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Part 1: Background Material
Arrival and Service Curves

A Internet integrated and differentiated services
use the concepts of arrival curve and service
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Arrival Curves
A Arrival curve o:  R(t) -R(s) < a(t-s)

Examples:
4 leaky bucket o(u) = ru+b

J standard arrival curve in the Internet
a(u) = min (pu+M, ru+b)

. bits

slope r

time
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Arrival Curves can be assumed sub-
additive

1 Theorem: a can be replaced by a sub-additive
function

A sub-additive: a(s+t) < a(s) + a(t)

O concave => subadditive



Service Curve

1 System S offers a service curve B to a flow iff
for all t there exists some s such that

R™(t)— R(s) 2 B(t - s)

- R*(1)

R*




The constant rate server has service
curve B(t)=ct

buffer |

S T

Proof: take s = beginning of busy period:
R*(t) - R*(s) = ¢ (t-s)
R*(t)-R(s) =c (t-s)



The guaranteed-delay node
has service curve 6+

5r (t)

1-

seconds 0 T

Function 5



The standard model for an
Internet router

L rate-latency service curve

| bits

seconds




Part 2: The Greedy Shaper viewed as a
Min-Plus System

fresh traffic | j‘_’_. shaped traffic
R R*

c-smooth

 shaper: forces output to be constrained by ¢

1 greedy shaper stores data in a buffer only if
needed

 examples:
0 constant bit rate link (o(t)=ct)
0 ATM shaper; fluid leaky bucket controller

d Pb: find input/output relation




A Min-Plus Model for Shapers

fresh traffic | j‘_’_. shaped traffic
R X

c-smooth

 Shaper Equations:
(1) x<x®o
(2) x<R
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(D)x<x®oc

(2) x <R Solving the Min-Plus Model
1 Theorem: There is a maximum solution; it is equal
tToR®c
J Proof:

(1) find a solution: fixed point
xX0=R; x' = x"1®c and x* = inf {x°, x1, ..., xi, ...}

here: c ® 6 = o and thus X' = R ® ¢ =x*

(2) if x is a solution, then
X<Rthus x ® c<R®oc
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I/0 of Greedy Shaper
fresh traffic | j‘_’_.
R R*

shaped traffic
c-smooth

d for any shaper, output <R ® o
1 R is wide-sense increasing, thus R ® o also
d thus: the greedy shaper output isR*= R® o




A consequence: Greedy Shaper Keeps
Arrival Constraints

fresh traffic | j ‘_’_.r'e-shaped traffic
R R*

constrained by a

1 The output of the shaper is still constrained by o

d Proof
R*=R®0c <(R®0)®c=(R®c)®a=R*®a




Part 3: Min-Plus Operators
and a theorem

d G = set of functions R -> R* that are wide-sense
Increasing

d works also if time is discrete: N -> R*
1 we consider operatorsI1:6 -> 6
4 ITis isotone if x(t)<y(t) => TI(x)(t)<TIIi(y)(t)

J I is upper-semi continuous iff
inf,(T(x;)) = TI(inf(x,)) for { sequences x.
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Min-Plus Linear Operators

A ITis min-plus linear if
0 for any constant K, TI(x + K) = T1(x) + K
M(x A y) = TI(x) A TI(y)
0 IT i1s upper-semi continuous.

1 Representation Theorem: IT is min-plus linear <=>
there is some H: R x R -> R* such that
II(x)(*)=infs[H(t,s)+x(s)]

d min-plus linear => isotone
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Other Properties of Operators

A I1is time invariant if for some T
y(t) = TI(x)(t) and x(t) = x(t+T) => TI(x)(t)=
y(t+T)

4 ITis causal if T1(x)(t) depends only on
x(s), 0<s<t
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Two linear operators

[ Convolution by a fixed function:
C. X >X®oc
0 C_ is linear, time invariant, not causal
0CoC.=C_g.
L Idempotent operator hy, x-> hy, (x)

with hy(t) = info, { M(t)- M(s) + x(s) }

0 is idempotent: hyo hy = hy,
0 linear, causal, not time invariant
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The Packetizer

[ Define function P- by
PL(x) = L(n) < L(n) < x < L(n+1) [Chang 99]
4 call P, the operator: P (R)(t) = P~(R(1))
accumulates bits until entire packets can be
delivered

d P, is idempotent, not linear, but is isotone and
upper-semi continuous

19
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A Min-Plus Theorem

U Implicitely contained in Baccelli et al,
"Synchronization and Linearity”, Baccelli et al.

1 Theorem: Assume that I is isotone and upper-
semi-continuous. The problem
< b(t) A
has one maximum solution in G, given by
= [I(b)(t)
A (Definition of closure)
I1(x) = inf {x, [1(x), [ToI1(x), IToIloIl(x),...}
d in other words:
x0=b; x =II (x-1) and x* = inf {x°, x!, ..., xi, ...}
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Part 4: packetized shaper
fresh traffic | j‘_’_.
R R*

shaped traffic
c-smooth

J same as previous, but releases only entire packets
1 example : leaky bucket controller

d Pb: find input/output relation of packetized
greedy shaper




Model for packetized shapers
fresh traffic | j‘_’_»
R R*

shaped traffic
c-smooth

d DefineL(i) =1+, + .. +1I
d The output satisfies:

(1) R*<R*®oc

(2) R*<R

(3) R*isL-packetized
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Modelling packetized greedy shapers

L

system equation : R™ < AR
maximum solution: R* = P, A C (R)

th 4.3.3: closure ((PAId)o(QAId))= closure(PAQ)
thus closure(P, A C_)=closure(P o C_)

 after some algebra:
R* = inf {(RW , R(@) RG) _}
with RO =P, 0C_0..0P 0C_(R)

