

Network calculus (system theory)

Jean-Yves Le Boudec ICA, EPFL

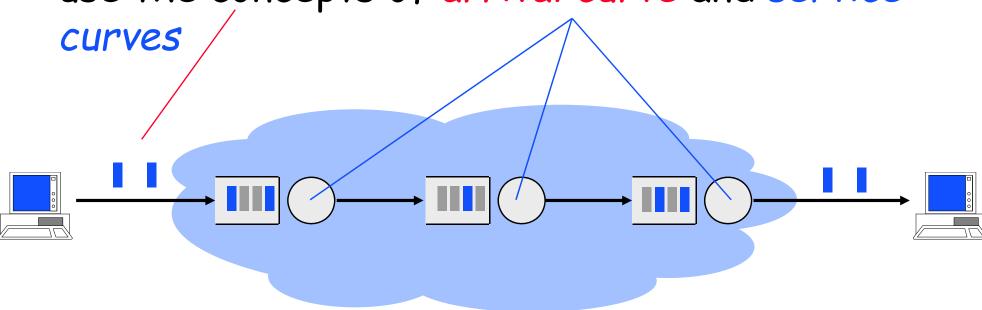
CH-1015 Lausanne jean-yves.leboudec@epfl.ch http://icawww.epfl.ch

Contents

- □ 1. background material
- □ 2. the greedy shaper viewed as a min-plus system
- □ 3. min-plus operators and a theorem
- ☐ 4. the packetized shaper
- □ 5. other examples

Part 1: Background Material Arrival and Service Curves

☐ Internet integrated and differentiated services use the concepts of arrival curve and service

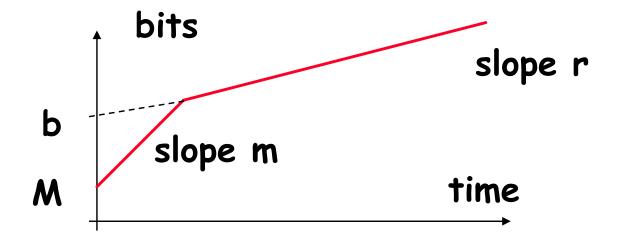


Arrival Curves

 \square Arrival curve α : $R(t) - R(s) \le \alpha(t-s)$

Examples:

- \Box leaky bucket $\alpha(u) = ru+b$
- \Box standard arrival curve in the Internet $\alpha(u) = \min(pu+M, ru+b)$



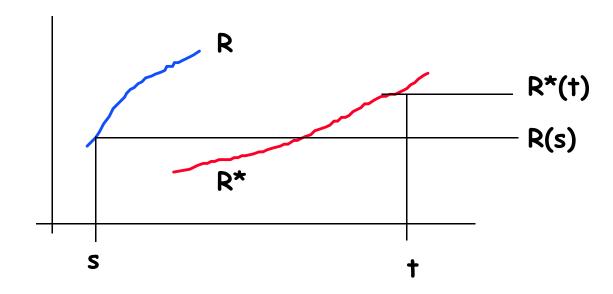
Arrival Curves can be assumed subadditive

- lacktriangle Theorem: α can be replaced by a *sub-additive* function
- \square sub-additive: $\alpha(s+t) \leq \alpha(s) + \alpha(t)$
- □ concave => subadditive

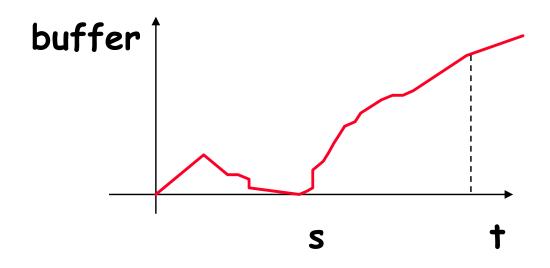
Service Curve

 \Box System S offers a service curve β to a flow iff for all t there exists some s such that

$$R^*(t) - R(s) \ge \beta(t - s)$$



The constant rate server has service curve $\beta(t)=ct$

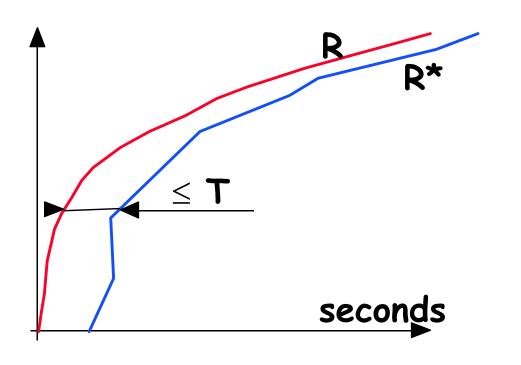


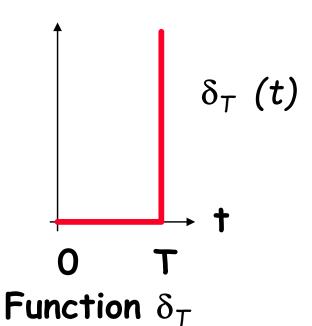
Proof: take s = beginning of busy period:

