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What is Network Calculus ?
Deterministic analysis of queuing / flow systems arising 

in communication networks
Uses Min-Plus, Max-Plus and sometimes Min-Max 

algebra
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The standard Linear Theory

A LTI filter in conventional algebra (R, +, ×)
� Input signal = electrical voltage x(t)
� System = circuit (filter) with impulse response (t)
� Output = convolution of x(t) and (t) :

y(t) =  (t-s) x(s) ds

x(t) y(t)(t)
+ +

--
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Network Calculus uses Min-Plus Linear 
Theory

A linear system in min-plus algebra (R, min, +)
� Input = arrived traffic in [0,t], x(t)
� System = CBR trunk of rate c : (t) = ct
� Output = convolution of x(t) and (t):

y(t) = infs {(t-s)+ x(s) } 

CBR shaper

bit rate c
x(t) y(t)
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Two key Concepts
Arrival and Service Curves

IntServ and DiffServ use the concepts of arrival curve
and service curves
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Cumulative flows
 Cumulative flow R(t)  F , t real or integer
F = { x(t) | x(t) is non decreasing and x(t) = 0 for t < 0 }
 Examples:

time t

bits

1 2 567 time t

bits

1 55.5 time t

bits

1 2 5 6

R1(t) R2(t) R3(t)

Fluid model (continuous) Packet model 
(left continuous)

Discrete-time model 
(left continuous)
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Example
MPEG files, 25 frames/sec



R R
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Arrival Curves
Arrival curve  For any times 0  s  t, the 

cumulative flow R(.) satisfies
R(t) -R(s)  (t-s)

Example 1: affine arrival curve r,b
(t) = r,b(t) = rt+b  for t>0

time

bits

b
slope r R(t)
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Example 2: stair arrival curve kvT,

 (t) = kvT,(t) = k (t+)/T with T = period,  = tolerance, k 
= constant packet size

 Characterizes flows that are periodic stream of packets of 
same size k (cells), that suffers a variable delay <= 

time

bits

k

kvT, (t) = k(t+)/T

 T- 2T- 3T-

2k
3k
4k

Arrival Curves

� All packets of size k. Then 
R conforms to  =kvT,

R conforms to  = r,b
with r = k/T and b = k(+T)/T



12

© Jean-Yves Le Boudec and Patrick Thiran

Leaky bucket
All packets of flow R are declared conformant by 

a leaky buket controller of rate r and size b
 R conforms to (t) = r,b(t) = rt+b  for t>0

R(t) r,b

r

x(t)

b
R(t) slope r

t1 55.5

R(t)

b
x(t)b
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GCRA (T,)
 All packets (cells) of flow R are of the same size k
 Arrival time of nth = An

 Theoretical arrival just after nth arrival is n = max(An,n-1) + T 
 If An+1 >= n – then cell is conformant, otherwise not 

Example: GCRA (10,2)
n 1 2 3 3 4 5
n-1 0 11 21 21 31 41
An 1 11 16 20 29 38

c c nc c c nc

 Equivalences: R conforms to GCRA (T,)
 R conforms to staircase arrival curve  = kvT,

 R conforms to leaky bucket (r = k/T, b = k(+T)/T)
 R conforms to affine arrival curve = r,b
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Combining leaky buckets

time

bits

b

M

slope r

slope m
time

bits

b
slope r

standard arrival curve in the Internet ( = min)
(u) = min (pu+M, ru+b) = (pu+M) (ru+b)
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Sub-additivity and arrival curves
If  is an arrival curve for flow R, so is 
(t)  (t)
What is (t) ? 
The answer uses min-plus convolution and sub-additivity

T

k

(t)

2T 3T

2k
3k
4k

4T T

k

(t)

2T 3T

2k
3k
4k

4T



16

© Jean-Yves Le Boudec and Patrick Thiran

Min-plus convolution 
Definition

(f  g) (t) = infu { f(t-u) + g(u) }

t

f(t)

g(t)

(f  g)(t)
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Example
(f  g) (t) = ?

t
T

f(t)

R
K

s

f(s)

t

g(t)

r

t

(fg)(t)

g(t-s)

b
t

T

(fg)(t)
r

K R
K+b
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Some properties of min-plus convolution
 (f  g)  F 
 is associative
 is commutative
Neutral element: 0 : f  0 = f

