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What is Network Calculus ?

PERFORMANCE GUARANTEES IN
COMMUNICATION NETWORKS

A theory and tools to compute bounds on queuing
delays, buffers, burstiness of flows, etc.

R Cruz, CS Chang, JY Le Boudec, P Thiran, ...

For deterministic networking, per-flow and per-class
gueuing

Derive system equations = formal proofs
Stochastic extensions exist (not discussed here)



1. Representation of Data Flow

Cumulative flow: R(t), non-decreasing with R(0) = 0
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Fluid model (continuous)

1=A1 5=A2 5.5=A3

Packet train (left continuous)

Daters: (4,L) with A = (4, 4,, ...
(lengths in bits)

For a packet train: R(t) = Y51 €nlia, <t)
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Discrete-time

) (dates) and £ = (£4,45, ...)



Delay and Backlog

R(D) R*(t)

System

Backlog at time t = R(t) — R*(t)

If System preserves order for this flow: Delay < h(R,R")
with h(R,R*) = supd(t)
t

andd(t) =inf{ds.t.R(t) < R*'(t +d)}
(horizontal deviation)



2. Arrival Curve

Flow with cumulative function R(t) has a as (maximal) arrival curve if
R(t) —R(s) <a(t—s)foranyt=>s=>0
where a is a monotonic nondecreasing function RT — [0, +o0]

token bucket constraint (7, b) periodic stream of packets of size
(leaky buket constraint) <L:a(t) =L H

with rate r and burst b: e
a(t)=rt+b bits ! —e

bits ratet »

time interval t

time interval t

2
[R. Cruz, PhD Dissertation 1987] T T 37T 6



Aggregation Property

If every flow f has arrival curve a; then the aggregation

R = X.¢ Ry has arrival curve 2. - ar

If every flow f is token-bucket constrained (77, br) then the
aggregation is token-bucket constrained (¢ 77, X bf)



Min-Plus Convolution of f1,f, = 0
f() = éleg (fi(s) + fo(t = 9))
f=HQ&f

This operation is called min-plus convolution. It has the same nice
properties as usual convolution; e.g.

(f1 ®f2)®f3 =f1®(f2 ®f3)
Q=L

It can be computed easily: e.g.
R = min(Rl, Rz)

e W= |
T, : T, |

T=T1‘LT2




Min-Plus Calculus

Q) is associative, commutative

Neutral element: f @ &, = f where §,(0) = 0,6,(t) = +oo,t > 0
& distributesw.rt. min: f Q@ (gAh) =(f ® g) A (f Q h)
Qisisotone: f < ffand g<g' = fRI=<f KR g

Functions passing through the origin (f(0) = g(0) = 0):
f&®g=fAg

Concave functions passing through the origin: f @ g = fAg
Convex piecewise linear functions: f @ g is the convex piecewise

linear function obtained by putting end-to-end all linear pieces of f

and g, sorted by increasing slopes
[Bouillard et al 2018, Chapters 3 and 4]



Min-Plus Convolution and Arrival Curves

a is an arrival curve for R © R(t) < R(s) + a(t —s),Vs € [0, t]
SR<RQYa

Any arrival curve a can be replaced by its sub-additive closure

a=inf{dg,a, aQRQa aR@RaQ a,..}
with §,(0) =0, 6y(t) = +ofort >0

a is sub-additive, i.e. @(s + t) < a(s) + a(t)
and @(0) =0

when a(0) = 0,
a is an arrival curvefor R©/R=R Q «

10



Example of Sub-Additive Closure

Flow has at most L bits in any interval of duration T

S R(t+71)—R(t) < Lforallt
& flow has arrival curve
& flow has arrival curve o

L — L |—
t i |
T T 2T 37T

a(t) = { Ji;ftirr a(t) =1L H

11



3. Service Curve

R (t) System R™(1)

System offers to this flow a (minimal) service curve S if R* > R Q [,
l.e.:

vt > 0,3s € [0,t]: R*(t) = R(s) + B(t — 5)
where (3 is a function : R™ - R U {40 }

R R*
R*(t)
B ()
R(s)

[Le Boudec 96, Chang 97, Bouillard et al 2018]