$$R^*(t) - R^*(s) = c (t-s)$$

$$R^*(t) - R(s) = c (t-s)$$

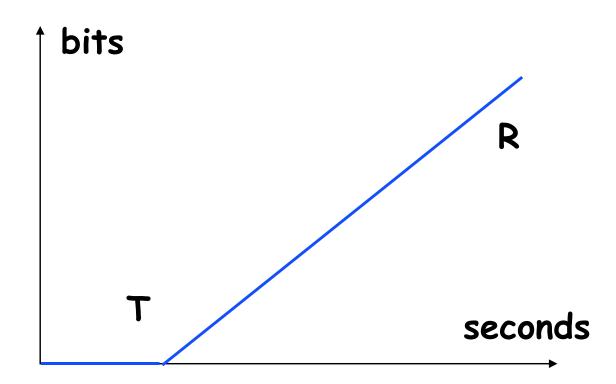
The guaranteed-delay node has service curve δ_{T}



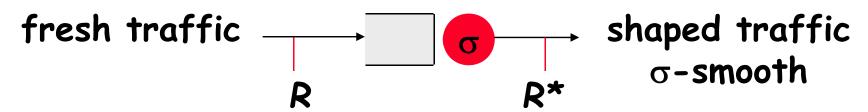


The standard model for an Internet router

□ rate-latency service curve



Part 2: The Greedy Shaper viewed as a Min-Plus System



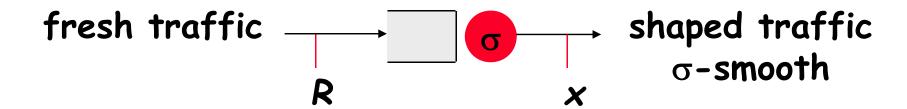
- \square shaper: forces output to be constrained by σ
- greedy shaper stores data in a buffer only if needed
- □ examples:

constant bit rate link ($\sigma(t)=ct$)

ATM shaper; fluid leaky bucket controller

☐ Pb: find input/output relation

A Min-Plus Model for Shapers



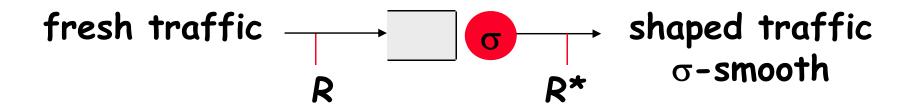
- ☐ Shaper Equations:
 - (1) $x \le x \otimes \sigma$
 - (2) $x \leq R$

(1)
$$x \le x \otimes \sigma$$
 (2) $x \le R$

Solving the Min-Plus Model

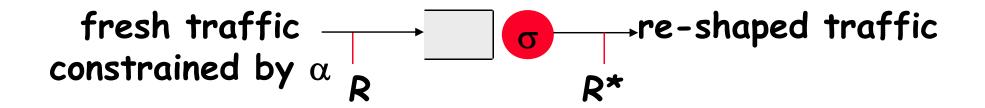
- \Box Theorem: There is a maximum solution; it is equal to R $\otimes \sigma$
- ☐ Proof:
- (1) find a solution: fixed point $x^0 = R$; $x^i = x^{i-1} \otimes \sigma$ and $x^* = \inf\{x^0, x^1, ..., x^i, ...\}$ here: $\sigma \otimes \sigma = \sigma$ and thus $x^i = R \otimes \sigma = x^*$
- (2) if x is a solution, then $x \le R$ thus $x \otimes \sigma \le R \otimes \sigma$

I/O of Greedy Shaper



- \Box for any shaper, output $\leq R \otimes \sigma$
- \square R is wide-sense increasing, thus R \otimes σ also
- \Box thus: the greedy shaper output is R*= R \otimes σ

A consequence: Greedy Shaper Keeps Arrival Constraints



- $lue{}$ The output of the shaper is still constrained by lpha
- ☐ Proof

$$R^* = R \otimes \sigma \leq (R \otimes \alpha) \otimes \sigma = (R \otimes \sigma) \otimes \alpha = R^* \otimes \alpha$$