( 0 (t) = 0 for t = 0 and 0 (t) =  for t > 0)
 is distributive with respect to min (
 is isotone: f  f’ and  g  g’  f  g  f’  g’ 
 Functions passing through the origin (f(0) = g(0) = 0): 

f  g  f  g 
 Concave functions passing through the origin:

f  g = f  g 
 Convex piecewise linear functions: f  g is the convex 

piecewise linear function obtained by putting end-to-end all 
linear pieces of f and g, sorted by increasing slopes
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Example: rate latency function

T is convex
(delay function)

R,T is convex
(rate-latency function)

latency T

R,T(t)

Slope (rate) R


delay T

T(t)



R(t)=Rt

Rate R

R is convex
(delay function)
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Example bis (using rules)

t
T

f(t)

R
K f = K + R,T

= K + T  R

fg = (K + T  R)  r,b 
= K + ((T  R)  r,b)
= K + (T  (R  r,b ))
= K + (T  (R  r,b ))
= K + (T  R )  (T  r,b )
= K + R,T  (T  r +b)
= K + R,T  (r,T +b)

t

g(t)

r

g = r,b                 
= 0  (r +b) 
concave with 
g(0) = 0

b

t
T

(fg)(t)
r

K R
K+b
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We can express arrival curves with min-
plus convolution

Arrival Curve property means for all 0  s  t, 
x(t) -x(s)  (t-s)

 x(t)  x(s) + (t-s) for all 0  s  t
 x(t)  infu { x(u) + (t-u) }
 x  x 
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Sub-additive function

f is sub-additive  f (t) + f(s)  f(t+s)
f is concave with f(0) = 0  f is sub-additive
f is sub-additive  f is concave
f,g are sub-additive and pass through the origin 

(f(0) = g(0) = 0)  f  g is sub-additive
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Examples

r,b is concave

time

bits

b
slope r

r,b(t)

time

bits

k

vT,(t)

2k
3k
4k

vT, is not concave, but 
is sub-additive

 T- 2T- 3T-
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Sub-additive closure

f = inf {0 ,f,f  f, f  f  f,… }
f is sub-additive with f(0) = 0
f is sub-additive with f(0) = 0  f =f  f = f  f
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Examples

time

bits

T

R,T(t)+K’
R

K’

time

bits

T

R,T(t)+K’’
R

K’’

2T

2K’

R,T(t)+K’)(2)

R,T(t)+K’)(2)

2T

R,T(t)+K’’

R,T(t)+K’
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Sub-additivity and arrival curves

bits

k

(t)

T 2T 3T

2k
3k
4k

4T T 2T 3T 4T

(t)

What is (t) ? 
 can be replaced by its sub-additive closure .
 From now on: we will always take sub-additive arrival 
curves passing through the origin.
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Minimal arrival curve
 If the only available information on a flow is obtained 
from measurements, i.e if we only know R, how can we 
compute its minimal arrival curve ?
 The answer uses min-plus deconvolution

R
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Min-plus deconvolution Ø
Definition

(f Ø g) (t) = supu { f(t+u) - g(u) }

t

f(t)

g(t)

(f  g)(t)
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Some properties of min-plus deconvolution
(f  g)  F in general
(f  f)  F 
(f  f) is sub-additive with (f  f) (0) = 0
(f  g)  h = f  (g  h) 
Duality with  : f g  h  f  g  h
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The minimal arrival curve of flow R is R Ø R .
Proof:

� It is an arrival curve because 
R(t) – R(s) = R((t-s)+s) - R(s) 

 supu { R((t-s)+u) - R(u) } = (R Ø R) (t-s)
 If ’ is another arrival curve for flow R, then R  R ’ 

 R Ø R  ’ so that   ’ .

