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Lecture Plan
 Introduction

Arrival curves, Service curves, Pay Bursts 
only Once, IntServ and ATM

 Shapers, shapers keep arrival constraints
 Packetizers. Fixed Point Theorem and 

Residuation. 
GR nodes and schedulers.

 Aggregate Multiplexing and Instability. 
Explicit bounds. Diff-Serv

 Optimal Smoothing. Video Playback
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A simple example

 assume 
R(t) = sum of arrived traffic in [0, t] is known

 (Reich:) required buffer for a bit rate c  is 
sup s  t {R(t) - R(s) - c (t-s)}

CBR trunk

bit rate c

XR(t)
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What is Network Calculus ?
 Deterministic analysis of queuing / flow 

systems arising in communication networks
 Abstraction of schedulers

systems that are not a single queue, Reich’s 
formula does not apply

 Uses min, max for binary operators and 
integrals (min-plus / max-plus algebra)
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Examples
 Pay Bursts only Once
 Re-Shaping is For Free
 Minimum Playout Buffer
 Diff-Serv delay dimensioning
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Day 1
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Arrival and Service Curves

 Internet integrated services use the 
concepts of arrival curve and service curves
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Min-plus convolution 
 Definition

(f  g) (t) = infu { f(t-u) + g(u) }

t

f(t)

g(t)

(f  g)(t)
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Convolution Example 1
(f  g) (t) = ?

t
T

f(t)

R
K

s

f(s)

t

g(t)

r
t

g(t-s)
(fg)(t)

tT

(fg)(t)

r
K
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Convolution Example 2

(f  f) (t) = ?
tT

f(t)

R
K’

s

f(s)

t

f(t-s)(ff)(t)

t2T

R

2K’

(ff)(t)
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Star-shaped, concave, convex 
functions

f is concave 
  0  u  1, f (ux + (1-u)y)  uf(x) + (1-
u)f(y)

f is convex 
 -f is concave 

f is star-shaped 
 f(t)/t  f(s)/s    s  t

f is concave  f is star-shaped
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Examples

r,b is 
concave

time

bits

b
slope r

r,b(t)

time

bits

k

uT,(t)

2k
3k
4k

is uT, star-shaped ?
concave ?

T- 2T- 3T- 4T-
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Examples

T is 
convex

time

bits

delay T

T(t)

bits

R,T is convex

time

bits

latency T

R,T(t)

Slope (rate) R
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Examples

time

bits

T

R,T(t)+K’

R

K’

time

bits

T

R,T(t)+K’’

R

K’’

is R,T + K’ star-shaped ? 
concave ?

is R,T + K’’ star-shaped ?
concave ?
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Some properties of min-plus 
convolution

 is associative
 is commutative
 K + (f  g) = (K + f)  g when K is a constant
f  T (t) = f (t-T)

T (t) = 0 for t  T and 0 (t) =  for t > T
Star-shaped (concave) functions passing through 

the origin: f  g = f  g



21

Example 1 (using rules)

t
T

f(t)

R
K f = K + R,T

= K + T  R

fg = (K + T  R)  r 
= K + ((T  R)  r)
= K + (T  (R  r ))
= K + (T  (R  r ))
= K + (T  r )
= K + r,T

t

g(t)

r

g = r concave
with g(0) = 0

t
T

(fg)(t)

r
K
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r1

r2

s1

s2

u1

 =

t1

Min-Plus convolution rule for 
convex functions

 convex piecewise linear wide-sense 
increasing, passing by origin: put segments 
end to end with increasing slope

s1

u1

r1

u1 + t1

r2
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Example: rate latency function

T is convex
(delay 

function)

R,T is convex
(rate-latency function)

latency T

R,T(t)

Slope (rate) R


delay T

T(t)



R(t)=Rt

Rate R

R is convex
(delay function)

we could also use: f  T (t) = f (t-T)
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We can express arrival curves with 
min-plus convolution

 Arrival Curve property means for all 0  s 
t, 

x(t) -x(s)  (t-s)
<-> x(t)  x(s) + (t-s) for all 0  s  t
<-> x(t)  infu { x(u) + (t-u) }

<-> x  x 
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Sub-additive functions

is r,b sub-additive ?

time

bits

b
slope r

r,b(t)

time

bits

k

uT,(t)

2k
3k
4k

is uT, sub-additive ?