Part 3: Min-Plus Operators and a theorem

- \Box G = set of functions R -> R⁺ that are wide-sense increasing
- works also if time is discrete: N -> R⁺
- \square we consider operators $\Pi: G \rightarrow G$
- \square Π is isotone if $x(t) \le y(t)$ => $\Pi(x)(t) \le \Pi(y)(t)$
- \square Π is upper-semi continuous iff $\inf_i(\Pi(x_i)) = \Pi(\inf_i(x_i))$ for \downarrow sequences x_i

Min-Plus Linear Operators

- \square Π is min-plus linear if
 - for any constant K, $\Pi(x + K) = \Pi(x) + K$ $\Pi(x \wedge y) = \Pi(x) \wedge \Pi(y)$

 Π is upper-semi continuous.

- □ Representation Theorem: Π is min-plus linear <=> there is some H: $R \times R \rightarrow R^+$ such that $\Pi(x)(t)=\inf_s[H(t,s)+x(s)]$
- □ min-plus linear => isotone

Other Properties of Operators

- □ Π is time invariant if for some T $y(t) = \Pi(x)(t)$ and $x'(t) = x(t+T) \implies \Pi(x')(t) = y(t+T)$
- \square Π is causal if $\Pi(x)(t)$ depends only on x(s), $0 \le s \le t$

Two linear operators

□ Convolution by a fixed function:

$$C_{\sigma}: \times \to \times \otimes \sigma$$
 C_{σ} is linear, time invariant, not causal

 $C_{\sigma} \circ C_{\sigma'} = C_{\sigma \otimes \sigma'}$

 \square Idempotent operator $h_M \times x \rightarrow h_M(x)$

with
$$h_M(t) = \inf_{s \le t} \{ M(t) - M(s) + x(s) \}$$

is idempotent: $h_M o h_M = h_M$ linear, causal, not time invariant

The Packetizer

- Define function P^L by $P^L(x) = L(n) \Leftrightarrow L(n) \le x < L(n+1)$ [Chang 99]
- \Box call P_L the operator: $P_L(R)(t) = P^L(R(t))$ accumulates bits until entire packets can be delivered
- □ P_L is idempotent, not linear, but is isotone and upper-semi continuous

A Min-Plus Theorem

- ☐ Implicitely contained in Baccelli et al, "Synchronization and Linearity", Baccelli et al.
- \square Theorem: Assume that Π is isotone and uppersemi-continuous. The problem

$$x(t) \leq b(t) \wedge \Pi(x)(t)$$

has one maximum solution in G, given by

$$x^*(t) = \underline{\Pi}(b)(t)$$

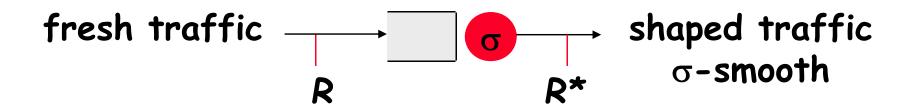
☐ (Definition of closure)

$$\Pi(x) = \inf \{x, \Pi(x), \Pi \circ \Pi(x), \Pi \circ \Pi \circ \Pi(x), ...\}$$

☐ in other words:

$$x^0 = b$$
; $x^i = \Pi(x^{i-1})$ and $x^* = \inf\{x^0, x^1, ..., x^i, ...\}$

Part 4: packetized shaper



- □ same as previous, but releases only entire packets
- □ example: leaky bucket controller
- Pb: find input/output relation of packetized greedy shaper

Model for packetized shapers

- \Box Define L(i) = $I_1 + I_2 + ... + I_i$
- ☐ The output satisfies:
 - (1) $R^* \leq R^* \otimes \sigma$
 - (2) $R^* \leq R$
 - (3) R* is L-packetized

Modelling packetized greedy shapers

- \square system equation: $R^* \leq P_L(R^*) \wedge C_{\sigma}(R^*) \wedge R$
- \square maximum solution: $R^* = P_L \triangle C_{\underline{\sigma}}(R)$
- \Box th 4.3.3: closure ((P\Id)o(Q\Id))= closure(P\Q) thus closure(P_L \(\times C_\sigma)=closure(P_L o C_σ)
- after some algebra: $R^* = \inf \{R^{(1)}, R^{(2)}, R^{(3)}, ...\}$ with $R^{(i)} = P_1 \circ C_{\sigma} \circ ... \circ P_1 \circ C_{\sigma} (R)$
 - i.e. $R^{(0)}=R$, $R^{(i)}=P^{L}(R^{(i-1)}\otimes\sigma)$