Minimal arrival curve
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Example
MPEG files, 25 frames/sec



R R
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Greedy shaper

Definition of Greedy shaper 
� forces output to be constrained by arrival curve 

x(t) - x(s)  (t - s)
� storesdata in a buffer if needed
� Hence the shaper maximises x(t) such that

x(t)  R(t)
x(t)  (x(t)

R(t)



Shaper

x(t)
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Output of a Greedy shaper

R(t)



Shaper

x(t)

If  is sub-additive and  x  =  R
Proof:

� x = R  is a solution because
x = R   R  since 
x = R  = R  = (R  = x 

 If x’ is another solution then x’  R and x ’  x’ 
Combining the two and using isotonicity of  

x ’  x’  R = x
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Greedy shaper = linear min-plus filter
Standard convolution in (R, x, +) (LTI filter)

y(t) = (x)(t) =  (t-u) x(u) du

Min-plus convolution in (R, +, ) is linear ( = min)
y(t) = (  x) (t) = infu { (t-u) + x(u) }

x(t) y(t)(t)
+ +

--

shaper 
x y
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What is done by shaping cannot be 
undone by shaping

R(t)



Shaper

x(t)

 Suppose that R(t) is constrained by arrival curve R  R 
 Then x = R   (R )  = R  R  since 
 Therefore shaping keeps arrival constraints. 
 In fact, the output flow has as arrival curve

-smooth
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Packetization
The shaper presented before is for constant size 

packets or ideal fluid systems
Real life systems are modelled by adding a packetizer

transforms fluid input into packets of size l1, l2, l3, …

Packetizer adds some distortion, well understood

R(t)
R’(t)

R*(t)

T1 T2 T3

l1 + l2 + l3

l1 + l2
l1

c

l1l2l3 l1l2l3

(PL )

constant rate server
= 

greedy shaper (t)=ct 
+ packetizer
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Goal of Service Curve and GR node 
definitions

define an abstract node model
independent of a specific type of scheduler
applies to real routers, which are not a single 

scheduler, but a complex interconnection of delay and 
scheduling elements 

applies to nodes that are not work-conserving
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Service Curve
System S offers a (minimal) service curve  to a flow 

iff for all t there exists some s such that
y(t) - x(s)   (t-s)

S x y

t

y(t)

s

x(s)

x y (t)
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The constant rate server has service curve 
(t)=ct

Proof: take s = beginning of busy period: 
y(t) – y(s) = c (t-s)  and y(s) = x(s)

->  y(t) – x(s)   = c (t-s)

buffer

s           t 0

ct

t
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The service curve of a Greedy shaper 
is its shaping curve

x(t)



Shaper

y(t)

If  is sub-additive and  y(t) = (x(t). 
The service curve of a shaper is thus 
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The guaranteed-delay node has 
service curve T

seconds

 T

x
y

0     T

T  (t)

Function T

t
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The standard model for an 
Internet router

rate-latency service curve

T

bits

R

seconds
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We can express service curves with min-
plus convolution

Service Curve guarantee means there exists some 
0  s  t :    y(t) - x(s)   (t-s)
 y(t)  x(s) + (t-s) for some 0  s  t
 y(t)  infu { x(u) + (t-u) }
 y  x 
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Tight Bounds on delay and backlog 
If flow has arrival curve  and node offers service curve 
 then

backlog  sup ((s) -(s)) = ( Ø )(0) = v(, )
delay  inf { s  0 : ( Ø )(-s)  0 } = h(, )





h(,)

v(,)
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The composition theorem
Theorem: the concatenation of two network 

elements each offering service curve i offers the 
service curve 1  2




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R1 R2

T2

 =

T1

Example

tandem of routers

R1

T2 T1+T2
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Pay Bursts Only Once



D1 D2

 

D

 

D  b /R + T1 + T2

end to end delay bound is less

D1 +D2  (2b + RT1)/ R + T1 + T2
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Re-shaping is for free

 Re-shaper is added to re-enforce some fraction of the original 
constraint

 Delay for original system = h(,  )
 For system with re-shaper = h(,  ) = h(,   )
Now h(,   ) = h(,  )

interpretation: put re-shaper before node 1; it is transparent
formal proof uses delay = inf { d :  Ø( ) (-d) 0 }

 Therefore delay bound for both systems are equal


 



end-to-end
service curve

Shaper

 
   
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Guaranteed Rate node

An alternative definition to service curve for 
FIFO
� for rate-latency service curves only

