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3Part 1: Background Material
Arrival and Service Curves

 Internet integrated and differentiated services 
use the concepts of arrival curve and service 
curves
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Arrival Curves

 Arrival curve  R(t) -R(s)  (t-s)

Examples:
 leaky bucket  (u) = ru+b
 standard arrival curve in the Internet

(u) = min (pu+M, ru+b)

time

bits

b

M

slope r

slope m
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Arrival Curves can be assumed sub-
additive

 Theorem: can be replaced by a sub-additive
function

 sub-additive: (s+t)  (s) + (t)

 concave => subadditive
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Service Curve

 System S offers a service curve  to a flow iff 
for all t there exists some s such that

R * ( t )  R (s )   ( t  s )

ts

R*(t)

R(s)

R

R*



7The constant rate server has service 
curve (t)=ct

Proof: take s = beginning of busy period: 
R*(t) – R*(s) = c  (t-s)
R*(t) – R(s)   = c  (t-s)

buffer

s           t
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The guaranteed-delay node 
has service curve T

seconds

 T

R
R*

0     T

T   (t)

Function T

t



9The standard model for an 
Internet router

 rate-latency service curve

T

bits

R

seconds



10Part 2: The Greedy Shaper viewed as a 
Min-Plus System

 shaper: forces output to be constrained by 
 greedy shaper storesdata in a buffer only if 

needed
 examples: 

� constant bit rate link ((t)=ct)
� ATM shaper; fluid leaky bucket controller

 Pb: find input/output relation

fresh traffic

R R*

shaped traffic
-smooth
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A Min-Plus Model for Shapers

 Shaper Equations:
(1) x  x 
(2) x  R

fresh traffic

R x

shaped traffic
-smooth
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Solving the Min-Plus Model

 Theorem: There is a maximum solution;  it is equal 
to R 

 Proof:
(1) find a solution: fixed point

x0 = R ; xi = xi-1  and x* = inf {x0, x1, ..., xi, ...}
here:   =  and thus xi = R =x*

(2) if x is a solution, then 
x  R thus x   R 

(1) x  x 
(2) x  R
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I/O of Greedy Shaper

 for any shaper, output  R 
 R is wide-sense increasing, thus R  also
 thus: the greedy shaper output is R*= R 

fresh traffic

R R*

shaped traffic
-smooth
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A consequence: Greedy Shaper Keeps 
Arrival Constraints

 The output of the shaper is still constrained by 
 Proof

R* = R  (R R R* 

fresh traffic
constrained by  R R*

re-shaped traffic
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Part 3: Min-Plus Operators 
and a theorem

 G = set of functions R -> R+ that are wide-sense 
increasing

 works also if time is discrete: N -> R+

 we consider operators  G -> G
  is isotone if x(t)  y(t) =>   (x)(t)  (y)(t)
  is upper-semi continuous iff 

infi(xi ) =  (infi(xi)) for  sequences xi 
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Min-Plus Linear Operators

  is min-plus linear if 
� for any constant K, (x + K) = (x) + K 

(x  y) = (x)  (y) 
�  is upper-semi continuous.

 Representation Theorem is min-plus linear <=>
there is some H:  R x R  -> R+ such that 
(x)(t)=infs[H(t,s)+x(s)]

 min-plus linear => isotone
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Other Properties of Operators

  is time invariant if for some T
y(t) = (x)(t)  and x’(t) = x(t+T)   =>    (x’)(t) = 
y(t+T)

  is causal if (x)(t) depends only on
x(s), 0  s  t
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Two linear operators

 Convolution by a fixed function: 
C x  -> x  
� C is linear, time invariant, not causal
� CC’ = C’

 Idempotent operator hM      x-> hM (x)

with hM(t) =  infst { M(t)- M(s) + x(s) } 

� is idempotent: hMo hM = hM

� linear, causal, not time invariant



19

The Packetizer

 Define function PL by
PL(x) = L(n)  L(n)  x < L(n+1) [Chang 99]

 call PL the operator: PL(R)(t) = PL(R(t)) 
accumulates bits until entire packets can be 
delivered

 PL is idempotent, not linear, but is isotone and 
upper-semi continuous
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A Min-Plus Theorem

 Implicitely contained in Baccelli et al, 
“Synchronization and Linearity”, Baccelli et al. 

 Theorem: Assume that  is isotone and upper-
semi-continuous. The problem

x(t)  b(t)  (x)(t)
has one maximum solution in G, given by 
x*(t) = (b)(t)

 (Definition of closure) 
 (x) = inf {x, (x), (x), (x),...}

 in other words: 
x0 = b ; xi =  (xi-1) and x* = inf {x0, x1, ..., xi, ...}
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Part 4: packetized shaper

 same as previous, but releases only entire packets
 example : leaky bucket controller
 Pb: find input/output relation of packetized 

greedy shaper

fresh traffic

R R*

shaped traffic
-smooth
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Model for packetized shapers

 Define L(i) = l1 + l2 + … + li
 The output satisfies:

(1) R*  R* 
(2) R*  R
(3) R* is L-packetized

fresh traffic

R R*

shaped traffic
-smooth
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Modelling packetized greedy shapers

 system equation : R*  PL (R*)  CR*)  R
 maximum solution: R* = PL  C(R)
 th 4.3.3: closure ((PId)o(QId))= closure(PQ)

thus closure(PL  C)=closure(PL o C)
 after some algebra:

R* = inf {R(1) , R(2) R(3), …} 
with R(i) PL o C o … o PL o C (R)

i.e.   R(0)=R,  R(i) = PL(R(i-1) )
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Numerical Example for R* = PL  C(R)