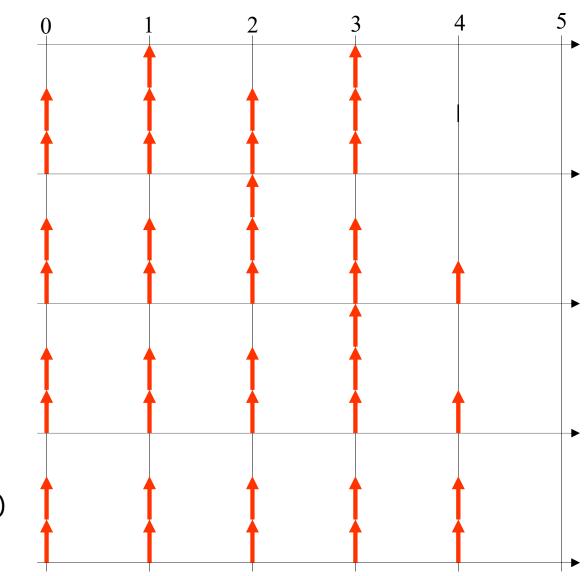
Numerical Example for $R^* = P_L \triangle C_{\sigma}(R)^2$

 $R^{(1)}$

 $R^{(2)}$

R(3)

- \Box $\sigma(t) = 25 | t/T |$ for t >0, else 0
- □ σ smooth<=> at most 25 data unit per time unit
- □ R(t)= a burst of 10 packets of size 10 at time 0
- $\square R^{(i)} = P^{L}(R^{(i-1)} \otimes \sigma)_{R^{*} = R^{(4)}}$



Special Case

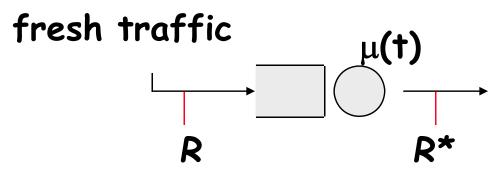
□ Theorem (LeBoudec, Sigmetrics 2001) If $\sigma = \sigma_0 + l$ with $l \ge l_{max}$ then

$$P_L \circ C_{\sigma} \circ \dots \circ P_L \circ C_{\sigma} = P_L \circ C_{\sigma} \circ P_L$$

and thus $R^* = P^L(R \otimes \sigma)$

- \square Applications: if σ is concave and $\sigma(0+) \ge I_{max}$ then the packetized shaper can be realized as the concatenation: shaper + packetizer
- ☐ leaky bucket controllers based on bucket replenishment are functionally equivalent to leaky bucket based on virtual finish times

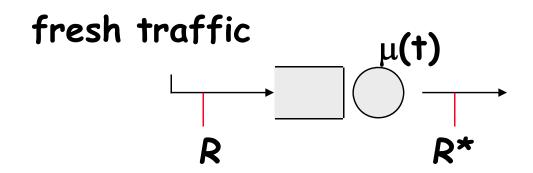
Part 5: Other Examples Ex3: Variable Capacity Node



- □ node has a time varying capacity $\mu(t)$ Define M(t) = $\int_0^t \mu(s) ds$.
- \Box the output satisfies $R^* \leq R$ $R^*(t) - R^*(s) \leq M(t) - M(s)$ for all $s \leq t$

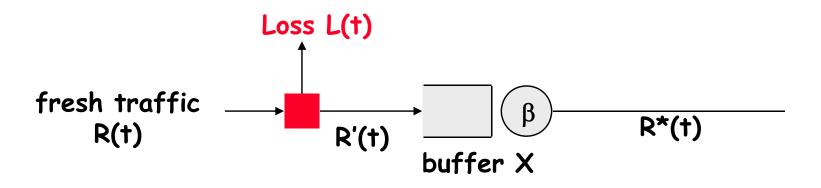
and is "as large as possible"

Variable Capacity Node



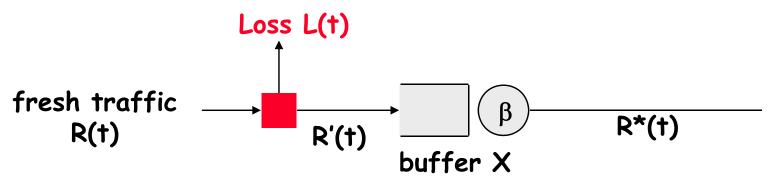
- \square R* \leq R R*(t) -R*(s) \leq M(t) -M(s) for all $s \leq$ t
- \square $R^* \leq R \wedge h_M(R^*)$
- □ thus there is a maximum solution in G, and $R^* = h_M(R)$
- \square now h_R is idempotent thus $h_M = h_M$

