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What is Network Calculus ?

PERFORMANCE GUARANTEES IN
COMMUNICATION NETWORKS

A theory and tools to compute bounds on queuing
delays, buffers, burstiness of flows, etc.

R Cruz, CS Chang, JY Le Boudec, P Thiran, ...

For deterministic networking, per-flow and per-class
gueuing

Derive system equations = formal proofs
Stochastic extensions exist (not discussed here)



1. Representation of Data Flow

Cumulative flow: R(t), non-decreasing with R(0) = 0
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Fluid model (continuous)

Packet train (left continuous)
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(lengths in bits)

For a packet train: R(£) = Y51 fnlga, <t)



Delay and Backlog

R(t) R*(t)

Backlog at time t = R(t) — R*(¢t)

If System preserves order for this flow: Delay < h(R,R™)
with h(R,R*) = sup d(t)
t

and d(t) = inf{ds.t. R(t) < R*(t + d)}
(horizontal deviation)



2. Arrival Curve

Flow with cumulative function R(t) has a as (maximal) arrival curve if
R(t) —R(s) <a(t—s)foranyt=>s=>0
where a is a monotonic nondecreasing function R* — [0, + 0]

token bucket constraint (r, b) periodic stream of packets of size
(leaky buket constraint) <L a()=1L H

with rate r and burst b: e

a(t) =rt+b bits 1 e

bits ‘% — 9
b Ll

time interval t

time interval t

T 2T 37
[R. Cruz, PhD Dissertation 1987] ’
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Aggregation Property

If every flow f has arrival curve a; then the aggregation

R = X ¢ R has arrival curve 2. - ar

If every flow f is token-bucket constrained (7, by) then the
aggregation is token-bucket constrained (215, 2.¢ by)



Min-Plus Convolution of wide-sense increasing
functions [0; +o0) — [0; +o0]
fQ) = ;2{, (fi(s) + fo(t — )
f=hHh®f

This operation is called min-plus convolution. It has the same nice
properties as usual convolution; e.g.

i®LIRf=AQ (2 f3)
Q=L Qf

It can be computed easily: e.g. ' R = min(Ry, R,)
— 1,112

vel Y=

Tl'le‘i‘Tz




Min-Plus Calculus

Q) is associative, commutative

Neutral element: f & §, = f where §,(0) = 0,6,(t) = +o0,t >0
) distributes w.rt. min: f Q@ (gAh) = (fF @ g) A (f @ h)
Qisisotone: f < ffand g<g' = fRI=<f R g

Functions passing through the origin (f(0) = g(0) = 0):

f®&® g=< fAg

Concave functions passing through the origin: f @ g= fAg
Convex piecewise linear functions: f @ g is the convex piecewise

linear function obtained by putting end-to-end all linear pieces of f

and g, sorted by increasing slopes
[Bouillard et al 2018, Chapters 3 and 4]



Min-Plus Convolution and Arrival Curves

a is an arrival curve for R © R(t) < R(s) + a(t — s),Vs € [0, t]
SR<RQRa

Any arrival curve a can be replaced by its sub-additive closure

a=inf{dyg,a, aR@a, aRQaRa,..}

with §o(0) = 0, &, (t) = +oofort >0 T bits

a is sub-additive, i.e. a(s + t) < a(s) + a(t) %(X) .
and @(0) =0

j

—

when CZ(O) = 0, T 2T timeinterval
a is an arrival curvefor R/ R =R QR «
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Example of Sub-Additive Closure

Flow has at most L bits in any interval of duration 7

S R(t+1)—R(t) < Lforallt

& flow has arrival curve a
& flow has arrival curve o

:

time interval €

T

a(t) = {

Lt<rt
+oo,t > T

—
l time interval t
T 27T 37
t
a(t)=LH
T



Dater-Based (Max-Plus) Representation

For a left-continuous packet bits -
train, the arrival curve constraint ®)
0+, + 45
£1+§4
R(t) —R(s) <a(t—s)foranyt =s =0 I time t

14, 5-A, 5.5=4,
Packet train (left continuous)

is equivalent to
A, — A, = a (Z}-‘szj) foralll<m<n

where a'(x) = inf {t, a(t) = x} (lower pseudo-inverse) (e soudec 2018]
12



Lower Pseudo-Inverse [Liebeherr 2017]

a'(x) = inf {t, a(t) > x}

3bt

2b ° @ 2T
b b——0o T
r 2t 37 b 2b 3b
t Loy — - %
a(t)=bH “(x)_r[b ﬂ

forx >0
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3. Service Curve

R(t)

