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What is Network Calculus ?

[ Deterministic analysis of queuing / flow systems arising
in communication networks

dUses Min-Plus, Max-Plus and sometimes Min-Max
algebra
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The standard Linear Theory

+—ANA—— +
xt) B Ty

QA LTI filter in conventional algebra (R, +, x)
0 Input signal = electrical voltage x(t)
0 System = circuit (filter) with impulse response f(t)

0 Output = convolution of x(t) and A(t) :
y(t) =/ B(t-s) x(s) ds
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Network Calculus uses Min-Plus Linear
Theory

CBR shaper

(1) - | -y
— bit rate ¢

A linear system in min-plus algebra (R, min, +)
0 Input = arrived traffic in [O,t], x(t)
0 System = CBR trunk of rate ¢ : f(t) = ct

0 Output = convolution of x(t) and A(t):
y(t) inf {A(t-s)+ x(s) }

© Jean-Yves Le Boudec and Patrick Thiran



Two key Concepts
Arrival and Service Curves

dIntServ and DiffServ use the concepts of arrival curve
and service curves

E;

o
o
o
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Cumulative flows

d Cumulative flow R(t) € F, t real or integer
U F={ x(t) | x(t) is non decreasing and x(t) = O for t <0 }
d Examples:

bits bits bits
T RI(t) I R2(t) TR3(t)
—‘ XXX
1207 timet ' °*° timet 1% °°  fimet
Fluid model (continuous) Packet model Discrete-time model
(left continuous) (left continuous)
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Example
OMPEG files, 25 frames/sec
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Arrival Curves

dArrival curve a: For any times 0 <s<t, the
cumulative flow R(.) satisfies

R(t) -R(s) < o(t-s)
Example 1: affine arrival curvey, ,
a(t) = v, p(t) = rt+b for t>0

bits |
slope r R(1)
b /

time

|
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Arrival Curves

Example 2: stair arrival curve kv,

Qo(t)= kv (t)= k /(t+7)/T /with T = period, r = tolerance, k
= constant packet size

O Characterizes flows that are periodic stream of packe’rs of
same size k (cells), that suffers a variable delay <=

O All packets of size k. Then bits | Kvr.:(t) = k/_(t+f)/T7

R conforms to o =kvr, m

&R conforms to o = ¥, ,, 3k
with r= k/Tand b = k(=+T)/T

2k —

k—c

T T-r 2T-7 3T-7
time
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Leaky bucket

HAll packets of flow R are declared conformant by
a leaky buket controller of rate r and size b

< R conforms to a(t) = v, ,(t) = rt+b for t>0

Yeb R(t) . 1R®)
]

slope r

| dwer

e

b

x(1)
x(1) | .
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GCRA (T, 7)
A All packets (cells) of flow R are of the same size k
4 Arrival time of nth= A,
[ Theoretical arrival just after nth arrival is 6, = max(A,,6,1) + T
dIf A, >=6,- rthen cell is conformant, otherwise not

Example: GCRA (10,2)
n 1 2 3 3 4 5

6.1 O 11 21 21 31 41
A, 1 11 16 20 29 38
C C nc C C nc

Equivalences: R conforms to GCRA (T,7)

< R conforms to staircase arrival curve o = kv,
& R conforms to leaky bucket (r = k/T, b = k(+T)/T)

& R conforms to affine arrival curve o=y,

© Jean-Yves Le Boudec and Patrick Thiran



Combining leaky buckets

dstandard arrival curve in the Internet (A = min)
a(u) = min (pu+M, ru+b) = (pu+M) A(ru+b)

bits | bits 1
slope r
b / b -
time M

-» > ? |
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Sub-additivity and arrival curves

JIf «is anarrival curve for flow R, so is &

da(t) < aft)

d What is o(t) ?

J The answer uses min-plus convolution and sub-additivity

ot) ao(t) .
3k — 3k fﬁ
2k —— 2k

T 2T 3T 4T T 2T 3T 4T
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Min-plus convolution ®

dDefinition
(f®g) (t)=inf, { f(t-u)+g(u)}

g(t)

(f ® g) ()

© Jean-Yves Le Boudec and Patrick Thiran
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[ ¢ Example
(f®g)(t)=7
K
; I /
A (f®g)(1-) / ...............
g(t) - o(t-5) K+|t2
r \
b/ il'._bs;

1-

© Jean-Yves Le Boudec and Patrick Thiran
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Some properties of min-plus convolution

d(f®g) e F
1 ® i1s associative

d ® 1s commutative

d Neutral element: §,: f®§, = f
(6,(t) =0 fort=0and 5,(t) = « for t > 0)

1 ® is distributive with respect to min (A)

d®isisotone: f<f and g<g'=>f®g<f®g

d Functions passing through the origin (f(0) = g(0) = 0):
f®g<fnag

[ Concave functions passing through the origin:
f®g=fnrg

[ Convex piecewise linear functions: f ® g is the convex

piecewise linear function obtained by putting end-to-end all
linear pieces of f and g, sorted by increasing slopes