12



The constant rate server offers service curve f(t) = ct

B(t) =ct

B . buffer|
| — content

S

Proof: take s = beginning of busy period:
R*(t)-R*(s) = c(t —s)and R*(s) = R(s)
= R*(t)-R(s) = c(t—25s)
f(t) = ctis a service curve; it is also a strict service curve
[Cruz 95]

13



Strict Service Curve R() ¢ R*(¢)

System & offers to a flow a strict service curve S if forany s < t
inside a backlogged period, i.e. such that R*(u) < R(u),Vu € (s, t], we
have R*(t) — R*(s) = B(t — 5)

S is typically a single queuing point

strict service curve = service curve

14



The guaranteed-delay node offers service curve 9,

A

R(t)

R™(t)

O Or(t) =0ift <T
Or(t) = +0ift >T

For a node that is FIFO for this flow:

delay < T < nodes offers to this flow a service curve d1

15



Service Curve Examples e
Rate-latency service curve : 35/ B) = R(t - Tt =
ﬁ(t) = R(t — T)"' max(0,R(t — T))
T 't

Example: Static Priority without pre-emption, fixed line rate C
High prio: By (t) = (Ct — MTU,)?

(strict service curve) (MTU; = max packet size, low prio)
Low prio: when high priority constrained by a(t) =rt + b,r < C:

B.(t) = ((C —7r)t — b)T (not a strict service curve)

B (t) = ((C —1r)t—b — MTUL)Jr (strict service curve)

[Bouillard et al 2018] 16



Service Curve Example: Deficit Round Robin

Popular per-flow scheduler, one queue per flow [shreedhar and varghese, 1995]
Visit every queue in sequence and at every visit, serve up to Q; bits.

DRR offers to flow i a strict service curve:

Bi(t) =Ryt —T)"
Q; Q;+L; 1 1
T, = T Lmax,i(R_i — E)’

C,
2. Qj C

Qi = %2 Qj, Li = 2jxiLmaxj and c is the line rate.

[Boyer et al 2012]

e (Other examples: Packetized Generalized Processor Sharing, RFC
2212, |IEEE AVB, IEEE TSN, etC. [De Azua — Boyer 2014] [Bouillard et al 2018]

17



Three Tight Bounds

Flow is constrained by arrival curve
a; served in network element with
service curve 3. Then

A(t)Service curve D(t)

1. backlog < v(a,B) = sup(a(t) — ,B(t))

2. if FIFO for this flow, delay < h(a, )
3. output is constrained by arrival curve

a*(t) = Sup(a(t +u) — ,B(u))

u=0
i.e.a* = a @ P (deconvolution)

18



Example One flow, constrained by one token
bucket is served in a network element
that offers a rate latency service curve

Xt Assumer < R
W0 =
Bt) Rt —T)"

Backlog bound: b + 1T

Delay bound: % +T

Output arrival curve:
r a*(t) =rt + b*
with b* = b +rT

19



Example with peak rate limit

Assumer < R

M+ =" (p-R)*

Delay bound:

+ T

20



4. Packehzer

. | 1 R(t)
T——» : .—’—-‘ Packetizer _’_. L(10)1 /'/t
R | I R’ R* (t) = PL(R'(1)) f R (Af77+4 e
' constant rate server 1 /}/f
. service curve f(t) =ct T Z )

packetized constant rate server
service curve S(t) = ct + M

Packetization is captured by the function P%: [Chang-Lin 1998]
Plx)=L(n) e L) <x<Ln+1

withL(n) =€, +€, + ... + 4,

Packetizer is the system R — PL(R)

21



Service Curve Definition Must Specify Packetization or

' R(t
Not o L(lO): (t) —

T8 T
R R’ f )

¢ ek |

T

This system offers the service L)
0

curve f(t) = ct

If we consider only emission times of entire packets, (i.e. the

output is R™), the system now offers the (weaker) service curve
B(t) = (ct — £m*)*

22



Effect of Packetization | backiog<B

= W

_____________________________________________

_______________..

j—v: '—’—v Packetizer ——'—»
R R R(8) = PL(R(D))

service curve f3

_____________________________________________

backlog < B¥, service curve ,[>’

