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Lecture Plan

O Introduction

Arrival curves, Service curves, Pay Bursts
only Once, IntServ and ATM

1 Shapers, shapers keep arrival constraints

] Packetizers. Fixed Point Theorem and
Residuation.

GR nodes and schedulers.

1 Aggregate Multiplexing and Instability.
Explicit bounds. Diff-Serv

L Optimal Smoothing. Video Playback




A simple example

R(T)

— 10

CBR trunk

bit rate c

1 assume
e R(t) = sum of arrived traffic in [0, t] is known

1 (Reich:) required buffer for a bit rate ¢ is
sup s <+ {R(1) - R(s) - ¢ (t-s)}



What is Network Calculus ?

0 Deterministic analysis of queuing / flow
systems arising in communication networks
1 Abstraction of schedulers

» systems that are not a single queue, Reich's
formula does not apply

d Uses min, max for binary operators and
integrals (min-plus / max-plus algebra)



Examples

1 Pay Bursts only Once

1 Re-Shaping is For Free

ad Minimum Playout Buffer

1 Diff-Serv delay dimensioning
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Arrival and Service Curves

1 Internet integrated services use the
con}aés of arrival eurveand service curves
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*4 bits

R(t) s«
R(t) 3k
Vo 2k

X(t) ”
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R (1)

o
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8 9 10111213 14

Figure 1.4: A Leaky Bucket Controller. The second part of the figure shows (in grey) the level of the
bucket x(t) for a sample input, with » = 0.4 kbits per time unit and b = 1.5 kbits. The packet arriving at
time ¢t = 8.6 is not conformant, and no fluid is added to the bucket. If b would be equal to 2 kbits, then all

packets would be conformant.



arrival ttme || O | 10 | 18 | 28 | 38 | 48 57
tat before arrival || O | 10 | 20 | 30 | 40 | 50 60
result [ c| ¢ | ¢ | ¢ | ¢ | ¢ | non-C
arrtval time || O | 10 15 25 | 35
tat before arrtval || O | 10 20 20 | 30
result | c| ¢ |non-c| ¢ | ¢

10



-
]
4]
L
-
wn

3

IIIIIIIII]I[}IIIIIIIIIII

lip‘ulz .Iﬁl

o1s

L

A cells

6

3

IIIIIIIIIII{]IIIIIIIIIII

time §

lots
L 1 >

11



| (1
bits
>
time
time t
>

Figure 1.3: Example of Constraint by arrival curve, showing a cumulative function E(t) constrained by
the arrival curve «af(t).
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Min-plus convolution ®

A Definition
(f®g)(t)=inf, { f(t-u)+g(u)}

(f ® g) (t)

13



| £c1)

Convolution Example 1
(f®g)(t)=?

R
)
A T ‘

| #(s)

A

(f®g)(1)

/
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Convolution Example 2

A N\ / (f®f)(t)//
f(t) f®f>mf>ﬁ-/ﬂs) 2K
R

T ;'r T ) 2T ;T
(fe®f)(t)=2
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Star-shaped, concave, convex
functions

df is concave
e> V0 <u <1, f(ux+(1-u)y) > uf(x) + (1-
u)f(y)
df is convex
e & -fis concave
f is star-shaped
o> f(t)/t<f(s))s Vs <t
df is concave X f is star-shaped

16



bits |

’

Yr', b(.'.)

S

lope r

Examples

| soeer

Yr,b

1S

time

concave

bits

4k
3k
2k

k

R

ur . (1)

——

T-7 2T-7 3T-7 4T-7 time

IS uy . star-shaped ?
concave ?
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bits |

Examples

S+(t)

delay T time

51 IS
convex

bits
bits |
Br (1)
Slope (rate) R
latency T time

Br 1 IS CONvex
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Examples

bits | Br T(1)+K bits | Br t(1)+K

T time T time

IS B + + K star-shaped ?  is B, + + K" star-shaped ?
concave ? concave ?
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Some properties of min-plus
convolution