© Jean-Yves Le Boudec and Patrick Thiran
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Example: rate latency function

4
A A r

5+(1) Ae(t)=Rt B, 7(t)
X —
Slope (rate) R
Rate R
-tf > > —
delay T latency T
3t is convex Mg iS convex Br T IS convex

(delay function) (delay function) (rate-latency function)
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“ Example bis (using rules)
f(t)
f®¥g = (K +5:®%) v,
. = K+ ((3;®2) @)
K LR K (5 ® (e ®,)
T 2K (380 At )
T -1 =K+ (0: Q%) A(B:®Y,,)
u = K + Bar A (5 ® 1, +b)
g(t) g = Vb = K "' Br.r A (Bt *+b)
=8, A (A.+b)
r conocave with (Fog)(t)
0)=0 r
b/ g( ) K+b | /
L . K R
1-
. |

© Jean-Yves Le Boudec and Patrick Thiran T
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We can express arrival curves with min-
plus convolution

L Arrival Curve property means forall 0 <s<t,
x(t) -x(s) < a(t-s)
& x(t)< x(s)+ o(t-s)forall0<s<t
o x(t)<inf, { x(u) + a(t-u) }
@ X<IX®a

© Jean-Yves Le Boudec and Patrick Thiran



Sub-additive function

df is sub-additive < f (t) + f(s) > f(t+s)
df is concave with f(0) = 0 = f is sub-additive
0 f is sub-additive X f is concave

1 f,g are sub-additive and pass through the origin
(f(0)=9g(0)=0) = f® gis sub-additive

© Jean-Yves Le Boudec and Patrick Thiran
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Examples

bits |
bo1_ 4 VT,’C (1.)
ITS
Yr (1) |
. 4k —e
3k >

slope r

k—c

4 > o >
time T T-t 2T-7 3T-7 +time

vr . iS hot concave, but

i ve : g
Yrb IS CONCA is sub-additive
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Sub-additive closure

Qf=inf {8, f.fOF, fOFf®F,.}
dfis sub-additive with f(0)=0
df is sub-additive with f(0) =0 & f=f & f=f®f

© Jean-Yves Le Boudec and Patrick Thiran
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Examples

(Br T(H)+KX2)

BR,T(*)"‘K"

T 2T time T 2T time

© Jean-Yves Le Boudec and Patrick Thiran

bits | (Br.r()*+K)2 bits |
1)+K"
2K’ /BR,T(*)"'K' 2 Pr.r()
R
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Sub-additivity and arrival curves

OWhat is o(t) ?

0 « can be replaced by its sub-additive closure «.

OO From now on: we will always take sub-additive arrival
curves passing through the origin.

bits , .
4K a(t) N a(t) /7

3k —*

2k — /

k

T 2T 3T 4T T 2T 3T 4T
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Minimal arrival curve

[0 If the only available information on a flow is obtained
from measurements, i.e if we only know R, how can we
compute its minimal arrival curve «?

[0 The answer uses min-plus deconvolution

3
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Min-plus deconvolution @

dDefinition
(f @ g)(t)=sup, { f(t+u) - g(u)}

(£ O g) (t)

© Jean-Yves Le Boudec and Patrick Thiran
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Some properties of min-plus deconvolution

Jd(f J g) # Fin general

A(f D f) e F

A(f O f) is sub-additive with (f & f) (0) = 0
A(f@g)Ph=f(g® h)

JDuality with® : fdg<h< f<g®h

© Jean-Yves Le Boudec and Patrick Thiran



Minimal arrival curve

0 The minimal arrival curve of flowRis =R 7 R.
OProof:
0 It is an arrival curve because
R(t) - R(s) = R((t-s)+s) - R(s)
<sup, { R((t-s)+u) - R(u) } = (RD R) (t-s)
e If o' is another arrival curve for flow R, then R< R ® o'
S RODR<L o' sothat a<a'.

© Jean-Yves Le Boudec and Patrick Thiran
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Example

OMPEG files, 25 frames/sec
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Greedy shaper

Shaper

R(t) — x(t)
> . | >

o)

Definition of Greedy shaper

O forces output to be constrained by arrival curve
x(t) - x(s) < ot - s)

0 stores data in a buffer if needed

0 Hence the shaper maximises x(t) such that
x(t) < R(t)
x(t)< (x®o)(t)

© Jean-Yves Le Boudec and Patrick Thiran
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Output of a Greedy shaper

Shaper

R(t) — x(t)
> . | >

JIf ois sub-additive and 0(0)=0, x = R® o
1Proof:
0X=R® oisasolution because
x=R® o< R since o(0)=0
X=R®c=R®(0c®0c)=(R®c)®0c=xQ 0

e If x'is another solution then X< Rand x '< x' ® &.

