PERFORMANCE EVALUATION EXERCISES MODEL FITTING Jean-Yves Le Boudec, Spring 2021

- 1. We want to fit a data set y_i to a polynomial of degree 2: $y_i \approx at_i^2 + bt_i + c$. Is this a linear regression model ?
 - (a) 🗆 Yes
 - (b) \Box It depends on the score function
 - (c) \Box It depends on the data set
 - (d) \Box No

- 2. If the error terms in a fitting model are not homoscedastic, it is better to...
 - (a) \Box Use ℓ^1 -norm minimization rather than ℓ^2
 - (b) \Box Use weights to make the error term homoscedastic
 - (c) \Box Use ℓ^2 -norm minimization rather than ℓ^1
- 3. The green estimation is least square fit in *y*-log-scale. This corresponds to assuming that the *relative* error terms (blue dot green curve)/ green curve are...
 - (a) \Box iid
 - (b) \Box approximately normal
 - (c) \square (a) and (b)
 - (d) \Box None

4. We fit the model $Y_i = at_i + b$ using least squares. The obtained line is such that...

- (a) \Box The average vertical distance from the points to the line is 0.
- (b) □ The average square distance from the points to the line is 0.
 (c) □ It leaves an equal number of points on
- each side.
- (d) \Box None of these.

- 5. We fit the model $Y_i = at_i + b$ using ℓ^1 norm minimization. The obtained line is such that...
 - (a) \Box The average vertical distance from the points to the line is 0.

 - each side.
 - (d) \Box None of these.

- 6. We have two sets of measurements of the same quantity μ , with different uncertainty. We model this as follows. We have m + n independent measurements $X_1, ..., X_m \sim \text{iid } N_{\mu,\sigma^2}$ and $Y_1, ..., Y_n \sim \text{iid}$ $N_{\mu,\lambda^2\sigma^2}$. The term λ is known.
 - (a) What is the maximum likelihood estimate of μ ?

i.
$$\Box \hat{\mu}_1 = \frac{X_1 + \dots + X_m + Y_1 + \dots Y_n}{m + n}$$

ii. $\Box \hat{\mu}_2 = \frac{X_1 + \dots + X_m + \lambda(Y_1 + \dots + Y_n)}{m + \lambda n}$
iii. $\Box \hat{\mu}_3 = \frac{X_1 + \dots + X_m + \frac{Y_1 + \dots + Y_n}{\lambda}}{m + \frac{n}{\lambda}}$
iv. $\Box \hat{\mu}_4 = \frac{X_1 + \dots + X_m + \frac{Y_1 + \dots + Y_n}{\lambda^2}}{m + \frac{n}{\lambda^2}}$

(b) We now assume that the terms σ and λ are unknown but we know that $\lambda >> 1$ and $m \approx n$. Which of the following is the best estimate of μ ?

i.
$$\Box \ \hat{\mu}_5 = \frac{X_1 + ... + X_m}{m}$$

ii. $\Box \ \hat{\mu}_6 = \frac{Y_1 + ... + X_n}{n}$
iii. $\Box \ \hat{\mu}_3 = \frac{X_1 + ... + X_m + Y_1 + ... Y_n}{m + n}$

- (c) We continue to assume that $\lambda >> 1$ and $m \approx n$, furthermore we assume that the value of λ is known (but σ is not known). Which of the following is the best estimate of μ ?
 - i. $\Box \quad \hat{\mu}_5 = \frac{X_1 + \ldots + X_m}{m}$ ii. $\Box \quad \hat{\mu}_6 = \frac{Y_1 + \ldots + Y_n}{n}$ iii. $\Box \quad \hat{\mu}_3 = \frac{X_1 + \ldots + X_m + Y_1 + \ldots + Y_n}{m + n}$

iv.
$$\Box \hat{\mu}_4 = \frac{X_1 + \dots + X_m + \frac{Y_1 + \dots + Y_n}{\lambda^2}}{m + \frac{n}{\lambda^2}}$$

7. We consider the following model for the virus infection data example:

$$\log Y_i = \log a + \alpha t_i + \varepsilon_i$$
 with $\varepsilon_i \sim \text{ iid } N_{0,\sigma^2}, \ , i = 1...I$

The goal of this exercise is to apply Theorem 3.3 to this model. To simplify the notation, let $L_i = \log Y_i$ and $\ell = \log a$, so that the model is

$$L_i = \ell + \alpha t_i + \varepsilon_i$$
 with $\varepsilon_i \sim \text{ iid } N_{0,\sigma^2}$, $i = 1...I$

It will also be convenient to use $\bar{t} = \frac{1}{I} \sum_{i=1}^{I} t_i$, $\bar{L} = \frac{1}{I} \sum_{i=1}^{I} L_i$, $v = \frac{1}{I} \sum_{i=1}^{I} (t_i - \bar{t})^2$ (sample variance of t) and $c = \frac{1}{I} \sum_{i=1}^{I} (L_i t_i - \bar{t}\bar{L})$ (sample covariance of t and $\log Y$).

- (a) Write the matrix X.
- (b) Does assumption (H) hold ?
- (c) Compute $X^T X$ as a function of \overline{t} and v and verify that it is invertible when H holds.
- (d) Let $\vec{L} = \begin{pmatrix} L_1 \\ \dots \\ L_I \end{pmatrix}$. Compute $X^T \vec{L}$ as a function of \bar{t}, \bar{L} and c. Compute $G = (X^T X)^{-1}$
- (e) Let s^2 be the rescaled sum of squared residuals (you are not asked to compute s). Give the formulae, derived from Theorem 3.3, for 95% confidence intervals for ℓ and for α .