Delay bounds are same for R’ and R*

Backlog bound B* = B + ¢™M4*

Service curve B*(t) = [B(t) — £™X]*

If a fluid flow R(t) has arrival curve a(t) then the packetized
flow PL(R(t)) has arrival curve a(t) + £m3*

M = max ¥,
n 23



5. Concatenation

| |
| fém R, (t) AService curve l
| |

A flow is served in series, network element i offers service curve ;.
The concatenation offers to flow the service curve f = ; ® [,

Proof: R* 2 R L, =2 (RR®PL1)XB,=RQ (1 R L)

24



Example

m R, (t) AService curve

R(t)

If 5; is rate-latency R;, T; then the concatenation [ is
rate-latency R = min(R{,R,)and T =T, + T,

25



Pay Bursts Only Once

o b1 ‘ B
‘ D

a b1 Q B
a(t)=rt+b

Bi(t) =R(t—Ty"
B2(t) =R(t —T,)"
r<R

one flow constrained at source by «

end-to-end delay bound computed
node-by-node (also accounting for
increased burstiness at node 2):

computed by concatenation:
b
D=—=+T,+T
R 1 2
i.e. worst cases cannot happen

simultaneously — concatenation
captures this !

26



Packetization and Concatenation
Delay D

-
—

Br, 1, ||P" Br,1, ||P* |~ - —Br,T, |P" L

To compute delay bound D, use end-to-end service curve ignoring
last packetizer

D < h(a, ,BR,T)

with R = _rriin RiandT =Y. T; + (n — 1)R; M
l=1..1n

Cannot ignore the intermediate packetizers.

27



6. Per-Class FIFO Networks

input flow f ~

output flow
FIFO System
> >
/ \ An aggregate of flows, each constrained by leaky
bucket Ty, bf, receives a rate-latency service curve
Prr; node is FIFO for the aggregate; 7y, =

Zfesrf <R, byt = Zfes by

Per-class FIFO networks use schedulers to separate classes
Service received by a class can be modelled by a rate-latency service
curve ﬁR,T (eg . DRR, AVB, TSN) [Boyer et al 2012, De Azua — Boyer 2014].

Deot 4T
R

backlog bound for the aggregate of all flows: B = byy¢ + 1ot T

delay bound for any packet of any flow: D =

[Le Boudec-Thiran 2001, Section 6.4] [Bouillard et al 2018, Chapters 10,11]
28



FIFO Residual Service Curve RN
.- >,2,
Flows 1 and 2 served FIFO + service ~A ~>
curve [ to the aggregate; Flow 2 is constrained by arrival curve a,
= for every 8, [g is a service curve for flow 1, with

Bo(t) = [B(t) — az(t — 0)] 1>

bo”
Example: a;(t) = r;t + b;, b, %\oxf’ﬁk
[ = rate-latency (R, T) 4
Pg and By, are
service curves for flow 1 =4 t

6=T+— 60'=T+

29



Analyzing Per-Class Networks
input flow f ~

ar(t) =rft+bf\\: ?’N as(t) =15t + b}
//7, \\AA

arrival curve for output f is leaky bucket 7y, bs with

btot o bf
R

output flow f
FIFO System

:BR,T

b;:bf+7"f(T+

beot—b
(obtained using service curve g with8 =T + : '; L)

Burstiness of every flow inside network increases along its path as a
function of other flows’ burstiness (cascade).

Solved recursively in feed-forward networks, otherwise by fix-point.

30



flowi,a;(t) =rt+b

Example |
b burstiness of every flow i after j hops, ?i i
W|th by = b and: ode 1
b flow i — node
b, = bj_1+r(T+ ot - ) FIFO: B [ +2

tht — b + bl + -+ bk_1

Fixed point in (bsy¢, by, ..., br—1) has a
positive solution when (k — 1)r +
(1 —r)* < 1, which occurs forr < 7,

one flow sourced at every node, uses k hops
k = 3 on the figure

all flows have same arrival curve at source

I nodes, I flows in total

kr <R

31



Upper Bound on Latency at any Node fonla=re ?

latency

- Ueris . T=1R=1p.u.
S — b=1p.u.
utilization utilization
k 1 2 3 4 5 6 7 8
Uerie = kT |1 |1 |1 |0.7579 |0.5591 |0.4409 |0.3632 |0.3084

If positive fixed point exists, then it gives a valid bound

(time-stopping method)

32



Delay Based Method T

If a system imposes a delay < D to aflow f
with input arrival curve ay, an output arrival

curveis ag(t + D).