J® 1s associative
1® is commutative
d K+ (f®g)=(K+f)®gwhenK is aconstant
Af ® 6+ (t) = f (t-T)
¢ 3;(1)=0fort<Tand d,(t) =0 fort>T

Star-shaped (concave) functions passing through
the origini  f®g=fAg

20



| £c1)

xample 1 (using rules)

f&®g = (K + ;1) ® A,

f =K+ Py = K+ ((3:®1) @)
= K + 6;® A, =K+ 6,9, ®A.))
=K+ (3 ®(h: AR ))
=K+ (6:®A7,)
=K + Br',T
g = A. concave i
with g(0) = O (fSg)(1)
/
K
NJ
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Min-Plus convolution rule for

convex functions

L convex piecewise linear wide-sense
increasing, passing by origin: put segments
end to end with increasing slope

r2
rl

tl

sl

s2

ul

sl

r2
rl

ul ul + t1l
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Example: rate latency function

3+(t) Ae(1)=Rt Br,7(t)
© - Slope (rate) R
Rate R
delay T latency T
51 is convex Mg is convex Br T i convex
(delay (delay function) (rate-latency function)
function)

dwe could also use: f ® &+ (t) = f (t-T)
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We can express arrival curves with

min-plus convolution
L Arrival Curve property means for all 0 < s <
t,
x(t) -x(s) < o(t-s)
<-> x(t)< x(s)+ o(t-s) forall0<s<t
<-> x(t)<inf, { x(u) + o(t-u) }
<->XS X

24



bits |

4

Sub-additive functions

Yr, b(.r)

S

lope r

, | S

S v, Sub-additive ?

time

bits

4k
3k
2k

k

ur . (1)

— &

R

T T-r 2T-7 3T-74T-7 4ime

IS ur . sub-additive ?
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Sub-additive closures ?

BR,T(t)"'K' BR,T(t)*’K"

bits | bits |

T time T time

Bt + K is star-shaped ? By 1 + K" is star-shaped ?
Sub-additive ? Sub-additive ?
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Examples

bits | (BR'T(ﬂ*K.)(Z) bits |
2K’ Br 7(1)+K' e r(1)+K"
R R
K’ (ﬁR,T("')*‘K' )
K" Br 7(1)+K"

T 2T - :
time T 2T time
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(1 /

(R )(1)

time

>

()

time

Figure 1.8: Definition of service curve. The output R* must be above R © [, which is the lower envelope

of all curves t — R(to) + 3(t — to).
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High priority

Ry(1) > Q R* (1) .

R, (t) > rate ¢ R* ()

Low priority

Figure 1.9: Two priority flows (H and L) served with a preemptive head of the line (HOL) service discipline.
The high priority flow is constrained by arrival curve a.
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time

Figure 1.10: Computation of buffer, delay and output bounds for an input flow constrained by one leaky
bucket, served in one node offered a rate-latency service curve. If » < R, then the buffer bound is

xr=b+rT, the delay boundis d =T+ % and the burstiness of the flow is increased by »T'. If r > R, the
bounds are infinite.
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Proposition 1.4.1 (Intserv model, buffer and delay bounds). Consider a VBR flow, with TSPEC (M, p,r.b),

served in a node that guarantees to the flow a service curve equal to the rate-latency function 3 = [Br7. The
buffer required for the flow is bounded by

b— M
p—r

_I_
*u:h—i—*rT—l—( —T) (p— R —p+7]
The maximum delay for the flow is bounded by

M + —%‘_‘E (p— R)*

d = 7 + T
data
A
A
A?
B B.
M .
> time
0 T

Figure 1.11: Computation of buffer and delay bound for one VBR flow served in one Intserv node.
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Pay Bursts Only Once

D1 >t D2 >

a —| B B,
D1 "‘DZS (2b+r‘T1)/R+ T1+ TZ
D

o —|B®P,

D<b/R+T,+T,

end to end delay bound is less



Application: Intserv (RSVP/IP)