Combining the two and using isotonicity of ®
X'<X ®c<R®oc=X

© Jean-Yves Le Boudec and Patrick Thiran
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Greedy shaper =

linear min-plus filter

QA Standard convolution in (R, x, +) (LTI filter)

y(t) = (o *x)(t) = / o(t-u) x(u) du
+ AN
x(1) s(t) T—  Y()

L Min-plus convolution in (R, +, A) is linear (A = min)

Y(t) = (0® x) (t) = inf, { o(t-u)+ x(u)}

—

X

(O— v

© Jean-Yves Le Boudec and Patrick Thiran
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What is done by shaping cannot be
undone by shaping

Shaper

R(t) —— x (t)
. . —

o-smooth —— S

[ Suppose that R(t) is constrained by arrival curve ¢ :\R<R® «.
QA Thenx=R®c<(R®a)®c=R® (¢® c)<R® a since o(0)=0.
1 Therefore shaping keeps arrival constraints.

A In fact, the output flow has ¢ ® oas arrival curve

© Jean-Yves Le Boudec and Patrick Thiran
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Packetization

1 The shaper presented before is for constant size
packets or ideal fluid systems

Real life systems are modelled by adding a packetizer
transforms fluid input into packets of size Iy, I,, I3, ...

) N
L 1L I, 11, R*(t
[N "M
#_m > L+ L+ T R'(1)
1, +1,
constant rate server 1
greedy shaper o(t)=ct T T T3

+ packetizer

dPacketizer adds some distortion, well understood

© Jean-Yves Le Boudec and Patrick Thiran
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Goal of Service Curve and GR node
definitions

ddefine an abstract node model
dindependent of a specific type of scheduler

Uapplies to real routers, which are not a single
scheduler, but a complex interconnection of delay and

scheduling elements
Qapplies to nodes that are not work-conserving

© Jean-Yves Le Boudec and Patrick Thiran



Service Curve

dSystem S offers a (minimal) service curve 3 to a flow
iff for all t there exists some s such that

(t) - x(s) = p(t-s)

y(t)
/ X(s)
= \ ;

© Jean-Yves Le Boudec and Patrick Thiran
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40
The constant rate server has service curve

B(t)=ct

buffer | ct

S t 0

Proof: take s = beginning of busy period:
y(t) - y(s) = c (t-s) and y(s) = x(s)
-> Y(t) - x(s) =c(t-s)

© Jean-Yves Le Boudec and Patrick Thiran
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The service curve of a Greedy shaper
is its shaping curve

Shaper

x (k) —— (t)
- . Iy .

UIf ois sub-additive and o(0) =0, y(t) = (x® o) (t).

1 The service curve of a shaper is thus o

© Jean-Yves Le Boudec and Patrick Thiran



The guaranteed-delay node has
service curve Ot

Sr (t)

1.

0 T

seconds
_ .
Function 5

© Jean-Yves Le Boudec and Patrick Thiran
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The standard model for an
Internet router

drate-latency service curve

| bits

seconds

© Jean-Yves Le Boudec and Patrick Thiran
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We can express service curves with min-
plus convolution

1 Service Curve guarantee means there exists some
O<s<t: y(t)-x(s) =p(t-s)
< y(t) > x(s) + B(t-s) for some 0 <s<t
& y(t) zinf, { x(u)+p(t-u)}
Cy2x3

© Jean-Yves Le Boudec and Patrick Thiran
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Tight Bounds on delay and backlog

If flow has arrival curve o and node offers service curve
B then

Qdbacklog < sup (a(s) -p(s)) = (o @ B)O) = v(a., B)
ddelay <inf {s>0: (o g B)(-s)<0}=h(a, B)

© Jean-Yves Le Boudec and Patrick Thiran



The composition theorem

dTheorem: the concatenation of two network
elements each offering service curve B, offers the
service curve ; ® B,

© Jean-Yves Le Boudec and Patrick Thiran
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dtandem of routers

R1

2

Example

T1l

R2

© Jean-Yves Le Boudec and Patrick Thiran
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Pay Bursts Only Once

D1 >le DZ >

o —| P B,
D1 +DZ < (Zb + RTI)/ R + Tl + TZ
D

o —|PB;®f,

D<b/R+T;+T,

end to end delay bound is less

© Jean-Yves Le Boudec and Patrick Thiran
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Re-shaping is for free

end-to-end
— B . B, — service curve
X
© Shaper ﬂl ,32
0|L By " . c|5>0L B B Qo P,

[ Re-shaper is added to re-enforce some fraction of the original
constraint

A Delay for original system = h(«, ,® £,)
A For system with re-shaper = h(a, £,® c®p,) = h(a, c® B, ®p,)

0 Now h(a, o® §, ®4) = h(a, § ©4,)
interpretation: put re-shaper before node 1; it is transparent
formal proof uses delay = inf {d: a @(8® 3,) (-d)< 0}

1 Therefore delay bound for both systems are equal

© Jean-Yves Le Boudec and Patrick Thiran



Guaranteed Rate node

dAn alternative definition to service curve for
FIFO

0 for rate-latency service curves only

dDefinition (Goyal, Lam, Vin; Chang):
a hode is GR(r,e) if
D(n) <F(n)+e
F(n) = max{A(n), F(n-1)} + L(n)/r
D(n) : departure time for packet n
A(n) : arrival time
F(n) : virtual finish time, F(0) = 0
L(n) : length in bits for packet n