Often used in feed-forward networks [Boyer et al 2011]

For this ring example: after j hops, delay < jD, hence the fix-point:

_ b+by+-+br_q
b; = b+ jrD, D = B +T
Delay bound and u,,;; = min (1, ﬁ) are less good than with

previous method.

33



Other Methods

Several techniques improve delay bounds, tightness and u,;;:
PMOO, PMOC, linear programming, etc.

[Bouillard et al 2018][Amari et al 2016] [Boyer et al 2012] [Bouillard-Stea 2015][Bondorf et al 2017]
[Rizzo-Le Boudec 2008] [Tassiulas-Georgiadis 1996] [Chlamtac et al 1998]

There cannot be a bound that depends only on max aggregate

. : e 1
burstiness, number of hops h and link utilization u when u > —
[Charny — Le Boudec 2000]

34



Stability of a FIFO Network

Every flow f € F constrained by arf(t) = rrt + by at source. Route of flow f
is fixed. F; € F is the set of flows passing through node i.

Every node i € 7 is FIFO and offers to the aggregate of flows f € F; a rate-
ZfEFi rf ..
. F,J finite.

latency service curve fg. .. Load factor u = max
! i

Network underloaded: u < 1; overloaded: u > 1; critical: u = 1;
One network instance = (F,r,b,F,J,R,T)

A network instance is stable if there is a bound on all delays (or backlogs),
that is valid for any execution trace of the network.

l

(existence of a bound on all delays < existence of a bound on all backlogs)

35



Which FIFO Networks are Stable ?

An overloaded FIFO network is not stable.

A single-node network that is underloaded or | ax®
- . 3
critical is stable. = BW—T)*
. =" h(@pB),
A feed-forward network that is underloaded or v(a,
critical is stable. -

Question: Is an arbitrary underloaded network stable ?

36



Is an Arbitrary Underloaded FIFO Network Stable ?

For any € > 0 there is an unstable underloaded FIFO network with
load factor u < & [Andrews 2009]

Every underloaded ring is stable [Tassiulas and Georgiadis 1996, Le Boudec and
Thiran 2001]

If the interference condition [(4) in Rizzo-Le Boudec 2007] holds and
service curves are strict then the FIFO network is stable; in the
special case R; = R, Vi, the condition is 7y < R/(1 + RIN¢) where

RIN¢is the number of flows that interfere with f.

37



7. Fluid Shapers
P fresh traffic T—»j.—'—» shaped traffic

R’ a-smooth

(Fluid) Shaper forces output to be constrained by
(Fluid) Greedy Shaper stores data in a buffer only if needed

Examples:
constant bit rate link is fluid greedy shaper for a(t) = ct

Shaper constraints are
R'(t) < R(t)
R'(t) < (R Q a)(t)

38



Min-Plus Residuation Theory [Baccelli et al. 1992]

G is the set of wide-sense increasing functions [0, +o0) — [0, + 0]
and II: G — . Consider the set of functions x € G that satisfy

(P) x(t) < [MI(x)](t) and x(t) < g(t) forsome g € G

If I is isotone and upper-semi-continuous, there is one maximal
solution to (P). It is given by

x* = inf {x% x1,x?, ..} with x® = g and x'*1 = I1(x}).

“Il isotone” means that x <y = II(x) < [1(y); “Il upper semi-continuous” means that I1 (infxn) =
n

infI1(x,,)

n

39



|/O Characterization of Fluid Greedy Shaper

The problem
(where the unknown is
the function R')

R'(t) < R(t)

R'(t) < (R"® a)(t)

optimal

fresh traffic _7___+____
R

has one maximal solution R, givenby R* = R Q &

shaper

@

R*=RQQ

We can always assume that « is sub-additive and «(0) = 0 so that

R*=RQPa

= greedy shaper has service curve a

40



Example optimal shaper

fresh traffic —|—~— ._’_.
R R*=R ® a
R(t) a(t)=rt+b

10

Pty ey )y
\ |
"