Ex 4: Loss System



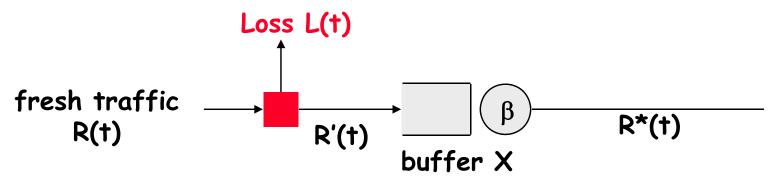
- \square node with service curve $\beta(t)$ and buffer X
- when buffer is full incoming data is discarded
- □ modelled by a virtual controller (not buffered)
- ☐ fluid model or fixed sized packets
- ☐ Pb: find loss ratio

Model for Loss System



- \square R'(t) satisfies
 - $R' \leq (X + \Pi(R')) \wedge h_R(R') \wedge \delta_0$ where Π is the transformation $R' \rightarrow R^*$
- □ assume Π isotone and usc (« physical assumptions »); thus R' = $(X + \Pi) \wedge h_R(\delta_0)$
- \square we don't know Π but $\Pi \geq C_{\beta}$
- \Box theorem: $\Pi \geq \Pi' \Rightarrow \underline{\Pi} \geq \underline{\Pi'}$
- \Box thus $R' \geq (X + C_{\beta}) \wedge h_{R}(\delta_{0})$

Representation of Loss



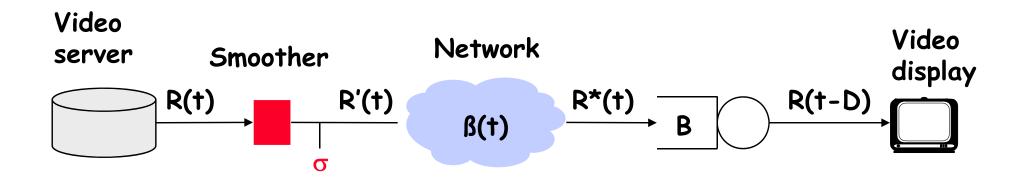
- \square we have shown: $R' \ge (X + C_{\beta}) \wedge h_{R}(\delta_{0})$
- compute the closure, obtain R', thus the loss process L=R-R'

$$L(t) \leq \sup_{k \geq 0; 0 \leq s_{2k} \leq .. \leq s_2 \leq s_1 \leq t} \left\{ \sum_{i=1}^{k} [R(s_{2i-1}) - R(s_{2i}) - \beta(s_{2i-1} - s_{2i})] - kX \right\}$$

Bound on Loss Ratio

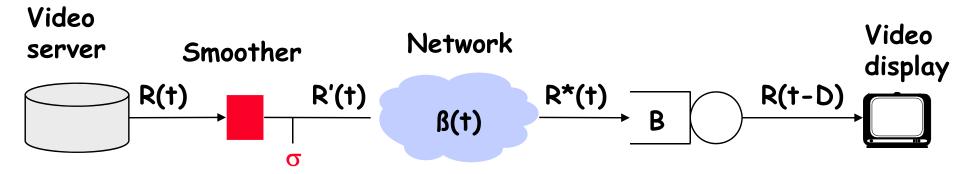
 \Box Theorem: if R is α -smooth, then $L(t)/R(t) \le 1 - r$ with r = min(1, inf $_{t>0}$ [β (t) +X] $/\alpha$ (t)) □ best bound with these assumptions □ proof: define x(t) = r R(t)x satisfies the system equation: $x \leq (X + x \otimes \beta) \wedge h_{R}(x) \leq (X + \Pi(x)) \wedge h_{R}(x)$ R' is the maximum solution \Rightarrow $x(t) \leq R'(t)$ for all t

Ex 5: Optimal smoothing



- \square Network offers a service curve β to flow R'(t),
- \Box Smoother delivers a flow R'(t) conforming to an arrival curve σ .
- \Box Video stream is stored in the client buffer B read after a playback delay D.
- \square Pb: which smoothing strategy minimizes D and B?

