ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Network Calculus

Jean-Yves Le Boudec, lecturer Patrick Thiran

Pisa 2003

Lecture Plan

- Introduction

Arrival curves, Service curves, Pay Bursts only Once, IntServ and ATM

- Shapers, shapers keep arrival constraints
- Packetizers. Fixed Point Theorem and Residuation.
GR nodes and schedulers.
\square Aggregate Multiplexing and Instability. Explicit bounds. Diff-Serv
I Optimal Smoothing. Video Playback

A simple example

\square assume

- $R(t)=$ sum of arrived traffic in $[0, \dagger]$ is known - (Reich:) required buffer for a bit rate c is $\sup _{s \leq \dagger}\{R(\dagger)-R(s)-c(\dagger-s)\}$

What is Network Calculus ?

Deterministic analysis of queuing / flow systems arising in communication networks

- Abstraction of schedulers
- systems that are not a single queue, Reich's formula does not apply
\square Uses min, max for binary operators and integrals (min-plus / max-plus algebra)

Examples

- Pay Bursts only Once
- Re-Shaping is For Free
- Minimum Playout Buffer

Diff-Serv delay dimensioning

Day 1

Arrival and Service Curves

Internet integrated services use the concepts of arrival curve and service curves

Figure 1.4: A Leaky Bucket Controller. The second part of the figure shows (in grey) the level of the bucket $x(t)$ for a sample input, with $r=0.4$ kbits per time unit and $b=1.5 \mathrm{kbits}$. The packet arriving at time $t=8.6$ is not conformant, and no fluid is added to the bucket. If b would be equal to 2 kbits, then all packets would be conformant.

arrival time	0	10	18	28	38	48	57
tat before arrival	0	10	20	30	40	50	60
result	c	c	c	c	c	c	non-c

arrival time	0	10	15	25	35
tat before arrival	0	10	20	20	30
result	c	c	non-c	c	c

Figure 1.3: Example of Constraint by arrival curve, showing a cumulative function $R(t)$ constrained by the arrival curve $\alpha(t)$.

Min-plus convolution \otimes

- Definition

$$
(f \otimes g)(t)=\inf _{u}\{f(t-u)+g(u)\}
$$

Convolution Example 2

Star-shaped, concave, convex functions

- f is concave
- $\Leftrightarrow \forall 0 \leq u \leq 1, f(u x+(1-u) y) \geq u f(x)+(1-$ u) $f(y)$
$\square f$ is convex
- $\Leftrightarrow-f$ is concave
$\square f$ is star-shaped
- $\Leftrightarrow f(t) / t \leq f(s) / s \quad \forall s \leq \dagger$
- f is concave $\geqslant f$ is star-shaped

Examples

Some properties of min-plus convolution

$\square \otimes$ is associative
$\square \otimes$ is commutative
$\square+(f \otimes g)=(K+f) \otimes g$ when K is a constant
$\square f \otimes \delta_{T}(t)=f(t-T)$

- $\delta_{T}(t)=0$ for $t \leq T$ and $\delta_{0}(t)=\infty$ for $t>T$
\square Star-shaped (concave) functions passing through the origin: $f \otimes g=f \wedge g$

Min-Plus convolution rule for convex functions

convex piecewise linear wide-sense increasing, passing by origin: put segments end to end with increasing slope

Example: rate latency function

delay T
δ_{T} is convex
(delay
λ_{R} is convex
(delay function) (rate-latency function) function)

\square we could also use: $f \otimes \delta_{T}(t)=f(t-T)$

We can express arrival curves with min-plus convolution

- Arrival Curve property means for all $0 \leq s \leq$ t,

$$
\begin{array}{ll}
& x(t)-x(s) \leq \alpha(t-s) \\
\Leftrightarrow & x(t) \leq x(s)+\alpha(t-s) \text { for all } 0 \leq s \leq t \\
\Leftrightarrow & x(t) \leq \inf _{u}\{x(u)+\alpha(t-u)\} \\
\Leftrightarrow &
\end{array}
$$

Sub-additive functions

time
is $\gamma_{r, b}$ sub-additive?
is $u_{T, \tau}$ sub-additive?