- b=4p.u.
O >



Fluid Greedy Shaper Keeps Arrival Constraints

fresh traffic

constrained by « j‘—r’ re-shaped traffic
R R*

The output of the fluid greedy shaper is still constrained by o
Proof:

RR=RQKQRo=RQRQa)®oc=RQR3c)R@a=R"QQa

Application: if flow, with arrival curve «, is transmitted over a
constant rate line of rate ¢, the output has arrival curve a @ A,

(Ac(t) =ct) 1 — @




Fluid Greedy Shapers Do Not Increase End-to-end
Delay Bound ¢ .1 traffic shapero = «

service service
. |—’ curve - . - curve -
constrained by a B B

—
>

same end-to-end delay bound with or without shaper

Proof: h(a, 31 ® 0 @ ) = h(a,0 @ 1 ® B,) = h(a, 1 Q B5)

Re-shaping traffic is for free (in terms of delay), but reduces
downstream buffering.

43



Fluid Greedy Re-Shaper does not Increase Worst-Case

Delay
R(t) : System R’LQ | ‘ R'(t)
~ a ] —_—

worst case delay = d

If R has arrival curve a and if h(R,R*) < d then h(R,R") < d.

Proof: Notethat h(R,R* ) <d © R* >R Q §,

By hypothesis: R=R @ aandR*" > R Q §,

Now R'"=R* QX «

>R 2R PQa=RQQa)®d; =R,

44



An Alternative Proof

R(t) A system AR(t) — ‘ R'(t)
~ a —_—
‘ : R"(t) = R(t — d)
worst case delay =d Delay Box :

If R has arrival curve a and if h(R,R*) < d then h(R,R") < d.
Proof: Note that h(R,R*) < d © R*(t) = R(t — d)
The delay box is a (hon-greedy) shaper for R*;

therefore (optimality of greedy shaper):
R"(t) <R (t)ie.R'(t) =2 R(t—4d)

45



8. Packetized Shapers fresh traffic ~|—»ﬁﬁ —‘—'—»T 1 TTshaped traffic

R R’ a-smooth

(Packetized) Shaper
forces output to be packetized and constrained by

(Packetized) Greedy Shaper stores packets in a buffer only if
needed

46



Packetized Shaper fresh traffic 1L @t T Mshaped tratfic

R R a-smooth

Packetized Shaper constraints are
R'(t) < R(t)
R'(t) = (R"® a)(t)
R'(t) < PE(R'(V))
There is a maximal solution (Packetized Greedy Shaper)
R* = inf{RW, RP
with R©® =R and R® = PL(a ® RU~D)

47



Exam pIe fresh traffic H‘Lj ‘T_’T_."shaped traffic

R R* a-smooth
R(¢) a(t)=rt+b

10 A ‘ A(\e( ¢T .....
A o(\\l 5\'\0"&“ “““““““ T
: ‘r‘\\)\d %(e“ e T R* (t\
> T P T ‘(\aQe(
S f Y S
| ‘,\13(3 %
i ACKe

0°
1
O s r=4p.u.




Linux’s Token Bucket Filter (1, b) S\

max b

tc gdisc add dev ethO root tbf rate 1mbit burst 32kbit..

Token bucket is spontaneously replenished at Token Bucket
rate r up to some maximum b. olicer
In order to be released, a packet ] (flter)

must consume an amount of tokens shaper buffer
. . (prefilter buffer)
equal to its size.

If there are not enough tokens, packet must wait. As soon as
there are enough tokens, packet is released.

TBF(r, b) is the packetized greedy shaper for the arrival curve
a(t) =rt+b.

49



Packetized Greedy Shaper Packetized Greedy Shaper
' Tt

When ' /
. : : R a(t)=rt+b
(C) « is piecewise-linear, b=&m*  p+_ plig ® R)

concave and a(0F) > ¢#max

then R* = PX(a ® R)
i.e. packetized greedy shaper = fluid greedy shaper + packetizer.

This is why TBF(r, b) = packetized greedy shaper for a(t) = rt + b.