 (t) = 25  t/T 
for t >0, else 0

   smooth<=> at 
most 25 data 
unit per time unit 

 R(t)= a burst of 
10 packets of 
size 10 at time 0

 R(i) = PL(R(i-1) ) R* = R(4)

0 1 2 3 4 5

R(1)

R(2)

R(3)
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Special Case 

 Theorem (LeBoudec, Sigmetrics 2001)
If  = 0 + l with l  lmax then 

PL o C o … o PL o C = PL o C oPL

and thus R* = PL(R)
 Applications: if  is concave and  lmax then 

the packetized shaper can be realized as the 
concatenation : shaper + packetizer

 leaky bucket controllers based on bucket 
replenishment are functionally equivalent to leaky 
bucket based on virtual finish times
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Part 5: Other Examples
Ex3: Variable Capacity Node

 node has a time varying capacity µ(t)
Define M(t) =0

t
(s) ds. 

 the output satisfies 
R*   R
R*(t) -R*(s)   M(t) -M(s) for all s  t

and is “as large as possible”

fresh traffic (t)

R R*
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Variable Capacity Node

 R*   R
R*(t) -R*(s)   M(t) -M(s) for all s  t

 R*  R  hM(R*)
 thus there is a maximum solution in G, and 

R*= hM(R)
 now hR is idempotent thus hM = hM

 finally: R*(t) = infst { M(t)- M(s) + R(s) } 

fresh traffic (t)

R R*
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Ex 4:  Loss System

 node with service curve (t) and buffer X
 when buffer is full incoming data is discarded 
 modelled by a virtual controller   (not buffered)
 fluid model or fixed sized packets
 Pb: find loss ratio

fresh traffic
R(t)

buffer X

Loss L(t)


R’(t) R*(t)
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Model for Loss System

 R’(t) satisfies
R’  (X + (R’))  h R(R’) 0 where  is the 

transformation R’ -> R*
 assume  isotone and usc (« physical 

assumptions »); thus R’ = (X + )  h R(0)
 we don’t know  but   C

 theorem:  ’   ’
 thus R’  (X + C )  h R(0)

fresh traffic
R(t)

buffer X

Loss L(t)


R’(t) R*(t)



30

Representation of Loss

 we have shown:  R’  (X + C )  h R(0)
 compute the closure, obtain R’, thus the loss 

process L=R-R’

fresh traffic
R(t)

buffer X

Loss L(t)


R’(t) R*(t)
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Bound on Loss Ratio

 Theorem: if R is -smooth, then 
L(t)/R(t)  1 - r

with r = min(1, inf t  0 [(t) +X] /(t))
 best bound with these assumptions
 proof:

� define x(t) = r R(t)
� x  satisfies the system equation:

x  (X + x )  h R(x)  (X + (x))  h R(x) 
� R’ is the maximum solution

=> x(t)  R’(t) for all t 
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Ex 5: Optimal smoothing

 Network offers a service curve  to flow R’(t),
 Smoother delivers a flow R’(t) conforming to an 

arrival curve .
 Video stream is stored in the client buffer B read 

after a playback delay D.
 Pb: which smoothing strategy minimizes D and B ?

� R(t-D)R’(t) R*(t)

NetworkSmoother

ß(t)


Video 
display

B

Video 
server

R(t)
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System Equations

 (1)  R’ is -smooth
 (2)  (R’(t)  R(t-D)
 R’(t) = 0 for t  0 

 Define min-plus deconvolution 
(a Ø b)(t) = sups 0 [a(s+t)-b(s)]

 x    y   <=>  x Ø   y 

� R(t-D)R’(t) R*(t)

NetworkSmoother

ß(t)


Video 
display

B

Video 
server

R(t)
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Max-Plus operators

 replace  by , min-plus becomes max-plus
 Deconvolution with a fixed function 

x -> x Ø a

is max-plus linear 
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A max-plus model for Example 5

 R’ satisfies:
(1) R’  R’ Ø 
(2) R’  (R Ø  )(t-D)

 a max-plus system, , with minimum solution  
x* = inf {x0, x1, ..., xi, ...}

x0 (t) = (R Ø  (t-D) 
xi = xi-1 Ø 

 thus R’ = (R Ø  ) Ø  (t-D) = R Ø (  ) (t-D)

� R(t-D)R’(t) R*(t)

NetworkSmoother

ß(t)


Video 
display

Video 
server

R(t)
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Example

R(t)R(t)

 (t) (t)

-50               0               50              100            150             200            250            300            350           400           450

Frame #

5

4

3

2

1

* 106

R  ( )R  ( )

minimum value of Dminimum value of D
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Minimum Playback Delay

 D must satisfy :
R Ø (  ) (-D)  0

 this is equivalent to
D  h(R,   )
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Back to our example

D=h(R, )D=h(R, )

 (t) (t)
R(t)R(t)

-50               0               50              100            150             200            250            300            350           400           450

Frame #

5

4

3

2

1

* 106
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40Deconvolution is the time inverse of 
convolution

(1) R (t) in real time(1) R (t) in real time
(2) S(t) in inverted time(2) S(t) in inverted time

(3) Shape with  

 

(4) Invert time again(4) Invert time again
bits

R()

TR(t)

bits

R()

T

S(t)

S   
R  ( )
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Back to our example

R(t)R(t)

-50               0               50              100            150             200            250            300            350           400           450

Frame #
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* 106

R   )R   )

 Infocom 2001: Joint Smoothing and Source Rate 
Selection (Verscheure, Frossard, Le Boudec)
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Conclusion

 Network Calculus is a set of tools and theories 
for the deterministic analysis of communication 
networks

 Application of min-plus algebra

 Does not supersede stochastic queueing analysis, 
but gives new tools for analysis of sample paths

 Book and slides available online at Le Boudec’s or 
Thiran’s home page