© Jean-Yves Le Boudec and Patrick Thiran

50



F(n) = max{A(n), F(n-1)} + L(n)/r

l L(n)/r : ‘

51

F(n-1) D(n-1) A(n) F(n) D(n)
L(n)/r

| « . ‘
y

A(n) F(n-1) D(n-1) F(n) D(n)

© Jean-Yves Le Boudec and Patrick Thiran
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GR is equivalent to rate-latency
service curve -- for FIFO per flow

U GR(r,e) is equivalent to
D(n) < max,,[A(K) + (L(K) + ... + L(n))/r]+e
0 max-plus analog to service curve
dTheorem (equivalence for FIFO per flow nodes):

0 a GR node is a service curve element with rate-latency service
curve (r,e) followed by a packetizer

0 conversely, consider a node which is FIFO per flow and

serves entire packets. If it has the rate-latency service
curve (R,T) then it is GR(R,T).

dFIFO per flow is true in IntServ context

© Jean-Yves Le Boudec and Patrick Thiran



Properties of GR nodes

(FIFO per flow or not)

ddelay bound = h(a, B)
Drmax= € + sup[a(t)/r-1]

bITS +)

Diax= € + sup(a(t)/r-1)

Time

for FIFO per flow nodes = delay at service curve element
(packetizer does not add per-packet delay)

O backlog bound = v(a, B) + Ly
Brax= SUP[a(T)-R(T-T)"] + Lyyox

© Jean-Yves Le Boudec and Patrick Thiran
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Modelling a node with GR

dqueue with rate C: R=C, T=0
dpriority queue with rate ¢: R=C, T=L, . /C

Jelement with bounded delay d: R = o0, T=d
Jand combine these elements

© Jean-Yves Le Boudec and Patrick Thiran
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Concatenation of GR nodes

AFIFO per flow nodes: apply service curve rule

_________________________________________________

4— GR(r;.eq) GR(r,.e,) —-— = GR(r e)

_________________________________________________

r = min(ry,r,)
€=-¢g *tey+ Lmax/r'l

dnon FIFO per"fIOW: not true (LeBoudec Charny, Infocom 2002)

© Jean-Yves Le Boudec and Patrick Thiran
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Core-Stateless

dImagine routers can maintain flow state information
and offer per flow guarantees

Edge
router
A - D A, Dy
o, . | l(n)’ GR(r.e) Da(n) = An), GR(r,e)—Z(T) ...hl@»GR(r',e)—»hl(n)

r

g rate-based routers GR(O,r): A,(n) = max(A.(n), A(n-1)) +L(n)/r
h-q delay-based routers GR(e,©): A;(n) = max(A,_{(n), A(n-1)) +e
Arrival curve at core edge is  a(t) = ¥ max (t) = Lpax * It
Service curve for the coreis  At) = B. h-qjer (g-t)maxsr ()
= PPt-((h-Q)e + (§-DL e /F)]
-> Delay bound is  h(e, 8)=(h-q)e +qL, . /r
(neglecting propagation delays)

© Jean-Yves Le Boudec and Patrick Thiran
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Core-Stateless

dCore routers do not maintain per flow information

Edge
router
Ag(n)_ . Al(n)= Do(n)  Aq(n) %{\) “i\h_lﬂ _D.h'l(n)
GR(r.e)

Replace it by the use of timestamps, with the virtual arrival
time: virtual arrival time at router i for nth packet is A’;(n)

NB: A virtual delay adjustment is also inserted (not considered
here) (it is the delay that nth packet would have experienced in
the ideal system with flow state information - gL(n)/r)

dCompute the virtual finish time F'(n) = A'(n) + L(n)/r + e

© Jean-Yves Le Boudec and Patrick Thiran
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Core-Stateless

dCore routers do not maintain per flow information

Edge
router

Aﬂ .

Ai(n) D,(n)  A(n) Do(n)  Apa(n) Dh-1(n)

—> —— o@0® " —

GR(r.e) GR(r.e) GR(r,e)

dThe actual departure time D, (n) of the nth packet from the ith
core router is less than F'(n) + processing delay

dUpdate virtual arrival time: A’,,(n) = F'(n) + processing delay +
propagation delay

Property: with g rate-based routers and h-g delay-based
routers, delay bound is h(a, ) = (h-q)e + gL, /r + sum of

Processing delays+.gum of propagation delays
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Expedited Forwarding is a building
block for Diff-Serv

~_ | EF microflows

EF sch_eduler'
microflows ;‘:O EF aggregates

best effort ‘ \ '

dDiffServ uses aggregafle treatment of flows (for
scalability)

dshaping at edge + aggregate scheduling
= priority queue

CBR

© Jean-Yves Le Boudec and Patrick Thiran
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Jused to build « Virtual Wire », a service similar to ATM