Definition (Goyal, Lam, Vin; Chang): 
a node is GR(r,e) if 

D(n)   F(n) + e
F(n) = max{A(n), F(n-1)} + L(n)/r

D(n) : departure time for packet n
A(n) : arrival time
F(n) : virtual finish time, F(0) = 0
L(n) : length in bits for packet n
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F(n-1) D(n-1)A(n)

F(n) D(n)

L(n)/r

F(n-1) D(n-1) A(n)

F(n) D(n)

L(n)/r

F(n) = max{A(n), F(n-1)} + L(n)/rF(n) = max{A(n), F(n-1)} + L(n)/r
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GR is equivalent to rate-latency 
service curve -- for FIFO per flow

GR(r,e) is equivalent to
D(n)  maxkn[A(k) + (L(k) + … + L(n))/r] + e

� max-plus analog to service curve
Theorem (equivalence for FIFO per flow nodes): 

� a GR node is a service curve element with rate-latency service 
curve (r,e) followed by a packetizer 

� conversely, consider  a node which is FIFO per flow and 
serves entire packets. If it has the rate-latency service 
curve (R,T) then it is  GR(R,T).

FIFO per flow is true in IntServ context
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Properties of GR nodes 
(FIFO per flow or not)

delay bound = h(, ) 
Dmax= e + sup[(t)/r-t]

for FIFO per flow nodes = delay at service curve element 
(packetizer does not add per-packet delay)

 backlog bound = v(, ) + Lmax

Bmax=  sup[(t)-R(t-T)+] + Lmax

e

r(t)

Dmax= e + sup((t)/r-t)

time

bits
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Modelling a node with GR
queue with rate C: R=C, T=0
priority queue with rate c: R=C, T=Lmax/C

element with bounded delay d: R = , T=d 
and combine these elements
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Concatenation of GR nodes

FIFO per flow nodes: apply service curve rule

non FIFO per-flow: not true (LeBoudec Charny, Infocom 2002)

GR(r1,e1) GR(r2,e2) GR(r,e)

r = min(r1,r2)
e = e1 + e2 + Lmax/r1
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Core-Stateless
Imagine routers can maintain flow state information 

and offer per flow guarantees

q rate-based routers GR(0,r):  Ai (n) = max(Ai-1(n), Ai(n-1)) + L(n)/r
h-q delay-based routers GR(e,): Ai (n) = max(Ai-1(n), Ai(n-1)) + e  
Arrival curve at core edge is (t) = r,Lmax (t) = Lmax + rt
Service curve for the core is (t) = r,(h-q)e+ (q-1)Lmax/r (t) 

= r[t-((h-q)e + (q-1)Lmax /r)]+

-> Delay bound is h() = (h-q)e + qLmax /r 
(neglecting propagation delays)

GR(r,e) GR(r,e)A0(n)

r

Edge 
router

A1(n) Dh-1(n)

Core 
router

Core 
router

Core 
router

D2(n) = A2(n) GR(r,e)
D2(n) Ah-1(n)
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Core-Stateless
Core routers do not maintain per flow information

Replace it by the use of timestamps, with the virtual arrival 
time: virtual arrival time at router i for nth packet is A’i (n) 
NB: A virtual delay adjustment is also inserted (not considered 
here) (it is the delay that nth packet would have experienced in 
the ideal system with flow state information – qL(n) /r)
Compute the virtual finish time F’i(n) = A’i(n) + L(n)/r + e

GR(r,e)
A’1(n) F’1(n)

A0(n)

Edge 
router

A1(n) Dh-1(n)

Core 
router

Core 
router

Core 
router

D2(n) D2(n) Ah-1(n)A2(n)
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Core-Stateless
Core routers do not maintain per flow information

The actual departure time Di (n) of the nth packet from the ith 
core router is less than F’i(n) + processing delay
Update virtual arrival time: A’i+1(n) = F’i(n) + processing delay + 
propagation delay
Property: with q rate-based routers and h-q delay-based 
routers, delay bound is h() = (h-q)e + qLmax /r + sum of 
processing delays + sum of propagation delays 

A0(n)

GR(r,e)
A’1(n) F’1(n)

Edge 
router

A1(n) Dh-1(n)