Q Intserv arrival curve o(t) = min (pt+M, rt+b)
O Rate-latency service curve B(t) = max(O,R,(t-T;)) for node i, with T;= C/R,
+D, where ¢, D; are router-specific values
d End-to-end service curve is thus B(t) = max(0,R(t-T)) with
R = min; R, and T=X T.=%(C/R+D,)
O Flow set-up: advertizement with PATH message from source (TSPEC
(p.M,rb), computes AD-sSPEC (Z; C; %; D;) along the path)

(p.M,r,b)
Hﬂ \
0 AN
(¢, Dy) X (p.M,r,b)

(C+C, Dy*D,)
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Application: Intserv (RSVP/IP)

O End-to-end delay bound is, if R, = R for all i,

((b-M)/R) max(0,(p-R)/(p-r)) + (M + %; C))/R + £; Dy
O Flow set-up: reservation with RESV message where R is computed so
that end-to-end delay bound <= delay objective.

0

(p.M.r,b)

=

A

(€1 D1)
(p.M,r,b)

\

R

(C1+C2, D;+D,)
R
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IntServ: Re-Shaper Buffer
Dimensioning

if 22 > Tandp >R then M + 200 4 7R

if &2 < T then b + T'r
B =
else M+ Tp
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R*(t
L, L L L R(T
I, +1,+1 '
N T hTh / R (1-)
C(P) 11+113
1
Ty T T3 "

Figure 1.16: A real, variable length packet trunk of constant bit rate, viewed as the concatenation of a
greedy shaper and a packetizer. The input is R(t), the output of the greedy shaper is R*(t), the final
output is the output of the packetizer is R’ (t).
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P*(x)

L(5)

L4 ..

L(3)

L(2)
L(1)

L(1) L(2) L3)L(4) L(5)

Figure 1.17: Definition of function P*.

> x
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R()

R(2)

R(3)

= R(4)

-
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Video
Server
Network
|('F
p
Rit+d) x(1)
Smoother

Client
video
display

_— e

v(t)

B

Rit-D)
Client

playback
buffer

Figure 5.1: Video smoothing over a single network.
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A max-plus model

A x satisfies:
()x>xdoc
(2) x> (R @B )(t-D)
d a max-plus system, , with minimum solution
x* = inf {x0, x!, ..., xi, ...}
X0 (1) = (R @ B )(1-D)
X=x"1gc
Qd thusx=(RIB)%c (t+-D)=R @ (B ® o) (+-D)
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R(t)

(c ® B)(¥)

S
(c ® B)(t)




Deconvolution is the time inverse
of convolution

(4) Invert time again (2) S(1) in inverted time

R(OO}‘ (1) R(T) /ﬁ/ real ti R(;)ﬁ"\f"sﬁ /
RO ( X[ )
>
> S®oc®P
A;\‘

> = N >
T / T

(3) Shape with c ® f3

PN
For

50



Compute
g f

1. rotate g

a(T)/2
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Compute
g f

2. shape by f

(P00 ® f)®
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Compute
g f

3. rotate again

g(T)/2

(@ (P @® f)W)=(D Ho

(D, 2)® f)®
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Shaping Versus Smoothing

x*(t

Optimal
Smoothing

D=0

R(t)

Optimal
Shaping
D>0

R(1)

x(1)

R(t-D)

]

4D>O >
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(

i)

=

microflow /i ( ;, )
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= rate r,
EF aggregate latency ey,
at node m
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Figure 2.7: The bound D (in seconds) in Theorem 2.4.1 versus the utilization factor v for h = 10, e =
glo00B ' = 1000 b, o; = 100B and p; = 32kb/s for all flows, r,, = 149.760Mb/s, and C,,, = +oc (thin

T

line) or C,,, = 2r,, (thick line).
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GR and Service Curve do not Give

Backlog from Delay Bound

backlog
delay
Pi’rs input R(+)
/ output

minimum output

time
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f(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/r

l L(n)/r : I
f(n-1) d(n-1) a(n) f(n) d(n)
| L(n)/r
y
a(n) f(n-1) d(n-1) f(n) d(n)
L(n)/r