Specification of EF :
RFC 2598, June 1999

dfor one EF aggregate: departure rate > r
0 measured over any interval > 1 packet
0 r is the configured rate at one EF node

departure rate

e

||
1

© Jean-Yves Le Boudec and Patrick Thiran
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The old EF specification is used
in Virtual Wire drafts to bound delay
Jitter
playout buffer
at destination

freeetr o EF 4t 11 freertt

cloud

dVirtual Wire drafts conclude that

0 end-to-end delay jitter <o T
o = utilization factor, T = interval at source

© Jean-Yves Le Boudec and Patrick Thiran
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The Virtual Wire jitter bound
contradicts other known results

djitter bounds are hard to find for edge shaping +
aggregate scheduling

Hexistence of finite bounds in the general case is
still an open problem

0 Lu and Kumar 1991, Rybko and Stolar 1992, Seidmann
1994, Bramson 1994, Andrews 2000

1 Andrews 2000 presents an example of a network
which is unstable for some a<1

© Jean-Yves Le Boudec and Patrick Thiran
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Closed form bounds for delay
Qif o <1/(h-1) there is a closed form bound

e+7
I—(h-Da

h = number of hops, a = utilization factor

D=h

dthe bound diverges for a ->1/ (h-1)
Jcompare to virtual wire bound o T

dif a >1/(h-1), for any x, there is a nhetwork where
the worst case jitter > x

this contradicts the Virtual Wire bound

© Jean-Yves Le Boudec and Patrick Thiran



65

Derivation of the bound

[ Assume nodes are GR (orFIFO-per aggregate rate latency
service curve elements)

1) Assume delay bound 1D on low delay traffic (EF) exists, where
h = max number of hops, D = max delay bound per node

2) An arrival curve of aggregate traffic at node i
o(t) = Zp5i (Pt + (h-1)r D + b)) = viRit + (h-1) vRD + viR; 1,
wher'e Vi = (Zmai r'm)/Ri and Ti = (zmai bm)/(zmai r'm)
3) Compute horizontal distance between o ,(t) and B,(t):
=T, +(h-1) viD + v,
4) Deduce where
T=max. T. , v=max, v,and t = max; t vk
5) Show that finite bound exists
at any time t, and let t -> «

(h"l) ViRiD +
ViR T;

© Jean-Yves Le Boudec and Patrick Thiran
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The contradiction is in the
specification of EF

dfor practically all known nodes, the EF condition is not

True
0 jitter and source rate fluctuations

departure rate may be > r

\ D

||
1

© Jean-Yves Le Boudec and Patrick Thiran
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Another specification is needed

dshould allow delay and backlog computations

dshould apply well to reasonable routers

0 combinations of schedulers, queue, delay elements

0 basic schedulers should be easy to model

0 concatenation
dat the 49th IETF (Dec 2000, San Diego), the old EF
specification is abandoned in favor of a hew one based
on packet scale rate guarantee

© Jean-Yves Le Boudec and Patrick Thiran



Why not use GR as a node model ?

L has all nice properties seen before: bounds,
concatenation

dbut: delay-from-backlog bound

given observed backlog is B, delay ?

dwhy ?
0 we want to control delay from backlog
0 diff-serv is not loss-free

0 if a nhetwork element has a small buffer, it should
guarantee a low delay

© Jean-Yves Le Boudec and Patrick Thiran
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GR node does not support a backlog-
from-delay bound

backlog del
] elay

Pi’rs input R(t)

/ output

A4

minimum output

time

© Jean-Yves Le Boudec and Patrick Thiran



Packet Scale Rate Guarantee is the
definition used for EF

ad(n) <f(n)+e
f(n) = max{a(n), min[d(n-1), f(n-1)T}+ L(n)/r

d(n) : departure time for packet n
a(n) : arrival time
f(n) : virtual finish time, f(0) = 0

© Jean-Yves Le Boudec and Patrick Thiran
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f(n) = max{a(n), min[d(n-

1), f(n-D1}+ L(n)/r

1 L(n)/r ‘
f(n-1) d(n-1) a(n) f(n) d(n)
L(n)/r
| T
¥y
a(n) f(n-1) d(n-1) f(n) d(n)
L(n)/r

I

¥
a(n)d(n-1) f(n-1) f(

© Jean-Yves Le Boudec and Patrick Thiran

n) d(n)

71



PSRG has all the nice properties

Upriority scheduler: r=C, e=L,/C
Upacket based GPS, with accuracy E;, E,:
G(n)- E; < d(n) < 6(n) + E,
G(n) = departure time in fluid GPS system
= rater,e=E;+E,

dconcatenation of FIFO nodes: same as GR

© Jean-Yves Le Boudec and Patrick Thiran

72



Delay from Backlog

 Theorem :
packet scale rate guarantee
— delay < Q/r+e

Q: backlog upon arrival

Qintuitively clear -- and proof is simple -- if node is
FIFO (infocom 2001)

© Jean-Yves Le Boudec and Patrick Thiran
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Delay bounds

dWe can combine all results above and find finite
and infinite buffer bounds

1

!

delay
0.6
h=10 1 MB
e=2 MTU/r 0.4
r=150 Mb/s
C=5R .2 0.4 MB
0.1 MB
©0.05 0.1 0.15 0.2 0.25 (o
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PSRG versus Service Curve
PSRG => GR