Sub-additive closures?

$\beta_{R, T}+K^{\prime}$ is star-shaped ? Sub-additive?

$\beta_{R, T}+K^{\prime \prime}$ is star-shaped ? Sub-additive?

Examples

Minimum Arrival Curves

Day 2

Figure 1.8: Definition of service curve. The output R^{*} must be above $R \otimes \beta$, which is the lower envelope of all curves $t \mapsto R\left(t_{0}\right)+\beta\left(t-t_{0}\right)$.

Figure 1.9: Two priority flows (H and L) served with a preemptive head of the line (HOL) service discipline. The high priority flow is constrained by arrival curve α.

Figure 1.10: Computation of buffer, delay and output bounds for an input flow constrained by one leaky bucket, served in one node offered a rate-latency service curve. If $r \leq R$, then the buffer bound is $x=b+r T$, the delay bound is $d=T+\frac{b}{R}$ and the burstiness of the flow is increased by $r T$. If $r>R$, the bounds are infinite.

Proposition 1.4.1 (Intserv model, buffer and delay bounds). Consider a VBR flow, with TSPEC (M, p, r, b), served in a node that guarantees to the flow a service curve equal to the rate-latency function $\beta=\beta_{R, T}$. The buffer required for the flow is bounded by

$$
v=b+r T+\left(\frac{b-M}{p-r}-T\right)^{+}\left[(p-R)^{+}-p+r\right]
$$

The maximum delay for the flow is bounded by

$$
d=\frac{M+\frac{b-M}{p-r}(p-R)^{+}}{R}+T
$$

Figure 1.11: Computation of buffer and delay bound for one VBR flow served in one Intserv node.

Pay Bursts Only Once

$$
D_{1}+D_{2} \leq\left(2 b+r T_{1}\right) / R+T_{1}+T_{2}
$$

$$
\begin{aligned}
& D \leq b / R+T_{1}+T_{2} \\
& \text { end to end delay bound is less }
\end{aligned}
$$

Application: Intserv (RSVP/IP)

\square Intserv arrival curve $\alpha(t)=\min (p t+M, r t+b)$
\square Rate-latency service curve $\beta_{i}(t)=\max \left(0, R_{i}\left(t-T_{i}\right)\right)$ for node i, with $T_{i}=C_{i} / R_{i}$ $+D_{i}$ where C_{i}, D_{i} are router-specific values
\square End-to-end service curve is thus $\beta(t)=\max (0, R(t-T))$ with

$$
R=\min _{i} R_{i} \quad \text { and } \quad T=\Sigma_{i} T_{i}=\Sigma_{i}\left(C_{i} / R_{i}+D_{i}\right)
$$

\square Flow set-up: advertizement with PATH message from source (TSPEC ($p, M, r, b)$, computes $\operatorname{AD}-\operatorname{SPEC}\left(\Sigma_{i} C_{i}, \Sigma_{i} D_{i}\right)$ along the path $)$

Application: Intserv (RSVP/IP)

- End-to-end delay bound is, if $R_{i}=R$ for all i,

$$
((b-M) / R) \max (0,(p-R) /(p-r))+\left(M+\Sigma_{i} C_{i}\right) / R+\Sigma_{i} D_{i}
$$

- Flow set-up: reservation with RESV message where R is computed so that end-to-end delay bound <= delay objective.
()

IntServ: Re-Shaper Buffer Dimensioning

$$
B= \begin{cases}\text { if } \frac{b-M}{p-r}<T & \text { then } b+T r \\ \text { if } \frac{b-M}{p-r} \geq T \text { and } p>R & \text { then } M+\frac{(b-M)(p-R)}{p-r}+T R \\ \text { else } & M+T p\end{cases}
$$

Figure 1.16: A real, variable length packet trunk of constant bit rate, viewed as the concatenation of a greedy shaper and a packetizer. The input is $R(t)$, the output of the greedy shaper is $R^{*}(t)$, the final output is the output of the packetizer is $R^{\prime}(t)$.