I
a(n)d(n-1) f(n-1) f(n) d(n)
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Packet Scale Rate Guarantee

f(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/r

L(n)/r

> »
<« »

i
a(n)d(n-1) f(n-1) f(n) d(n)

Guaranteed Rate
f(n) = max{a(n), f(n-1)I}+ L(n)/r
‘ L(n)/r

y |
a(n)d(n-1) f(n-1) f£(n) 'd(n)
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Delay Bounds with PSRG
versus with 6R node model

1

delay
o 1 MB
e=2 MTU/r ¢ 4
R o 0.4 MB
0.1 MB
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Day 5
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[14] 1. Chlamtac, A. Farago, H. Zhang, and A. Fumagalli. A deterministic approach to the end-to-end analysis
of packet flows in connection oriented networks. IEEE/ACM transactions on networking, (6)4:422-431, 08
1998.

flow j flow i,

node h

node | node f node e

- ¥ I oy AN S S S S T S

flow i

Figure 6.3: The network model and definition of an interference unit. Flows j and i, have an interference
unit at node f. Flows j and i; have an interference unit at node [ and one at node g.
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Nagy  Ng N

Figure 6.6: Derivation of a backlog bound.
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Loss System

Loss L(1)

fresh traffic >L ,
R(t) R'(1) j @ R*(t)

buffer X

d node with service curve A(t) and buffer X
1 when buffer is full incoming data is discarded

J modelled by a virtual controller (not
buffered)

1 fluid model or fixed sized packets
4 Pb: find loss ratio
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Bound on Loss Ratio

d Theorem [Chuang and Cheng]: if R is a.-smooth, then
L(t)/R(t)<1-r
with r = min(1, inf . o [B(t) +X] /a(t))
1 best bound with these assumptions
1 proof:

e R'< Ady where IT is the transformation R' -> R, assumed

isotone and usc (« physical assumptions ») R" is the maximum solution
e define x(1) = r R(%)
» X satisfies the system equation:

X< (X+x®B)Ahp(x)<

e R' is the maximum solution
=> x(t) < R'(t) for all t
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Stochastic Bounds

1 network calculus gives deterministic bounds
on delay and loss

d combine with Hoeffding bounds [1963]:
Assume

* X; are independent and 0 < X, <1
e E(X{*..+ X7) = s is known

then fors<x«<1I
P(X +..+X, >x)£exp—(

xlnx+([—x)1n]_x)
S [—s
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Example: Bound on loss probability

O T independent, stationary sources with identical constraints o,
served in a network element with super-additive service curve f3
[Chang, Vojnovic and L, Infocom 2002]

P(Q>b) < infs{z g(s, 7Sk+1)}

where 0 = sy < sy <.. < s=1, 7t = inf {t: a(t) < B(t) }
and for a(v) - B(u)> b

pa)+b, fu)+b +a(V)—ﬂ(u)—blna(V)—ﬂ(u)—bjj
a(v) OV a(v) a(v)— pv

g(u,v) = exp(— ](

else g(u,v) =0
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O Step 1. reduction to horizon t
O(0) =sup,.. {A(=s,0) = S(s)}
1 Step 2:
Q(0) =max  {sup , ..,  A(=5,0)= F(s)]
<max  {A4(-s,,,,0)— B(s,)}
d Step 3: Hoeffding to each term
A(=54,1,0) = B (s,) = Z A (=54,1,0) = F;(s,)

A (=5,.,0) = B (sp) S . (5,,) — B.(s;)
E{A (=5,,,,0)= (s )< psi o — b (sy)
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P(Q(0)>b)
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. 5. A comparison with Better than Poisson approach. The
input flows are homogeneously regulated. We fix the aggre-
gate arrival curve to a(t) = pt+o with p = acand ¢ = 500
MTU; ¢ = 150 Mbps, e = 0, MTU=1500 Bytes. The
thick lines are for I = 500; the thin lines are for I = 100.
Our bound (a) in (3) is shown as solid line; its homoge-
neous counterpart (Theorem 3 in [9]) as dashed line; and the
asymptotic expansion for M/D/1 [7] as dotted line.
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