0 (but not conversely )

dthus PSRG(r,e) => service curve (r, e+l .. /r)

dthere are identical relations
0 PSRG <-> adaptive service curve (Cruz, 1998)
0 GR <-> service curve

© Jean-Yves Le Boudec and Patrick Thiran
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A Min-Max approach to solve the non-
FIFO case

Hdrouters are FIFO per flow
0 all OK with IntServ (per-flow scheduling)

L EF use aggregate scheduling
0 routers are not FIFO per aggregate

Hestablishing the properties of PSRG with non-FIFO
nodes has been an open challenge

da Min-Max approach can break it

© Jean-Yves Le Boudec and Patrick Thiran
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dwe can get rid of f(n) by solving
(D) £ () = max[a(j),min(d(j 1), £ (j-D)]+

F]. ::f(j)+L(j+1)J;...+L(n)
ddefi |
efine < _a(])+L(])+ -+ L(n)
D ::d(j)+L(]+l)+ -+ L(n)
dwe obtain
(2)

F, = maX[A mm(F] LD, )J

© Jean-Yves Le Boudec and Patrick Thiran
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s (2 F, = maX[Aj,min(F]._l,Dj_1 )J
o

O Ure-write (2) by the replacement rule
(®)) : :

S (min, max) -> (+ x) and obtain

% F.=A(F._+D,_)

£~ Quse Gauss elimination

g n—1

3 F,=2 A,..4,,D,

N duse the reverse r]é?alacemen’r rule

i -

l- n—1

F = IIlel(I)l {max [An,..., A, D, ]}

© Jean-Yves Le Boudec and Patrick Thiran
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Alt. Characterization of PSRG

Qda node is PSRG(r,e) iff
forallnand jin [0, n-1]

L(j+1)+...+ L(n)

r

(A)  dn)<e+d(j)-
or there is some k in [j+1,..., n] such that

L(k)+...+ L(n)

B dmy<e+a(h)-

dinterpretation: replaces VJ's intuition

© Jean-Yves Le Boudec and Patrick Thiran
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Applications

d Theorem :
packet scale rate guarantee
= delay < Q/r+e

holds also for non-FIFO nodes

© Jean-Yves Le Boudec and Patrick Thiran
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PSRG has all the nice properties...

... but concatenation results for non-FIFO nodes
are harder to get

d(Le Boudec and Charny 2001):

PSRG | | — PSRG
T, (ree) | (r.e)

_________________________________________________

a(t + T1) — Lmin _ ti|, Sllp()gtST1 |:a(t) . a(ﬂ) - 2Lmin - t:l}

r

© Jean-Yves Le Boudec and Patrick Thiran



SETF

an alternative to EF [Zhi-Li Zhang 2000]
leads to a worst case bound which is finite for all o<1

Upackets stamped with arrival time at network access
0 aggregate scheduling
0 inside aggregate, order is that of timestamps

Theorem: IR,
D=(e+71) 1=d ah)—l
a(l-a)

Proof: similar to previous bound

© Jean-Yves Le Boudec and Patrick Thiran
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Contents

1. Arrival curves
2. Service curves, backlog, delay bounds
3. Diffserv: intuition and formal definition behind EF
4. Playback Delay for pre-recorded video
5. Statistical multiplexing with EF

© Jean-Yves Le Boudec and Patrick Thiran
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Network delivery of Pre-
recorded video

Video Smoother Network Video
server display

a (t+d) x (t) y(t) ———\ a(t-D) g
‘ I 'II | B (t) —— B () =E!!E
0]

O Le Boudec and Verscheure ToN 2000, Thiran, Le Boudec and Worm, Infocom
2001

QNetwork + end-station offers a service curve S to flow
x(t) (intserv or diffserv + real time model of end-
station)

dSmoother delivers a flow x(t) conforming to an arrival
curve o. Can look-ahead on the server (max d time units)

dVideo stream is stored in the client buffer B and read
after a playback delay D.

© Jean-Yves Le Boudec and Patrick Thiran
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Network delivery of Pre-
recorded video

Video Smoother Network Video
server display

a(t+d) x(t) y(t) — a(t-D) ¢ »
\ | ’. | B(t) _—’LQ ;
9)

dWhat are the minimal values of D and B, given d, o
and 5 ?

dWhat is the scheduling (smoothing) strategy at the
sender side that achieves these minimal values ?
Ts this optimal smoothing strategy unique ?

dDoes a large look-ahead delay d help in reducing D
and B?