Core 
router

Core 
router

Core 
router

D2(n) D2(n) Ah-1(n)A2(n)

GR(r,e)
A’2(n) F’2(n)

GR(r,e)
A’h-1(n) F’h-1(n)
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Contents
1. Arrival curves

2. Service curves, backlog, delay bounds
3. Diffserv: intuition and formal definition behind EF

 PSRG
 non-FIFO and min-max

 SETF 
4. Min-plus algebra in action: Video smoothing

5. Statistical multiplexing with EF
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Expedited Forwarding is a building 
block for Diff-Serv

DiffServ uses aggregate treatment of flows (for 
scalability)

shaping at edge + aggregate scheduling
 priority queue
used to build « Virtual Wire », a service similar to ATM 

CBR 

EF microflows

EF
microflows EF aggregates

scheduler

best effort
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Specification of EF :
RFC 2598, June 1999

for one EF aggregate: departure rate  r
� measured over any interval  1 packet
� r is the configured rate at one EF node

departure ratedeparture rate
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The old EF specification is used
in Virtual Wire drafts to bound delay 

jitter

Virtual Wire drafts conclude that
� end-to-end delay jitter    T
 = utilization factor, T = interval at source

EF
cloud

playout buffer 
at destination
playout buffer 
at destination
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The Virtual Wire jitter bound 
contradicts other known results

jitter bounds are hard to find for edge shaping + 
aggregate scheduling

existence of finite bounds in the general case is 
still an open problem
� Lu and Kumar 1991, Rybko and Stolar 1992, Seidmann 

1994, Bramson 1994, Andrews 2000
Andrews 2000 presents an example of a network 

which is unstable for some <1
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if   1/(h-1)  there is a closed form bound 

h = number of hops,  = utilization factor

the bound diverges for  -> 1 / (h-1)
compare to virtual wire bound  T
if  > 1/(h-1), for any x, there is a network where 

the worst case jitter  x
this contradicts the Virtual Wire bound 

Closed form bounds for delay




)1(1 



h

ehD
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Derivation of the bound
 Assume nodes are GR (orFIFO-per aggregate rate latency 

service curve elements)
1) Assume delay bound hD on low delay traffic (EF) exists, where 

h = max number of hops, D = max delay bound per node
2) An arrival curve of aggregate traffic at node i 

i(t) = m  i (rmt + (h-1)rmD + bm) = iRit + (h-1) iRiD + iRi i
where i = (m  i rm )/Ri and i = (m  i bm )/ (m  i rm )

3) Compute horizontal distance between i(t) and i(t):
Di= Ti + (h-1) iD + ii

4) Deduce  D <= (T + )/(1 – (h-1)) where
T = maxi Ti ,  = maxi i and = maxi i 

5) Show that finite bound exists 
at any time t, and let t ->   Ri

Ti

Di

(h
-1

) 
iR

iD
 +

 
 i

R i
 

i

iRi
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The contradiction is in the 
specification of EF

for practically all known nodes, the EF condition is not 
true
� jitter and source rate fluctuations

departure rate may be > rdeparture rate may be > r
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Another specification is needed
should allow delay and backlog computations
should apply well to reasonable routers

� combinations of schedulers, queue, delay elements
� basic schedulers should be easy to model
� concatenation

at the 49th IETF (Dec 2000, San Diego), the old EF 
specification is abandoned in favor of a new one based 
on packet scale rate guarantee
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Why not use GR as a node model ?

has all nice properties seen before: bounds, 
concatenation

but: delay-from-backlog bound

given observed backlog is B, delay ?

why ? 
� we want to control delay from backlog
� diff-serv is not loss-free
� if a network element has a small buffer, it should 

guarantee a low delay
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GR node does not support a backlog-
from-delay bound

Dmax

time

bits input R(t)

minimum outputoutput

backlog
delay
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Packet Scale Rate Guarantee is the 
definition used for EF 

d(n)   f(n) + e
f(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/r

d(n) : departure time for packet n
a(n) : arrival time
f(n) : virtual finish time, f(0) = 0
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f(n-1) d(n-1)a(n)

f(n) d(n)

L(n)/r

f(n-1) d(n-1) a(n)

f(n) d(n)