Such packetized greedy shapers keep arrival constraints.
[Le Boudec 2002]

50



Counter-Example

t
a(t) = 25|
(at most 25 data units every T time
units)

R(t) = 10 packets of
size 10 attimet =0
RM =g ® R is not
constrained by arrival
curve a

it —x ‘ """""" Pt
: @ r-
R a(t) = 25[% /
RMW = pPl(a ® R)
100 A A
I . [R® = PL(R® a)
A A
Y +—ueid-shapereutput R Q «
Yy
10 HL
0 | |

T 2T 3T 51



Packetized Greedy Shaper

Output ﬁﬁ% {inf |@ | P T ]
S R* = infRW
When (C) does not hold 0 ! A
(e.g. for staircase arrival R(1)25 ot IO
curves), R* # PX(a ® R) O S
the iteration does not 25 | [ \
stop at step 1 R 1T 1T 1T 1
25 | | :
(and packetized greedy N N L
shaper may not keep .
arrival constraints) R* = R(4): | f A A




Delay Property of Packetized Greedy Shapers

d = worst case delay of flow f

packetized i ipackeﬂzed
input flow f |~ system s A output PGS reshaped
~Q flow f a packetized flow f

One packetized flow f goes through a system §; system S is FIFO
for flow f; flow f is constrained by arrival curve a at input to S;
output flow f is reshaped at output through a packetized greedy
shaper for same arrival curve a (shaper is FIFO)

Theorem: The worst case delay of flow f is not increased:

Re-shaping is for free ! [Le Boudec 2018] -- True whether (C) holds or not.

53



d = worst case delay of flow
b Y f g Proof
input flow f System S " output PGS reshaped
~a flow f a flow f
input flow f System S output damper flow [ |
~a flow f d delayed

by d
Replace packetized greedy shaper by damper [verma et al 1991]:
Damper forces total delay of flow f to be exactly d; Damper is causal

if d is = worst-case delay through S.

Output of damper is input flow f, time-shifted by d = is @ —smooth
= Damper is a packetized shaper = (maximal property of packetized
greedy shaper) flow f delayed by d is no earlier than reshaped flow f



Re- Shapmg Avoids Issue of Non- Feedforward Networks

! flowi,ay(} =1t + b

latency

(p.u.) - k=23 k=5

no reshaping

W|th reshaping o Uerit

utilization LT T T T lization | T=1R=1p.u.
b=1p.u.

Per-flow (re-) shaper at every node (e.-g. TBF) avoids burstiness

cascade

Implementation requires per-flow FIFO = see Interleaved

Regulator for a solution [Le Boudec 2018]
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. ive flow: , hon- ' ith R(0) =
9 . IVl | n_PI us Or IVI aX-Pl US ? Cb:%mulatlve ow: R(t) bir:;n decreasing wit Rbit(: 0

R, (t) R =) taliac Ry(t)
Network calculus uses Fﬁ e " i
mainly cumulative arrival (tmj "[tm) | m
or departure functions ( R(t) = Daters: (A, L) with A = (Ay, 4y, ...) (dates) and £ = (£, €5, ..

. . . (lengths in bits)
number of bits observed in t time
For a packet train: R(t) = 2,51 fnlia, <t

units) = min-plus algebra SR, o

Liebeherr uses cumulative arrival time functions (T (x) = time
taken to observe x bits); leads to a dual, quasi-equivalent
approach, that uses max-plus algebra. Duality uses pseudo-inverses

R — Tl, T — RT. [Liebeherr 2017]
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Pseudo-Inverses [Liebeherr 2017]

fr(x) = inf {¢, f(£) = x)

F1e0 =[]

2 o f >0
f1(x) = sup{t, f(x) < x} i
L
3b 1 i ® ® : >
b 2b 3b
2b : 0 @ N
b — fl(x)=r[5—1}
) - . . 2T ' o forx >0
T T [
t ' t i $
F© =bl:| .
b 2b 3b

57



Chang’s Max-Plus Calculus

Yet a different approach, uses
Daters (also called “Marked Point
Process”). Leads to a different
max-plus algebra where
“convolution” is

(A Oy, 9)(x) = max (A + g(lmt.. +€n_1))

1sm=sn
[Chang 2002]