© Jean-Yves Le Boudec and Patrick Thiran
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Putting the Problem into Equations

Video

server Smoother Network Video

display

a(t+d) y(t) ____7/\\ a(t-D) ¢ »
\ | '. | B(e) T B [ ) '
9)

QA Smoothed flow x(t) such that
X(t) < 5,(t) (i.e, x(t) = Oif t <0)
x(t) < a(t+d) (look-ahead up to d time units)
x(t)< (x®o)(t) (smoothing)
L Output flow y(t) such that
y(t) > a(t-D) (no buffer underflow)

y(t) <a(t-D)+ B (no buffer overflow)
Qy(t) = IIx)(t) is not known but (x® gt) < y(t) < x(t)

© Jean-Yves Le Boudec and Patrick Thiran




The Min-Plus Residuation Theorem

O From Baccelli et al, "Synchronization and Linearity”
d Theorem: Assume that the operator Il is isotone and

upper-semi-continuous.

the problem
<a(t) A
has one maximum solution, given by

L (Definition of closure of an operator)

87

= H(a)(t)

I1(x) = inf {x, I1(x), IToI1(x), Ilol

1

ToI1(x),...}

[is isotone if x(t)<y(t) -> TI(x)(t)<I

1

I(y)(t)
1 is upper-semi continuous if inf(I1(x;)) = IT (inf.(x;))
0 true in practice for all our systems

[ The greedy shaper output is an example of use

© Jean-Yves Le Boudec and Patrick Thiran



Massaging the Equations to use

Residuation

dOutput flow y(t) such that
(x® pXt) > a(t-D) (no buffer underflow)
x(t) <a(t-D) + B (no buffer overflow)

or equivalently using deconvolution operator @

x(t) 2 (a @ p)t-D) = sup, { a(t-D+u) - Hu) }
x(t) <a(t-D) + B

d Therefore find smallest D, B s.t. maximal solution of
< { 5(t) A a(t+d) A (a(t-D) + B) } A
verifies

> (a@ p)(t-D)

© Jean-Yves Le Boudec and Patrick Thiran
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Applying Residuation to our Problem

dMaximal solution of
x(t) <{op(t) na(t+d) A (a(t-D) + B) } A {(x ® o) (t) }
1S, with o sub-additive,
x(t) = o®{ 5(t) A a(t+d) A (a(t-D) + B) }
=o(t) A{(c®a)(t-D) + B} A (c® a)(t+d)
dNeed to check that this solution x(t) > (a @ g )(t-D)
0 o(t)=(a@ p)(t-D)
-> D> h(a, B® o)
0 (oc®a)(t-D)+B>(a@ p)(t-D)
-> B> v(aga, ® o)
0 (c®a)(t+d)>(a @ B)(t-D)
> D+d>v(a@a, f® o)

© Jean-Yves Le Boudec and Patrick Thiran



Bounds for D, B and d

dIn summary, we have shown that

0 the set of admissible playback delays D, playback buffer B
and look-ahead limit d is

D> D, = hl(a, F® o)
D+d> (D+d),,=h(a@a,f® o)
B> B, ,,=v(aga,f® o)
0 in particular, there is a minimum playback delay.

0 if D, d, B satisfy the constraints above, a schedule is

possible;
else, there is no schedule that can guarantee correct

operation

© Jean-Yves Le Boudec and Patrick Thiran
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The formulae have a simple
graphical interpretation

(1) compute o ®p (2) compute the horizontal deviation

A bits B bits , Dmin — h(G, c & B)

A
/454;/// 1j1116

(3) compute a D a

and the horizontal deviation
bits

(4) compute the vertical deviation

bits

© Jean-Yves Le Boudec and Patrick Thiran



Example: MPEG Trace

AMPEG files, 25 frames/sec, discretized in
packets of 416 bytes

4 D
310 mir_...
T £
5 :
Bop 5
o =
E
g
=1
<
@
0 ! ! ! ! ! ! L E T e miRersec
0 50 100 150 200 250 300 350 400 .
i}
x 10 frame number
= (D+d),,.,-:D,,
i~ A min = min
i) D .
240 min — ] _ T |
= £
2 rt 5
w2 a ( 4 ) 3
3 8
E
3
3] 0 | | | | | | |
0 50 100 150 200 250 300 350 400
¥ 10° frame rumber
i (D+d) .
e min '
o - 1.
(a @ a)t)
) 0 | | | | | | | | | i,
0 500 1000 1500 2000 2500 3000 3500 4000 4500 s
frame number
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d Actual values of delays depend on the length of
the stream and the position of largest burst, and

the ability to predict it

O Example: in Jurassic Park trace,

largest burst occurs between
frames 28000 - 29000

JU MMLMMMMMWW |

© Jean-Yves Le Boudec and Patrick Thiran

Dmin [sec]

playback delay

00000

14000 | — average rate

000000

40000 frames

20000 frames

peak rate — =

150 200 250
rate [kBytes/sec]

/40000 frames

kzoooo frames

lookahead delay dmin [sec]

150 200 250
rate [kBytes/sec]

1
300



d Actual values of delays depend on the length of
the stream, the position of largest burst, and the

ability to predict it

dl D | -
.+ DI D2 D3 D4
3 T T T T
g
AN (WRN s L
: 1)
2 b o ol
e W
00 5|0 100 '1;0 200 2;0 300 3;0 400
% 10° frame jumb
—6
% | | | |
Bar ]
Sor /
E
g 0 | | | |
0 . 50 11)0 150 ~ mnsz.th.. 250 31!] 350 41)0
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Scheduling for D,;,, d.., and B,
Xnorl(t) = O(t) A (0@ a)(t+dpn) A { (0® a)(t-Dyin) + Bin )

o (1)=rt

Xmax(?)