L(n)/r

f(n-1)d(n-1)a(n) f(n) d(n)

L(n)/r

f(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/rf(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/r
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PSRG has all the nice properties
priority scheduler: r=C,  e=Lmax/C
packet based GPS, with accuracy E1, E2:

G(n)- E1  d(n)   G(n) + E2
G(n) = departure time in fluid GPS system

 rate r, e = E1 + E2 

concatenation of FIFO nodes: same as GR
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Delay from Backlog
Theorem :

packet scale rate guarantee 
 delay  Q/r + e

Q: backlog upon arrival

intuitively clear -- and proof is simple -- if node is 
FIFO (infocom 2001)
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Delay bounds

We can combine all results above and find finite 
and infinite buffer bounds

0.05 0.1 0.15 0.2 0.25

0.2

0.4

0.6

0.8

1



delay

1 MB

0.4 MB
0.1 MB

h=10
e = 2 MTU/r 
r=150 Mb/s 

C=5R
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PSRG versus Service Curve
PSRG => GR  

� (but not conversely !)

thus PSRG(r,e)  => service curve (r, e+lmax/r)

there are identical relations
� PSRG <-> adaptive service curve (Cruz, 1998)
� GR <-> service curve
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A Min-Max approach to solve the non-
FIFO case

routers are FIFO per flow
� all OK with IntServ (per-flow scheduling)

EF use aggregate scheduling
� routers are not FIFO per aggregate

establishing the properties of PSRG with non-FIFO 
nodes has been an open challenge

a Min-Max approach can break it
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we can get rid of f(n) by solving
(1)

define

we obtain 
(2)

  
r

jLjfjdjajf )()1(),1(min),(max)( 























r
nLjLjdD

r
nLjLjaA

r
nLjLjfF

j

j

j

)(...)1()(:

)(...)()(:

)(...)1()(:

  11,min,max  jjjj DFAF
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(2)

re-write (2) by the replacement rule
(min, max) -> (+,x) and obtain

use Gauss elimination

use the reverse replacement rule

  11,min,max  jjjj DFAF

 11   jjjj DFAF

j

n

j
jnn DAAF 






1

0
1...

  jjn

n

jn DAAF ,,...,maxmin 1

1

0 





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Alt. Characterization of PSRG
a node is PSRG(r,e) iff 

for all n and j in [0, n-1]

(A)

or there is some k in [j+1,…, n] such that

(B)

interpretation: replaces VJ’s intuition

r
nLjLjdend )(...)1()()( 



r
nLkLkaend )(...)()()( 


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Applications
Theorem :

packet scale rate guarantee 
 delay  Q/r + e

holds also for non-FIFO nodes
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PSRG has all the nice properties…
… but concatenation results for non-FIFO nodes 

are harder to get
(Le Boudec and Charny 2001):

delay
T1

PSRG
(r2,e2)

PSRG
(r,e)













 






 






 t
r

LTtt
r

LTtTee

rr

Ttt
min1

0
min1

012

2

2)()(sup,)(supmin
1


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SETF
an alternative to EF [Zhi-Li Zhang 2000]
leads to a worst case bound which is finite for all <1
packets stamped with arrival time at network access

� aggregate scheduling
� inside aggregate, order is that of timestamps
Theorem:  

Proof: similar to previous bound

1)1(
)1(1)( 


 h

h

eD


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Contents
1. Arrival curves

2. Service curves, backlog, delay bounds
3. Diffserv: intuition and formal definition behind EF

4. Playback Delay for pre-recorded video
5. Statistical multiplexing with EF
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Network delivery of Pre-
recorded video

 Le Boudec and Verscheure ToN 2000, Thiran, Le Boudec and Worm, Infocom 
2001

Network + end-station offers a service curve  to flow 
x(t) (intserv or diffserv + real time model of end-
station)

Smoother delivers a flow x(t) conforming to an arrival 
curve . Can look-ahead on the server (max d time units)

Video stream is stored in the client buffer B and read 
after a playback delay D.

 a(t-D)x(t) y(t)

NetworkSmoother

ß(t)


Video 
display

B

Video 
server

a(t+d)
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Network delivery of Pre-
recorded video

What are the minimal values of D and B, given d, 
and  ?