L

L

i.,e. RO:=R, R =PLRIV® o)
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Numerical Example for R*

Q o(t)=25] t/T |
for t >0, else O

d o - smooth«=> at
most 25 data
unit per fime unit )

A R(t)= a burst of

10 packets of
size 10 at time O  R®

R()

Q RO = PLR(D @ &) R = R
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Special Case

1 Theorem (LeBoudec, Sigmetrics 2001)
If c=ocp+Iwithl> | . then

PPoC.,o..oP oC_ =P oC_oP

and thus R* = P{(R® &)

[ Applications: if o is concave and o(0+) > |, then
the packetized shaper can be realized as the
concatenation : shaper + packetizer

1 leaky bucket controllers based on bucket
replenishment are functionally equivalent to leaky
bucket based on virtual finish times
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Part 5: Other Examples
Ex3: Variable Capacity Node

fresh traffic (’r)

| | j

A node has a time var'ymg capacity p(t)
Define M(1) IO u(s) ds.

O the output satisfies
R* <R
R*(t) -R*(s) < M(t) -M(s) forall s <t

and is "as large as possible”
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Variable Capacity Node
fresh traffic (1)

|| j ;I:,

R

d R* <R
R*(t) -R*(s) < M(t) -M(s) for all s <t
n < RA

1 thus there is a maximum solution in G, and
R*= hu(R)

1 now hy is idempotent thus hy, = hy,
d finally: R*(t) = inf . { M(t)- M(s) + R(s) }
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Ex 4: Loss System

Loss L(1)

fresh traffic ;L > \
R(t) R() Do

buffer X

d node with service curve A(t) and buffer X

1 when buffer is full incoming data is discarded
1 modelled by a virtual controller (not buffered)
1 fluid model or fixed sized packets

4 Pb: find loss ratio
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Model for Loss System

Loss L(T)

fresh traffic >L .
R(1) R'(1) j @ R*(1)

buffer X

R'(t) satisfies
R' < NSy Where IT is the
transformation R' -> R*

assume IT isotone and usc (« physical
assumptions »); thus R'= (X + I1) A h ()

we don't know IT but IT > C,
theorem: TI > 11 =11 >1II

thus R'> (X + C5 ) A h (3p)
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Representation of Loss

Loss L(T)

fresh traffic >L . \
R(t) R'(1) O e

buffer X

1 we have shown: R'> (X + C; ) A h ((5)

1 compute the closure, obtain R', thus the loss
process L=R-R’

k

L)< Sup {Z[R(Szi—1) —R(Sy) = Sy =) |-k XG

J>0;0<s,, <. <5, <5<t ]
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Bound on Loss Ratio

d Theorem: if R is a-smooth, then
L(+)/R(t)<1-r
with r = min(1, inf , . o [B(+) *X] /a(t))
1 best bound with these assumptions
1 proof:
0 define x(t) = r R(t)

0 X satisfies the system equation:
X<(X+X®B)Ahp(x)<

0 R'is the maximum solution
=> x(t) < R'(t) for all t

31
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Ex 5: Optimal smoothing

Video N K Video
etwor
server Smoother display

R(1) R'(T) R*(t) — R(+-D) ¢ ’
— O s ——8 ()——]

Network offers a service curve B to flow R(t),
Smoother delivers a flow R(t) conforming to an
arrival curve o.

Video stream is stored in the client buffer B read
after a playback delay D.

Pb: which smoothing strategy minimizes D and B ?




System Equation

Video
server Smoother Network

R(t) R'(1) R*(t) —
— O B) B

S

Video

display

@ R(t-D) :

d (1) R'is o-smooth
Q (2) (R'® B)(T) = R(t-D)
A R(#*)=0fort<0

d Define min-plus deconvolution
(@@ b)(t) = sups o la(s+t)-b(s)]

dx <y®B <«<=> x> <y
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Max-Plus operators

1 replace < by >, min-plus becomes max-plus

1 Deconvolution with a fixed function
X->XJda

is max-plus linear
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A max-plus model for Example 5

Video

server Smoother Network Video

R(1) R*(t) — R(t-D)
s o —— (O——]

d R satisfies:
(DR >R 9o
(2)R > (R @B )(+-D)
J a max-plus system, , with minimum solution
x* = inf {x9, x!, ..., xi, ..}
x? (t) = (R@ B)(t+-D)
X=x1gc
Q thusR'=(R@B)cs(+-D)=R I (B ®0c) (+-D)

display
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Example

c ® B(t)
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Minimum Playback Delay

D must satisfy :
Ra(B®c)(-D)=0

Q this is equivalent to
D>h(R, B ® o)
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R(t)

(c ® B)(¥)

S
(c ® B)(¥)
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Deconvolution is the time inverse of

convolution
(4) Lnvert fime again (2) S(1) in inverted time
"+ ()R (%) in real time "t 7
R(oo) M) (/ﬂ/ﬂ R(Oo)ﬁ\’ /
S(t
R (c®PB) .
~ %
<> F~ S®o®
A;.‘ ]

» ~— »
T/ / T

(3) Shape with c ® 3

P
for
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7 Back to our example

ocom 2001: Joint Smoothing and rce Rate
ection (Verscheure, Frossapgste Boudec)

R o (c®p)
i R(t)

50 100 150 200 250 300 350 400 450

Frame #



Conclusion

Network Calculus is a set of tools and theories
for the deterministic analysis of communication
networks

Application of min-plus algebra

Does not supersede stochastic queueing analysis,
but gives new tools for analysis of sample paths

Book and slides available online at Le Boudec's or
Thiran's home page
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