© Jean-Yves Le Boudec and Patrick Thiran
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Example 3: Dual problem formulation

dFind smallest D, B and d s.t. the maximal solution of
X(t) < 8(t) A R(t+d) A {R(t-D) + B} A (x® &) (t)
verifies
x(t) 2(Ra p)(t-D).
JProperty of g X <(x®o)<> (XD o)< x

JFind smallest D, B and d s. t. the minimal solution of
x(t) 2(Ra p)t-D)v (x@ o) (t)
verifies
x(t) < op(t) A R(t+d) A {R(t-D) + B} .

© Jean-Yves Le Boudec and Patrick Thiran
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Max-Plus System Theory in Action

dFrom Baccelli et al, "Synchronization and Linearity”;
assume that I1 is isotone and lower-semi-continuous.
Theorem : the problem

x(t) <a(t)vII(x)(t)

has one minimum solution, given by x,,(t) = I(a)(t)

d(Definition of super-additive closure)
IT (x) = sup {x, I1(x), IToIl(x), TToIToIl(x),...}

dMinimal solution of
x(t)=2(Ra p)(t-D)v (x2oc)(t)
is, with ¢ sub-additive with ¢(0) = O,
X.(t) = (RD (B ® 0))(t-D)

© Jean-Yves Le Boudec and Patrick Thiran
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Scheduling for D.;,, d.., and B,

Xpox(t) = o(t) A (c® R)(t+d, ;) A { (c® R)(t-D,,;,) + Bin }
Xpin(t) = (RD (f® c))(t-D)  (Le Boudec, Verscheure 2000)

+ Other metrics (Feng, Rexford 99):
(Salehi, Zhang, Kurose, Towsley 98)

+ ON1OFF (Zhang, Hui 97) x (1)

d. D . t

min min

© Jean-Yves Le Boudec and Patrick Thiran
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5. Stochastic Bounds

dnetwork calculus gives deterministic bounds on
delay and loss

dcombine with Hoeffding bounds [1963]: Assume
0 X; are independent and 0 < X;<1
0 E(X*+..+ X;) = s is known
then fors<x<1I

P(X, +..+ X, >Xx) Sexp—(xlnx+(]_x)ln]—xj

S [ —s

© Jean-Yves Le Boudec and Patrick Thiran
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Bound on loss probability

d T independent, stationary sources with identical
constraints o; served in a network element with super-
additive service curve [3 [Chang, Vojnovic and L]

P(Q>b) < infS{Z g(s, ﬁk+1)}

where 0 = s5< s, <.. < s,=1, 1= inf {t: a(t) < (1)}

and for a(v) - B(u) > b

Bu)+b  fu)+b +a(V)—ﬁ(u)—blna(\f)—ﬂ(u)—bn
a(v)  pv a(v) a(v) - py

g(u,v) = exp(— 1(

else g(uv)=0

© Jean-Yves Le Boudec and Patrick Thiran
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L Step 1: reduction to horizon =
O(0) =sup,, {A(=s,0) - f(s)}
d5Step 2
Q(0) = max , {sup ..,  A(=5,0) = f(s)}
< max  {A(=5,,,,0) — S(s;)}

dStep 3: Hoeffding to each term
A(=5,,,,0) = f(s;) = Z A (=,,,0) = f;(s;)
A (=5,,1,0) = B.(s) <, (s5,,,)— F.(s;)
E{4 (=5,,,,0)= ()< psi— P (sy)

© Jean-Yves Le Boudec and Patrick Thiran
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Application to DiffServ

dmicro-flows in one aggregate assumed independent at
network access only
dat node i majorize the amount of data in [s,t] by
Ri(1)- Ri(s) < RO(t) - RO(s-d)

and C(pply the previous [Chang, Song and Siu Sigmetrics 2001, Vojnovic and Le
Boudec Infocom 2002]

J
\e—.
access — _'0
b

L___J node i
1

Ri(1)
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Compare to Poisson Approximation

1 Poisson appr'oxima’rion pr'oposed [Bonald, Proutiere, Roberts, Infocom '0O1]
for CBR flows

d Bound converges to Poisson for many flows and small burstiness

10 Y - ..
' deterministic
L
1072 b 1
3
%
i;*ln“* . '
=) 500 flows
G’ r- -
107" “
. 4HOM
10® + Poisson - %
"M/DY (dotted) - M
-10 | L b | | I

0 0.05 0 015 0.2 0.25 0.2 035 04 0.45 05
b Bl
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Conclusion

dNetwork Calculus is a set of tools and theories for the
deterministic analysis of communication networks

A new system theory, which applies min-plus algebra to
communication networks

L Does not supersede stochastic queueing analysis, but
gives new tools for analysis of sample paths

d"Network calculus”, J-Y Le Boudec and P. Thiran,
Lecture Notes in Computer Sciences vol. 2050,

Springer Verlag, also available on-line at
http://lcawww.epfl.ch
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