System offers to this flow a (minimal) service curve S if R* > R Q S,
le.:

Vt > 0,3s € [0,t]: R*(t) = R(s) + f(t — 5)
where £ is a function : R" - R U {40 }

R R*
y R*(t)
time interval L R(s)

: t ti;me L

[Le Boudec 96, Chang 97, Bouillard et al 2018]
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The constant rate server offers service curve f(t) = ct

. buffer| p(t) = ct
P j iy content

R* —R

0 time interval t
S t

Proof: take s = beginning of busy period:
R*(t)-R*(s) = c(t —s)and R*(s) = R(s)
= R*(t)-R(s) = c(t—2>s)
[ (t) = ctis a service curve; it is also a strict service curve
[Cruz 95]
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Strict Service Curve R(t) R*(t)

System S offers to a flow a strict service curve  if forany s <t
inside a backlogged period, i.e. such that R*(u) < R(u),Vu € (s,t], we
have R*(t) — R*(s) = B(t — 5)

S is typically a single queuing point

strict service curve = service curve

16



The guaranteed-delay node offers service curve 0;

4 R(t)
R*
© 7 5.() =0ift <T

<T Orp(t) = +o0ift >T

time interval €

¢ 0 T
>

For a node that is FIFO for this flow:
delay < T & nodes offers to this flow a service curve §1

Not a strict service curve | — '

17



Service Curve Examples
Rate-latency service curve :

B(t) =R(t-T)"

I bits

$&/B® = RE—T)* =
max(0,R(t—T))

time interval €

Example: Static Priority without pre-emption, fixed line rate C

High prio: By (t) = (Ct — MTU,)™

(strict service curve) (MTU; = max packet size, low prio)

Low prio: when high priority constrained by a(t) =rt + b,r < C:
B.(t) = ((C —r)t — b)™ (not a strict service curve)

L) =((C—-r)t—b- MTUL)Jr (strict service curve)

[Bouillard et al 2018]



Service Curve Example: Deficit Round Robin
Popular per-flow scheduler, one queue per flow [shreedhar and varghese, 1995]
Visit every queue in sequence and at every visit, serve up to Q; bits.

DRR offers to flow i a strict service curve:
Bi(t) =R;(t—T;)"
with R; = zQé, c, T,=liy Limaxi (- =2
j
Z]il Qj L — Z]#Lmaxj and c is the line rate.
[Boyeretal2012]

 Other examples: Packetized Generalized Processor Sharing, RFC
2212, |IEEE AVB, IEEE TSN, etC. [De Azua - Boyer 2014] [Bouillard et al 2018]
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Three Tight Bounds

Flow is constrained by arrival curve
a; served in network element with
service curve (. Then

A(t) Aservice curved D(t)

1. backlog < v(a,B) = sup(a(t) — ,B(t))

2. if FIFO for this flow, delay < h(a, )
3. output is constrained by arrival curve

a*(t) = sup(a(t +u) — ,B(u))

u=0
i.e.a* = a @ B (deconvolution)

time interval €

20



Example One flow, constrained by one token
bucket is served in a network element
that offers a rate latency service curve

Assumer < R

Backlog bound: b + rT

Delay bound: % +T

time interval €

Output arrival curve:
T a*(t) =rt + b*
with b* = b + 1T

21



Example with peak rate limit

)(ND Assumer < R

P M p—R)*

p—r

M+

Delay bound: + T

time interval €




An Improved Delay Bound

A(t) Aservice curved D (1)

In many systems we know

~ a
both Packets
A service curve characterization served at constant
e.g. rate latency fg 1 rate ¢

* Once a packet is selected for transmission, it is
served at a constant rate ¢

Improved delay bound is

N = h(@ i) ~ b ()
on packet size
generic bound
[Mohammadpour et al 2019], using max-plus representation of
arrival curves



4. Packetizer

Some nodes receive a packet entirely before processing
it (packetization). Typically true for TSN and Detnet.
This adds delay and modifies arrival curves.

packetization ) |
H ‘£1+’£2+'g3 hif( f
Lineratec — X 2, + e, DI R(t)
Y — | Node 1l [— R'(t)
R(t) R'(t)
(bits) (packetized) o
| time
R has arrival curve a(t) — Ct, Packet 1 Packet 2 Packet 3