T- 2T- 3T- 4T-
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Sub-additive closures ?

time

bits

T

R,T(t)+K’

R

K’

time

bits

T

R,T(t)+K’’

R

K’’

R,T + K’ is star-shaped ? 
Sub-additive ?

R,T + K’’ is star-shaped ?
Sub-additive ?
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Examples

time

bits

T

R,T(t)+K’
R

K’

time

bits

T

R,T(t)+K’’
R

K’’

2T

2K’

R,T(t)+K’)(2)

R,T(t)+K’)(2)

2T

R,T(t)+K’’

R,T(t)+K’
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Minimum Arrival Curves



R R
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Day 2
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Pay Bursts Only Once



D1 D2

 

D

 

D  b /R + T1 + T2

end to end delay bound is less

D1 +D2  (2b + rT1)/ R + T1 + T2
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Application: Intserv (RSVP/IP)

 Intserv arrival curve (t) = min (pt+M, rt+b) 
 Rate-latency service curve i(t) = max(0,Ri(t-Ti)) for node i, with Ti = Ci/Ri 

+Di where Ci, Di are router-specific values
 End-to-end service curve is thus (t) = max(0,R(t-T)) with

R = mini Ri and     T = i Ti = i (Ci /Ri +Di )
 Flow set-up: advertizement with PATH message from source (TSPEC

(p,M,r,b), computes AD-SPEC (i Ci, i Di ) along the path) 

(p,M,r,b)

(p,M,r,b)

(p,M,r,b)
( )

(C1, D1 )

(C1+C2, D1+D2)
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Application: Intserv (RSVP/IP)

 End-to-end delay bound is, if Ri = R for all i, 
((b-M)/R) max(0,(p-R)/(p-r)) + (M + i Ci)/R + i Di

 Flow set-up: reservation with RESV message where R is computed so 
that end-to-end delay bound <= delay objective.

(p,M,r,b)

(p,M,r,b)

(p,M,r,b)

( )

(C1, D1 )

(C1+C2, D1+D2)

R

R

R
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IntServ: Re-Shaper Buffer 
Dimensioning
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Day 3
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A max-plus model
 x satisfies:

(1) x  x Ø 
(2) x  (R Ø  )(t-D)

 a max-plus system, , with minimum solution  
x* = inf {x0, x1, ..., xi, ...}

x0 (t) = (R Ø  (t-D) 
xi = xi-1 Ø 

 thus x = (R Ø  ) Ø  (t-D) = R Ø (  ) (t-D)
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Example

R(t)R(t)

 (t) (t)

-50               0               50              100            150             200            250            300            350           400           450

Frame #

5

4

3

2

1

* 106

R  ( )R  ( )

minimum value of Dminimum value of D
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Back to our example
D=h(R, )D=h(R, )

 (t) (t)
R(t)R(t)

-50               0               50              100            150             200            250            300            350           400           450

Frame #

5

4

3

2

1

* 106
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100 200 300 400

2000
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6000

8000

10000 R(t)

100 200 300 400
10
20
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40
50
60
70

 t
D = 435 ms

100 200 300 400

2000

4000

6000

8000

10000

100 200 300 400
10
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40
50
60
70

 t

D = 102 ms
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Deconvolution is the time inverse 
of convolution

(1) R (t) in real time(1) R (t) in real time
(2) S(t) in inverted time(2) S(t) in inverted time

(3) Shape with  

 

(4) Invert time again(4) Invert time again
bits

R()