Not associative nor commutative

Cumulative flow: R(t), non-decreasing with R(0) = 0
bits bits bits
R, (t) R =) taliacy Ry(t)

L+, +8, 4 — ———n | seses
£ + p -
. f —— . sene )
time t ; time t time t
| &S Ll > - - - 1. -

12 567 1=A; 5=4; 5.5=4, >
Fluid model (continuous) Packet train (left continuous) Discre te-time

Daters: (A, L) with A = (A,,A,, ...) (dates) and £ = (¥4,%5, ...)
(lengths in bits)

For a packet train: R(t) = 2,51 fnlia, <t

E.g. Aflowis g —regularif A=A O, g

Eg g(X) = %, flow is g —r‘egular o An _ An—l > fn—1

r

called LRQ-rule in [Specht-Samii 2016]
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Chang’s g-regularity

g-regularity is an alternative to arrival curve, but is not equivalent.
Does not work well with aggregation.

g-regularity can be mapped approximately to arrival curve: e.g.

g —regular with g(¢£) = é = arrival curve a(t) = rt + £M4X

( o €MAX)+

arrival curve a(t) = rt + £"4% = g —regular with g(¢#) = *——

eM AX

= max packet size

Instead, we discuss next the use of Daters / Max-Plus with standard
network calculus concepts of arrival curves (in the future, with service curves). _



Max-Plus Expression of Arrival Curve

2.+ 2, + 25

bits

R = uliayey
n

Theorem: Arrival curve constraint « .y

is equivalent to '
A, — A > at(ly + -+ €,)foralll<m<n

[Le Boudec 2018]

E.g. for a(t) = rt + b, a*(x) = max(0, ?)

¢ _l r ti‘met

1=A1 5=A2 5.5=A3
Packet train {left continuous)
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Equivalent Formulations

Original Definition

Equivalent Max-Plus Formulation

affine arrival curve R(t) — R(s) A, — A,
(leaky bucket) <r(t—s)+b - Lpn+--+Ly—b
B r
t A, — A
R(t) — R(s) < b H n— Am
staircase arrival T - Lyy+ -+ L,—Db
curve (at most - b

b bits in T seconds)

R(t) = number of bits seenin [0, t]; A,,, = arrival time for packet n
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Max-Plus Representation of Rate-Latency Service Curve

A D
A FIFO network element offers a —L> -
rate-latency service curve [y 1

Input flow is packetized

Then: for every n there exists some m < n s.t.

o, + -+ 4
D, <A, +— - “4+T
And conversely, if this holds for some network element S,
then S is the concatenation of a rate-latency service curve

element and a packetizer (= Guaranteed Rate node)
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Max-Plus Representation of Packetized Greedy Shaper

11t tt o
A, j‘_F'D

R < R = Entnlppyeg = nf RO(),

- 0) — @ — pLep(i-1)
Packetized Greedy Shaper a o=k RE=PERTTO
The output times D,, of packetized greedy shaper are given by

D{ = A and

n—1
D;=D, VA,V \/ (Am +at(f, + -+ fn))
m=1
(time domain representation of PGS) [Le Boudec 2018]

(optimality) For any other (non greedy) packetized shaper, the
output times D',, satisfy D, > D,
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Application: Interleaved Regulator

F flows Interleaved

n00oo g Regulator

Output
Packet Sequence
s.t. Vf, flow f has ay arrival curve

>

gooo O

An Interleaved Regulator (= interleaved packetized shaper) is a system
such that is globally FIFO + every output flow f has a; arrival curve.

Theorem: there is one minimal interleaved regulator, i.e. one that
ouput packets no later than any other interleaved regulator.