Figure 1.17: Definition of function P^{L}.

Day 3

Figure 5.1: Video smoothing over a single network.

A max-plus model

$\square \times$ satisfies:

$$
\begin{aligned}
& \text { (1) } x \geq x \varnothing \sigma \\
& \text { (2) } x \geq(R \varnothing \beta)(t-D)
\end{aligned}
$$

\square a max-plus system, with minimum solution $x^{\star}=\inf \left\{x^{0}, x^{1}, \ldots, x^{i}, \ldots\right\}$

$$
\begin{aligned}
& x^{0}(t)=(R \varnothing \beta)(t-D) \\
& x^{i}=x^{i-1} \varnothing \sigma
\end{aligned}
$$

\square thus $x=(R \varnothing \beta) \varnothing \sigma(t-D)=R \varnothing(\beta \otimes \sigma)(t-D)$

Deconvolution is the time inverse of convolution

(4) Invert time again bits
$R(\infty)$
$R \varnothing(\sigma \otimes \beta)$
(1) $R(t)$ in real time
(2) $S(t)$ in inverted time bits .

$$
R(\infty) \quad S(\dagger)
$$

$R(t) \quad{ }^{+1} \cdot$ (3) Shape with $\sigma \otimes \beta_{\top}$

Compute $g \varnothing f$

1. rotate g

Compute
$g \varnothing f$

2. shape by f

Compute
$g \varnothing f$

3. rotate again

Shaping Versus Smoothing

Day 4

« Instability of FIFO in Session-Oriented Networks » Matthew Andrews

Bell Labs SODA 2000

Figure 1: Subnetwork E.

Figure 2.7: The bound D (in seconds) in Theorem 2.4.1 versus the utilization factor ν for $h=10, e=$ $2 \frac{1500 B}{r_{m}}, L_{\max }=1000 \mathrm{~b}, \sigma_{i}=100 \mathrm{~B}$ and $\rho_{i}=32 \mathrm{~kb} / \mathrm{s}$ for all flows, $r_{m}=149.760 \mathrm{Mb} / \mathrm{s}$, and $C_{m}=+\infty$ (thin line) or $C_{m}=2 r_{m}$ (thick line).

GR and Service Curve do not Give Backlog from Delay Bound

$f(n)=\max \{a(n), \min [d(n-1), f(n-1)]\}+L(n) / r$

Packet Scale Rate Guarantee $f(n)=\max \{a(n), \min [d(n-1), f(n-1)]\}+L(n) / r$

Guaranteed Rate
$f(n)=\max \{a(n), f(n-1)]\}+L(n) / r$

Delay Bounds with PSRG versus with GR node model

Day 5

[14] I. Chlamtac, A. Faragó, H. Zhang, and A. Fumagalli. A deterministic approach to the end-to-end analysis of packet flows in connection oriented networks. IEEE/ACM transactions on networking, (6)4:422-431, 08 1998.

Figure 6.3: The network model and definition of an interference unit. Flows j and i_{2} have an interference unit at node f. Flows j and i_{1} have an interference unit at node l and one at node g.

Figure 6.6: Derivation of a backlog bound.