. £, bits f,bits  £;bits
obviously R'does not. ! 2 3

24



Packetization affects arrival curves

n t clopel __ - | t gope” __-
bttt |- its =
1 2 R t
N re Y R
31 """"""""""" O g
/ to t,ts tim’e / to tyts time
Packet 1  Packet 2 Packet 3 Packet 1  Packet 2 Packet 3 packetization
flbits fzbits fgbits flbits {’Zbits {’3bits Line rate:c SL ‘ Node 1 —
. R(t) R'(t)
Assume R also has arrival curve rt + b. Does (bits) - (packetized)
b br
the same hold for R’ ? b= bty —tg==,43 =",
R(t) has rt + b as arrival curve
No ! Packets may be accelerated by but R’ does not
packetization

25



Packetization is modelled by means of packetizer

> PL >
R(t) R'(t) = PH(R(D)) PL(x)
(bits) (packetized) Lt 4
. L(3)
Given a sequence of packet lengths L)

£,,%,, ... the function P! is defined by L(1)

L) L(2) LG)LH) LG) "

PPrX)=Lp, oLl <x<Ln+1) .

R(t)

with L(n) = €1 + -+ £,

R'(t) = P*(R(t))
time




Effect of Packetization | backiog< 5

________________

RU 7T R RF(t) = PL(R'(®))
service curve 3
1. Delayboundsare | b 'éé'lil'b'g'i'B"E"ééﬁ/{c'é"cﬁf\'/é',’[f

same for R’ and R*

2. Backlog bound
B* =B + ¢Mm&x

3. Service curve B*(t) = [B(t) — £max]*

LM = max ¥,
n

27



Effect of Packetization (continued)

~ - ~ a'
line rate ¢ ~ Packetizer T
R(t) R*(t) — PL(R(t)) LM = max ¥,

4. If a fluid flow R(t) has arrival curve a(t) then the packetized
flow PL(R(t)) has arrival curve a'(t) = a(t) + £m**

5. If a fluid flow R(t) has arrival curve a(t) and is received at a
constant line rate ¢ then the packetized flow PL(R(t)) has

] fmax
arrival curve « (t + ; )

egat)=rt+b=>a'(t)=rt+b +££max

[Thomas et al 2019]
See also Packet curves [Bouillard et al, 2011]
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5. Concatenation

A flow is served in series, network element i offers service curve f;.
The concatenation offers to flow the service curve f = ; Q [,

Proof: R* >R, ® B, = (RQOL)RB,=RQ (L1 R By)

29



Example

R(t)

Service curve | R (t) AService curve

L
>

If 5; is rate-latency R;, T; then the concatenation [ is
rate-latency R = min(R{,R,)and T =T; + T,

30



Pay Bursts Only Once

D, D,
a b1 B
‘ D
a b1 @ B>
a(t) =rt+b

Bi(t) = R(t —Tp)"
Bo(t) =R(t —T,)"
r<R

one flow constrained at source by a

end-to-end delay bound computed
node-by-node (also accounting for
increased burstiness at node 2):

2b+1rTy

D1+D2= +T1+T2

computed by concatenation:
b
D=—=+T;+T
R 1 2
i.e. worst cases cannot happen

simultaneously — concatenation
captures this !

31



6. Shapers

fresh traffic T—»— ‘—’—» shaped traffic

R R a-smooth

(Fluid) Shaper forces output to be constrained by arrival curve «
(Fluid) Greedy Shaper stores data in a buffer only if needed
Examples:

constant bit rate link is fluid greedy shaper for a(t) = ct

Shaper constraints are
R'(t) < R(t)
R'(t) < (R Q a)(t)

32



|/O Characterization of Fluid Greedy Shaper
Min-Plus Residuation Theory [Baccelli et al. 1992] =

The problem

(where the unknown is optimal shaper

the function R') fresh traffic _!—':'_F'
R'(t) < R(t) R R-R®a

R'(t) < (R"® a)(t)

has one maximal solution R, givenby R* = R Q «
We can always assume that « is sub-additive and a(0) = 0 so that
R*=RQPa

= greedy shaper has service curve «
33



Example optimal shaper

fresh traffic 7—»— ._r.

R R* =R ® a
R(t) a(t) =rt+b
10 1 R (1) =
1 L
1 _—
| _—
| _—
1
O_ . b=4p.u.