System Equations



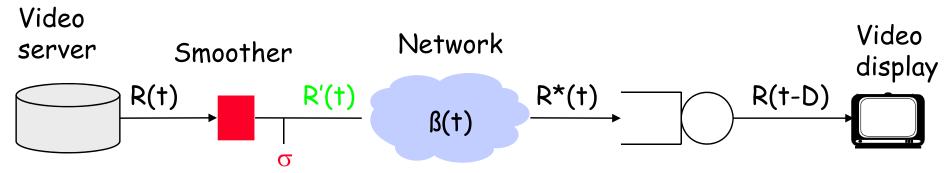
- \Box (1) R' is σ -smooth
- \square (2) $(R' \otimes \beta)(t) \geq R(t-D)$
- \square R'(t) = 0 for t \leq 0
- Define min-plus deconvolution $(a \varnothing b)(t) = \sup_{s \ge 0} [a(s+t)-b(s)]$
- $\square x \leq y \otimes \beta \iff x \varnothing \beta \leq y$

Max-Plus operators

- \square replace \leq by \geq , min-plus becomes max-plus
- \Box Deconvolution with a fixed function $x \rightarrow x \varnothing a$

is max-plus linear

A max-plus model for Example 5

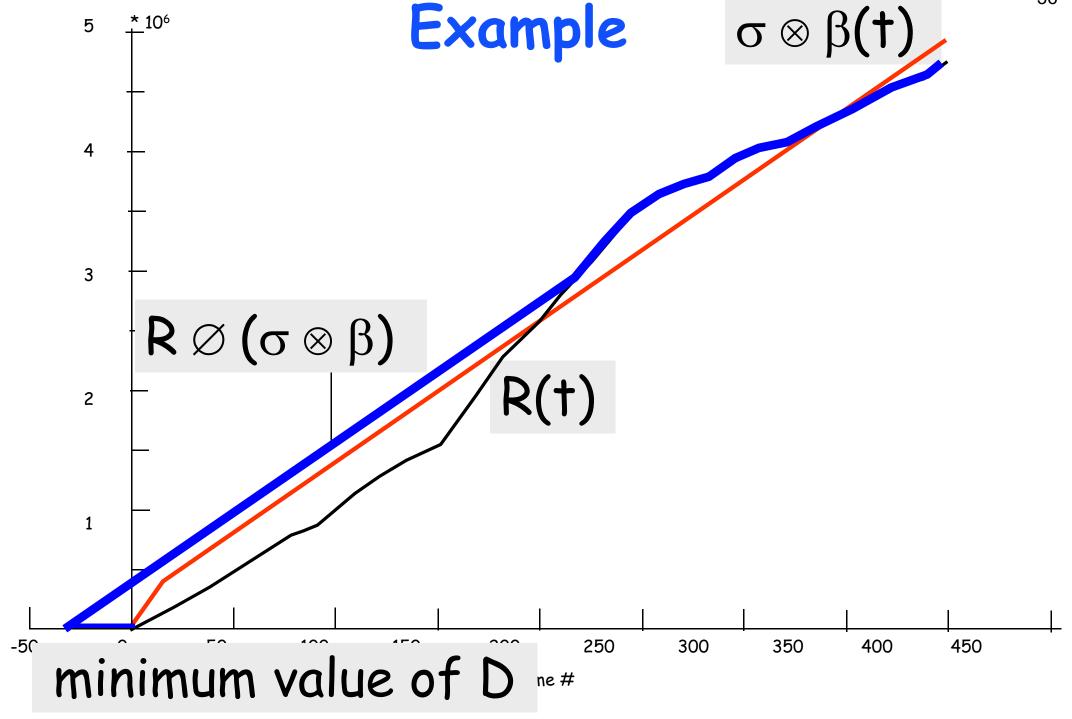


- □ R' satisfies:
 - (1) $R' \geq R' \varnothing \sigma$
 - (2) $R' \geq (R \varnothing \beta)(t-D)$
- a max-plus system, , with minimum solution