What is the scheduling (smoothing) strategy at the 
sender side that achieves these minimal values ? 

Is this optimal smoothing strategy unique ?
Does a large look-ahead delay d help in reducing D

and B ?

 a(t-D)x(t) y(t)

NetworkSmoother

ß(t)


Video 
display

B

Video 
server

a(t+d)
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Putting the Problem into Equations

Smoothed flow x(t) such that
x(t)  0(t)                (i.e, x(t) = 0 if t 0)
x(t)  a(t+d)              (look-ahead up to d time units)
x(t)  (x(t)        (smoothing)

Output flow y(t) such that
y(t)  a(t-D)             (no buffer underflow)
y(t)  a(t-D) + B       (no buffer overflow)

y(t) = x)(t) is not known but (x(t)  y(t)  x(t)

 a(t-D)x(t) y(t)

NetworkSmoother

ß(t)


Video 
display

B

Video 
server

a(t+d)
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The Min-Plus Residuation Theorem
 From Baccelli et al, “Synchronization and Linearity”

Theorem: Assume that the operator  is isotone and 
upper-semi-continuous.

the problem
x(t)  a(t)  (x)(t)
has one maximum solution, given by x(t) = (a)(t)

(Definition of closure of an operator) 
 (x) = inf {x, (x), (x), (x),...}

 is isotone if x(t)  y(t) ->   (x)(t)  (y)(t)
 is upper-semi continuous if infi(xi ) =   (infi(xi))

� true in practice for all our systems
The greedy shaper output is an example of use
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Massaging the Equations to use 
Residuation

Output flow y(t) such that
(x(t)   a (t-D)   (no buffer underflow)
x(t)  a(t-D) + B       (no buffer overflow)

or equivalently using deconvolution operator Ø
x(t)   (a Ø  )(t-D) = supu { a(t-D+u) - (u) }
x(t)  a(t-D) + B

Therefore find smallest D, B s.t. maximal solution of
x(t)  { 0(t)  a(t+d)  (a(t-D) + B) }  {(x(t) }

verifies
x(t)  (a Ø  )(t-D)
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Applying Residuation to our Problem
Maximal solution of

x(t)  { 0(t)  a(t+d)  (a(t-D) + B) }  {(x (t) } 
is, with  sub-additive,

x(t) =  { 0(t)  a(t+d)  (a(t-D) + B) }
= (t)  { ( a)(t-D) + B }  ( a)(t+d) 

Need to check that this solution x(t)  (a Ø  )(t-D)
� (t)  (a Ø  )(t-D) 

->  D  h(a,   )
� ( a)(t-D) + B  (a Ø  )(t-D)

->  B  v(a Ø a ,   )
� ( a)(t+d)  (a Ø  )(t-D) 

->  D + d  v(a Ø a ,   ) 
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Bounds for D, B and d
In summary, we have shown that

� the set of admissible playback delays  D, playback buffer B 
and look-ahead limit d is

D  Dmin = h(a,   )
D + d  (D+d)min = h(a Ø a ,   )
B  Bmin = v(a Ø a ,   )

� in particular, there is a minimum playback delay.
� if D, d, B satisfy the constraints above,  a schedule is 

possible;
else, there is no schedule that can guarantee correct 
operation
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time

bits





The formulae have a simple 
graphical interpretation

 

(1) compute  

Dmin = h(a )

(2) compute the horizontal deviation

 

(3) compute a  a
and the horizontal deviation

bits
a

bits

 

(D + d)min = h(a  a )
 

bits

Bmin = v(a  a  )

(4) compute the vertical deviation
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Example: MPEG Trace

(a Ø a)(t)

a(t)

MPEG files, 25 frames/sec, discretized in 
packets of 416 bytes

rt
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Actual values of delays depend on the length of 
the stream and the position of largest burst, and 
the ability to predict it

 Example: in Jurassic Park trace, 
largest burst occurs between 
frames 28000 - 29000 40000 frames

40000 frames

20000 frames

20000 frames
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Actual values of delays depend on the length of 
the stream, the position of largest burst, and the 
ability to predict it
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Scheduling for Dmin, dmin and Bmin

xmax(t)

a(t-Dmin  )

a(t)

(t)=rt

Dmin t

Bmin

dmin

a(t+dmin )

xmax(t) = (t)  ( a)(t+dmin)  { ( a)(t-Dmin) + Bmin }



96

© Jean-Yves Le Boudec and Patrick Thiran

Example 3: Dual problem formulation

Find smallest D, B and d s. t. the minimal solution of 
x(t)  (R Ø  )(t-D)  (x Ø ) (t) 

verifies
x(t)  0(t)  R(t+d)  {R(t-D) + B} .