Loss System

node with service curve $\beta(t)$ and buffer X
\square when buffer is full incoming data is discarded
\square modelled by a virtual controller (not buffered)
\square fluid model or fixed sized packets

- Pb: find loss ratio

Bound on Loss Ratio

\square Theorem [Chuang and Cheng]: if R is α-smooth, then

$$
L(t) / R(t) \leq 1-r
$$

with $r=\min \left(1, \inf { }_{t \geq 0}[\beta(t)+X] / \alpha(t)\right)$
\square best bound with these assumptions
\square proof:

- $R^{\prime} \leq\left(X+\Pi\left(R^{\prime}\right)\right) \wedge h_{R}\left(R^{\prime}\right) \wedge \delta_{0}$ where Π is the transformation $R^{\prime}->R$, assumed isotone and usc (« physical assumptions») R^{\prime} is the maximum solution
- define $x(t)=r R(t)$
- x satisfies the system equation:
$x \leq(X+x \otimes \beta) \wedge h_{R}(x) \leq(X+\Pi(x)) \wedge h_{R}(x)$
- R^{\prime} is the maximum solution
$\Rightarrow x(t) \leq R^{\prime}(t)$ for all \dagger

Stochastic Bounds

network calculus gives deterministic bounds on delay and loss
combine with Hoeffding bounds [1963]: Assume

- X_{i} are independent and $0 \leq X_{i} \leq 1$
- $E\left(X_{1}+\ldots+X_{I}\right)=s$ is known
then for $s<x<\mathrm{I}$
$P\left(X_{1}+\ldots+X_{I}>x\right) \leq \exp -\left(x \ln \frac{x}{s}+(I-x) \ln \frac{I-x}{I-s}\right)$

Example: Bound on loss probability

- I independent, stationary sources with identical constraints σ_{i} served in a network element with super-additive service curve β [Chang, Vojnovic and L, Infocom 2002]

$$
P(Q>b) \leq \inf _{\underline{s}}\left\{\sum_{k} g\left(s_{k}, s_{k+1}\right)\right\}
$$

where $0=s_{0}<s_{1}<\ldots<s_{K}=\tau, \quad \tau=\inf \{t: \alpha(t) \leq \beta(t)\}$
and for $\alpha(v)-\beta(u)>b$
$g(u, v)=\exp \left(-I\left(\frac{\beta(u)+b}{\alpha(v)} \ln \frac{\beta(u)+b}{\rho v}+\frac{\alpha(v)-\beta(u)-b}{\alpha(v)} \ln \frac{\alpha(v)-\beta(u)-b}{\alpha(v)-\rho v}\right)\right)$
else $g(u, v)=0$

- Step 1: reduction to horizon τ

$$
Q(0)=\sup _{s \leq \tau}\{A(-s, 0)-\beta(s)\}
$$

- Step 2:

$$
\begin{gathered}
Q(0)=\max _{k}\left\{\sup _{s_{k} \leq s \leq s_{k+1}} A(-s, 0)-\beta(s)\right\} \\
\leq \max _{k}\left\{A\left(-s_{k+1}, 0\right)-\beta\left(s_{k}\right)\right\}
\end{gathered}
$$

\square Step 3 : Hoeffding to each term

$$
\begin{gathered}
A\left(-s_{k+1}, 0\right)-\beta\left(s_{k}\right)=\sum_{i} A_{i}\left(-s_{k+1}, 0\right)-\beta_{i}\left(s_{k}\right) \\
A_{i}\left(-s_{k+1}, 0\right)-\beta_{i}\left(s_{k}\right) \leq \alpha_{i}\left(s_{k+1}\right)-\beta_{i}\left(s_{k}\right) \\
E\left\{A\left(-s_{k+1}, 0\right)-\beta\left(s_{k}\right)\right\} \leq \rho s_{k+1}-\beta\left(s_{k}\right)
\end{gathered}
$$

5. A comparison with Better than Poisson approach. The input flows are homogeneously regulated. We fix the aggregate arrival curve to $\alpha(t)=\rho t+\sigma$ with $\rho=\alpha c$ and $\sigma=500$ MTU; $c=150 \mathrm{Mbps}, e=0$, MTU=1500 Bytes. The thick lines are for $I=500$; the thin lines are for $I=100$. Our bound (a) in (3) is shown as solid line; its homogeneous counterpart (Theorem 3 in [9]) as dashed line; and the asymptotic expansion for M/D/1 [7] as dotted line.

