \(\subseteq \) A Weibull distribution 3. Find the index of each of the standard Pareto PDFs shown in the figure (b) $$\Box A = 3, B = 2, C = 1, D = 0.5$$ (c) $$\Box A = 0.5, B = 2, C = 1, D = 3$$ - 4. The complementary CDF of a Pareto distribution follows a power law... - (a) □ True - (b) □ False - (c) \square It depends on the index p - 5. A Pareto distribution is heavy tailed (i.e. with infinite variance)... - (a) \square True - (b) □ False - (c) \Box It depends on the index p - 6. For a Pareto distribution, the hazard rate $\lambda(t)$ is such that $\lim_{t\to\infty}\lambda(t)=0$. - (a) \square True - (b) ☐ False - (c) \square It depends on the index p - 7. The distribution of the sum of n iid random variables with heavy tail and index p < 2, for large n, is approximately... - (a) Normal - (b) \square Stable with same index p - (c) \square Stable but not necessarily with same index p - (d) Poisson - (e) \square It depends on p - 8. X is a random variable with distribution standard Pareto with index p > 0. The distribution of $\log(X)$ is ... - (a) Normal - (b) \square Stable with same index p - (c) \square Stable but not necessarily with same index p - (d) \square Poisson with rate $\lambda = \frac{1}{p}$ | | (e) \square Poisson with rate $\lambda = p$
(f) \square Exponential with rate $\lambda = p$
(g) \square Exponential with rate $\lambda = \frac{1}{p}$
(h) \square Lognormal | |-----|--| | 9. | The distribution of the sum of n iid random variables with finite variance, for large n , is approximately | | | (a) Normal | | | (b) Stable | | | (c) \square Poisson | | | (d) ☐ It depends | | 10. | X_i is an iid sequence with PDF $f_{X_i}(x) = \frac{2}{\pi(1+x^2)} 1_{\{x \geq 0\}}$ (one-sided Cauchy). When n is large, what can you say about $Y = X_1 + \ldots + X_n$? (a) \square It is approximately gaussian (b) \square It is approximately stable with index $p=2$ (c) \square It is approximately stable with index $p=1$ | | 11. | How do you generate a sample of the standard Weibull distribution with shape parameter c ? | | 12. | What are the models and the null hypothesis of a Jarque-Bera test? Give a formula to compute the p -value when the data is $x_1,, x_n$ and n is large. | | 13. | (a) What is the complementary CDF of a Pareto distribution with index p rescaled by a factor $s>0$ | (b) What is the distribution of a censored standard Pareto random variable, more precisely, the (c) A data set $X_1,...X_n$ is assumed to be iid from a censored standard Pareto with index p and censoring parameter a. Write the formula for the maximum likelihood estimation of p and a. conditional distribution of a standard Pareto random variable X given that X > a?