Packetized Shapers fresh traffic it : t1 TTshaped traffic

R R a-smooth

(Packetized) Shaper
forces output to be packetized and constrained by arrival curve «

(Packetized) Greedy Shaper stores packets in a buffer only if
needed

i.e. delivers the maximal solution to
R'(t) < R(t)
R'(t) = (R"® a)(t)
R'(t) < PL(R'(D))
Min-plus residuation = Existence of a maximal solution

35



Example fresh traffic ﬁ‘i»— ‘T—’t—»"shaped traffic

R R* a-smooth
R(¢) a(t)=rt+>b
10 } ‘V\a(‘)e( “r“""“““T
SWoh e
T O %(eed\l ‘‘‘‘‘‘‘‘ r
e\ \\ L * 4+
1 . R
e, 0N
T e f ,,c\\l G
e T 5 1@6 %(eo
ot
0o
1
O_ > r=4p.u.




|/O Characterization packetized Greedy Shaper

TTTTj‘PLT Pt

If (C) a is piecewise-linear, RS /
concave and a¢(0%1) > gmax K Z(Q{,Tn;f " .
then R* = PL(a ® R) - R* = P*(a @ R)

i.e. packetized greedy shaper = fluid greedy shaper + packetizer.

(if (C) does not hold this may not be true)

Example: Linux Token Bucket filter TBF(7, b) is the packetized
greedy shaper for a(t) = rt + b.

[Le Boudec 2002]
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Re-Shaping Does Not Increase Worst-Case Delay

d = worst case delay of flow f

packetized i ipackeﬂzed
input flow £~ system s A output PGS reshaped
~a ~ flow f a packetized flow f

One packetized flow f goes through a system S; system S is FIFO
for flow f; flow f is constrained by arrival curve a at input to §;
output flow f is reshaped at output through a packetized greedy
shaper for same arrival curve a (shaper is FIFO)

Theorem: The worst case delay of flow f is not increased

Re-shaping is for free ! [Le Boudec 2018] -- True whether (C) holds or not.
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d = worst case delay of flow f ) Proof

input flow f System S output PGS reshaped
~Q flow f a flow f
input flow f System S output_/ damper flow [
~ flow f d delayed
by d

Replace packetized greedy shaper by damper [verma etal 1991]:
Damper forces total delay of flow f to be exactly d; Damper is causal

if d is = worst-case delay through S.
Output of damper is input flow f, time-shifted by d = is @« —smooth

= Damper is a packetized shaper = (maximal property of packetized
greedy shaper) flow f delayed by d is no earlier than reshaped flow f




7. Outlook

Research themes

interleaved shapers
use of re-shaping in large scale deterministic networks

tight latency bounds
stateless shapers

latency lower bounds

tight bounds accounting for real-time application layer
results that combine min-plus and max-plus reps

packet curves

40



Tools

¢ The DiscoDNCg is an academic Java implementation of the network calculus framework.[!

¢ The RTC Toolbox# is an academic Java/MATLAB implementation of the Real-Time calculus framework, a theory
quasi equivalent to network calculus.[]

¢ The CyNCg ["] tool is an academic MATLAB/Symulink toolbox, based on top of the RTC Toolbox#'. The tool was
developed in 2004-2008 and it is currently used for teaching at Aalborg university.

¢ The RTaW-PEGASE® is an industrial tool devoted to timing analysis tool of switched Ethernet network (AFDX,
industrial and automotive Ethernet), based on network calculus.[®]

¢ The Network calculus interpreterg is an on-line (min,+) interpreter.

* The WOPANets# is an academic tool combining network calculus based analysis and optimization analysis.[gl

e The DelayLyzer is an industrial tool designed to compute bounds for Profinet networks.[1Y]
« DEBORAH® is an academic tool devoted to FIFO networks.[11]
« NetCalBounds & is an academic tool devoted to blind & FIFO tandem networks.[121[13]

« NCBounds# is a network calculus tool in Python, published under BSD 3-Clause License. It considers rate-latency
servers and token-bucket arrival curves. It handles any topology, including cyclic ones!l.

¢ The Siemens Network Planner (SINETPLANE) uses network calculus (among other methods) to help the design of a
PROFINET network.['°]

sampled on 2019 Oct 1 from https://en.wikipedia.org/wiki/Network_calculus
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Conclusion
Network calculus main concepts:

cumulative functions (time domain)
arrival curve, minimal service curve (time interval domain)
shapers, concatenation

For packet-based systems and for fluid systems.

Fundamental tools for everyone in real-time networks and
systems!
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