TR(t)

bits

R()

T

S(t)

S   
R  ( )
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Compute 
g  f

1. rotate g
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Compute 
g  f

2. shape by f 
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Compute 
g  f

3. rotate again
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Shaping Versus Smoothing

R(t)

(t)

Optimal
Smoothing

D=0
R(t)

Optimal
Shaping

D > 0

D > 0

x*(t) x(t)

R(t-D)
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Day 4
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« Instability of FIFO in 
Session-Oriented 

Networks »
Matthew Andrews

Bell Labs
SODA 2000
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GR and Service Curve do not Give 
Backlog from Delay Bound

Dmax

time

bits input R(t)

minimum outputoutput

backlog
delay
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f(n-1) d(n-1)a(n)

f(n) d(n)

L(n)/r

f(n-1) d(n-1) a(n)

f(n) d(n)

L(n)/r

f(n-1)d(n-1)a(n) f(n) d(n)

L(n)/r

f(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/rf(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/r
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f(n) = max{a(n), f(n-1)]}+ L(n)/rf(n) = max{a(n), f(n-1)]}+ L(n)/r

f(n-1)d(n-1)a(n) f(n) d(n)

L(n)/r

f(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/rf(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/r

f(n-1)d(n-1)a(n) f(n) d(n)

L(n)/r

Guaranteed Rate

Packet Scale Rate Guarantee
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Delay Bounds with PSRG
versus with GR node model

0.05 0.1 0.15 0.2 0.25

0.2

0.4

0.6

0.8

1



delay

1 MB

0.4 MB
0.1 MB

h=10
e = 2 MTU/r 
r=150 Mb/s 

C=5R
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Day 5
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Loss System

 node with service curve (t) and buffer X
 when buffer is full incoming data is discarded 
 modelled by a virtual controller   (not

buffered)
 fluid model or fixed sized packets
 Pb: find loss ratio

fresh traffic
R(t)

buffer X

Loss L(t)


R’(t) R*(t)
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Bound on Loss Ratio
 Theorem [Chuang and Cheng]: if R is -smooth, then 

L(t)/R(t)  1 - r
with r = min(1, inf t  0 [(t) +X] /(t))

 best bound with these assumptions
 proof: 

R’  (X + (R’))  h R(R’) 0 where  is the transformation R’ -> R, assumed 
isotone and usc (« physical assumptions ») R’ is the maximum solution
define x(t) = r R(t)
x  satisfies the system equation:
x  (X + x )  h R(x)  (X + (x))  h R(x) 
R’ is the maximum solution
=> x(t)  R’(t) for all t
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Stochastic Bounds
 network calculus gives deterministic bounds 

on delay and loss
 combine with Hoeffding bounds [1963]: 

Assume
Xi are independent and 0  Xi  1
E(X1+…+ XI) = s is known

then for s < x < I
  












sI
xIxI

s
xxxXXP I lnlnexp)...( 1
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Example: Bound on loss probability
 I independent, stationary sources with identical constraints i  

served in a network element with super-additive service curve 
[Chang, Vojnovic and L, Infocom 2002

where 0 = s0 < s1 <… < sK=,    = inf {t: (t)  (t) } 

and for (v) - (u) > b

else g(u,v) = 0







  ),(inf)( 1k
k

ks ssgbQP

























vv
buv

v
buv

v
bu

v
buIvug













)(
)()(ln

)(
)()()(ln

)(
)(exp),(
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 Step 1: reduction to horizon 

 Step 2:

 Step 3 :  Hoeffding to each term 

)}()0,({sup)0( ssAQ s   

)}()0,({supmax)0(
1

ssAQ
kk sssk 


)}()0,({max 1 kkk ssA  

  
i

kikikk ssAssA )()0,()()0,( 11 

)()()()0,( 11 kikikiki ssssA   

)()}()0,({ 11 kkkk ssssAE   
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