$$x^* = \inf \{x^0, x^1, ..., x^i, ...\}$$

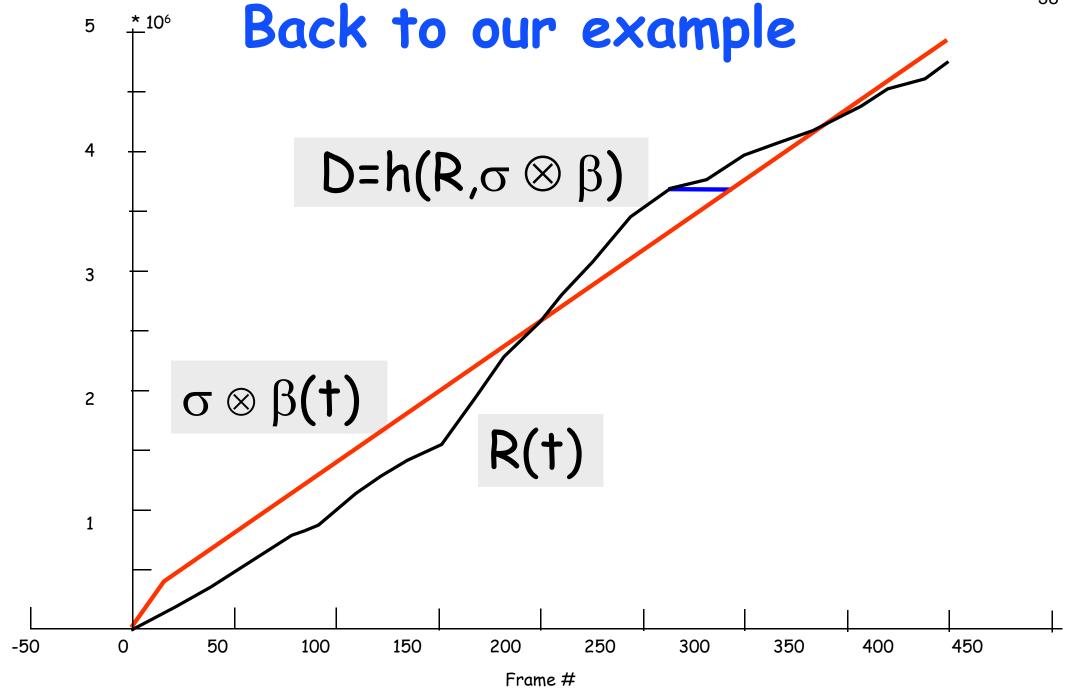
 $x^0 (t) = (R \emptyset \beta)(t-D)$
 $x^i = x^{i-1} \emptyset \sigma$

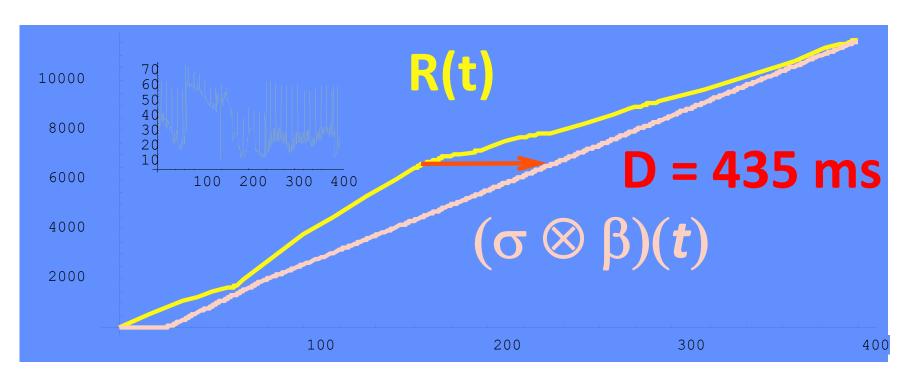
 \Box thus R' = (R $\emptyset \beta$) $\emptyset \sigma$ (t-D) = R \emptyset ($\beta \otimes \sigma$) (t-D)