[Le Boudec 2018]
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Implementation of Minimal Interleaved Regulator

D, = max {An, D, ., Vi1, (A£1 + “l(fﬁz T 3{))}

B N -
Eligibility Time of packet at head
of queue

with f = flow of packet n, i =index of packet n in its flow, A,]; = arrival time of mth packet of flow f, ££1 =
length of mth packet of flow f

e One FIFO queue for all packets of all flows.

e Packet at head of queue is examined and delayed until it can be
released while satisfying the arrival curve of its flow.

e QOther packets wait until their turn comes.
[Specht-Samii 2016], called “Urgency Based Scheduler”. In IEEE TSN, called “Asynchronous Traffic Shaping”.
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Minimal Interleaved Regulator Does Not Increase Worst Case

Delay Minimal Interleaved Regulator =
: Interleaved Packetized Greedy: Shaper

FIFO 00000~ gooo: 000g C
System S

D, E,

Every flow f has ay arrival curve before input to §

Output of S is fed to minimal interleaved regulator with arrival curve
ar for flow f

Theorem: sup(D,, — A,) = sup(E,, — A,,)
n n

Worst-case delay of S across all flows is not increased by minimal
interleaved regulator [Le Boudec 2018] [Le Boudec 2018 —slides] e



d = worst ca?e across all flows : Proof
System S m reshaped
multi-flow input ulti-flow regulator multi-flow
every f has ar output
arrival curve System S :m Zlégc;\é\/}
N d S .

 Replace minimal regulator by damper [verma et al 1991]:
Damper forces total delay of input to be exactly d; Damper is
causal if d is = worst-case delay through S

e Damper is an interleaved regulator = multi-flow output delayed by
d is no earlier than reshaped multi-flow
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Other Regulation Constraints

Example: Packet Burstiness PB(p, K) defined by:

number of packets seen in interval of duration tis < pt + K &
n-m+1-K

A, — A, = . form <n [Le Boudec 2018, Jiang 2018]

Regulator concept replaces the concept of shaper; under mild

conditions (" Pi-regulation”), any regulation rule has a minimal

regulator. Any combination of regulation rules has a minimal

interleaved regulator.

Minimal regulator does not increase per-flow delay.

Minimal Interleaved regulator does not increase FIFO system delay.
[Le Boudec 2018] [Le Boudec 2018 — slides]
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Packet Count, Event Stream

Arrival function R(t) = number of bits up to time t
Packet count function P(d) = number of packets in d bits
Event count function E(t) = number of packets up to time t

E(t) = P(R(t)) (event stream)
PL(R (t)) = p! (P (R (t))) (packetizer) [Boyer-Roux 2016]

Theorem: The conditions are equivalent
1. E(t)—E(s) < f(t—s)forany0 <s<t

2. A, — A, = f'(n—m+1)foralll <m < nwhere A,is
arrival date of packet N [Le Boudec-slides 2018]
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Viewpoint

Cumulative functions and daters / marked point process are
complementary viewpoints. One naturally leads to min-plus, the
other to max-plus.

We should be opportunistic and use both (and perhaps other)
representations.

We should strive for results that are independent of the
representation (e.g. delay properties of optimal regulators).
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Tools

e The DiscoDNC# is an academic Java implementation of the network calculus framework.°!

e The RTC Toolbox# is an academic Java/MATLAB implementation of the Real-Time calculus framework, a theory
quasi equivalent to network calculus.!!

e The CyNC# "l tool is an academic MATLAB/Symulink toolbox, based on top of the RTC Toolbox . The tool was
developed in 2004-2008 and it is currently used for teaching at Aalborg university.

e The RTaW-PEGASE & is an industrial tool devoted to timing analysis tool of switched Ethernet network (AFDX,
industrial and automotive Ethernet), based on network calculus.®]

e The Network calculus interpreter& is an on-line (min,+) interpreter.

« The WOPANets & is an academic tool combining network calculus based analysis and optimization analysis.!°!
101
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e DelayLyzer is an industrial tool designed to compute bounds
« DEBORAH® is an academic tool devoted to FIFO networks.[11]
e NetCalBoundse is an academic tool devoted to blind & FIFO tandem networks [121l13]

e The Siemens Network Planner (SINETPLAN®) uses network calculus (among other methods) to help the design of a
PROFINET network.[14]

—h

copied on 2019 Feb 28 from https://en.wikipedia.org/wiki/Network_calculus
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Conclusion

Network calculus main concepts:
arrival curve, minimal service curve and universal bounds
shapers, concatenation
for packet-based systems and for fluid systems.

Some key results are based on existence of minimal or maximal
solutions to functional problems.

Challenges exist for per-class systems.

Fundamental results use min-plus convolution; other techniques
(dater-based) can be useful.
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