Find smallest D, B and d s.t. the maximal solution of
x(t)  0(t)  R(t+d)  {R(t-D) + B}  (x(t) 

verifies
x(t)  (R Ø  )(t-D) .

Property of Ø : x  (x  ) <->  (x Ø )  x
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Max-Plus System Theory in Action
From Baccelli et al, “Synchronization and Linearity”; 

assume that  is isotone and lower-semi-continuous.
Theorem : the problem

x(t)  a(t)  (x)(t)
has one minimum solution, given by xmin(t) = (a)(t)

(Definition of super-additive closure) 
 (x) = sup {x, (x), (x), (x),...}

Minimal solution of
x(t)  (R Ø  )(t-D)  (x Ø ) (t) 

is, with  sub-additive with (0) = 0,
xmin(t) = (R Ø (  ))(t-D)
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Scheduling for Dmin, dmin and Bmin

xmax(t)

R(t-Dmin  )

R(t)

Dmin t

Bmin

dmin

R(t+dmin )

xmax(t) = (t)  ( R)(t+dmin)  { ( R)(t-Dmin) + Bmin }
xmin(t) = (R Ø (  ))(t-D) (Le Boudec, Verscheure 2000)
+ Other metrics (Feng, Rexford 99):

xmin(t)

+ minimal  rate variability (Salehi, Zhang, Kurose, Towsley 98)
+ ON-OFF (Zhang, Hui 97)
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5. Stochastic Bounds

network calculus gives deterministic bounds on 
delay and loss

combine with Hoeffding bounds [1963]: Assume
� Xi are independent and 0  Xi  1
� E(X1+…+ XI) = s is known
then for s < x < I
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
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






sI
xIxI

s
xxxXXP I lnlnexp)...( 1
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Bound on loss probability

 I independent, stationary sources with identical 
constraints i  served in a network element with super-
additive service curve [Chang, Vojnovic and L

where 0 = s0 < s1 <… < sK=,    = inf {t: (t)  (t) } 

and for (v) - (u) > b

else g(u,v) = 0
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Step 1: reduction to horizon 

Step 2:

Step 3 :  Hoeffding to each term 

)}()0,({sup)0( ssAQ s   

)}()0,({supmax)0(
1

ssAQ
kk sssk 


)}()0,({max 1 kkk ssA  

  
i

kikikk ssAssA )()0,()()0,( 11 

)()()()0,( 11 kikikiki ssssA   

)()}()0,({ 11 kkkk ssssAE   
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Application to DiffServ
micro-flows in one aggregate assumed independent at 

network access only
at node i majorize the amount of data in [s,t] by

Ri
j(t)- Ri

j(s)  R0
j(t) - R0

j(s-d)
and apply the previous [Chang, Song and Siu Sigmetrics 2001, Vojnovic and Le 
Boudec Infocom 2002]

node i

access

R0
j(t)

Ri
j(t)
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Compare to Poisson Approximation
 Poisson approximation proposed [Bonald, Proutière, Roberts, Infocom ‘01]

for CBR flows
 Bound  converges to Poisson for many flows and small burstiness

Poisson

500 flows
200 flows

deterministic
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Conclusion
Network Calculus is a set of tools and theories for the 

deterministic analysis of communication networks
A new system theory, which applies min-plus algebra to 

communication networks
Does not supersede stochastic queueing analysis, but 

gives new tools for analysis of sample paths
“Network calculus”, J-Y Le Boudec and P. Thiran, 

Lecture Notes in Computer Sciences vol. 2050, 
Springer Verlag, also available on-line at 
http://lcawww.epfl.ch