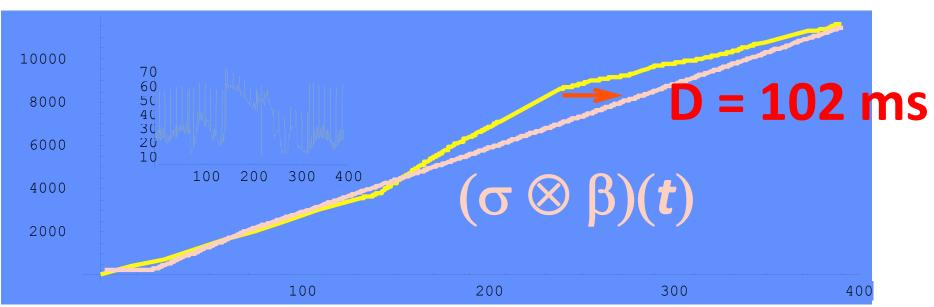


Minimum Playback Delay

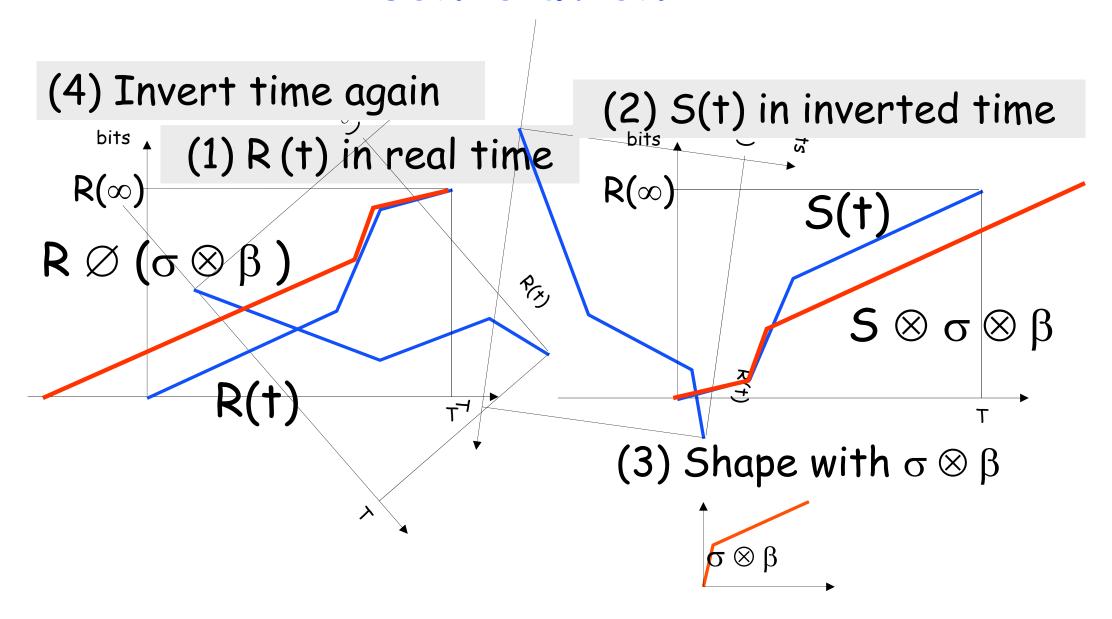
- \square D must satisfy: R \varnothing ($\beta \otimes \sigma$) (-D) \geq 0 \square this is equivalent to
 - $D \geq h(R, \beta \otimes \sigma)$



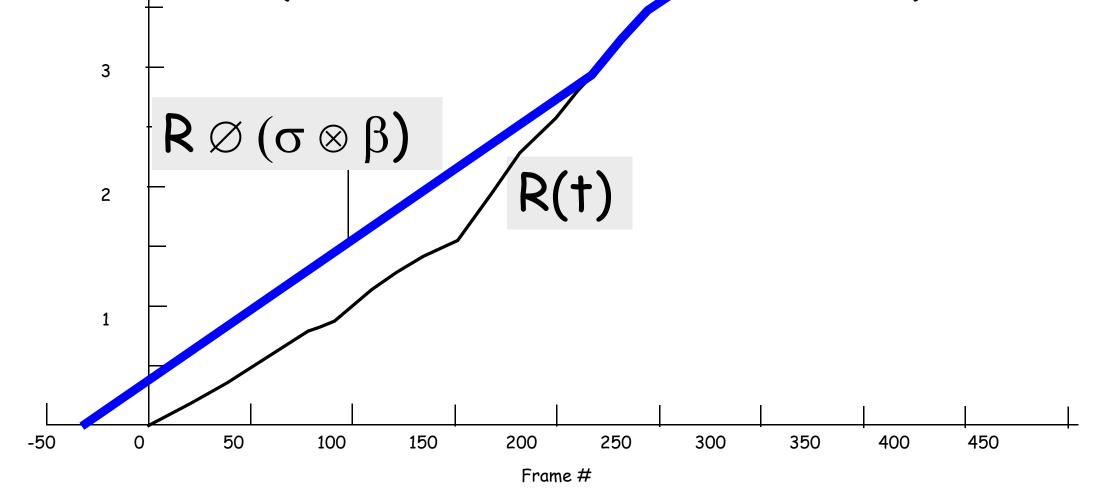




Deconvolution is the time inverse of convolution



☐ Infocom 2001: Joint Smoothing and Source Rate Selection (Verscheure, Frossard, Le Boudec)



Conclusion

- □ Network Calculus is a set of tools and theories for the deterministic analysis of communication networks
- ☐ Application of min-plus algebra
- □ Does not supersede stochastic queueing analysis, but gives new tools for analysis of sample paths
- Book and slides available online at Le Boudec's or Thiran's home page