

A Short Course on Network Calculus

Jean-Yves Le Boudec Patrick Thiran ICA, EPFL

CH-1015 Ecublens

leboudec@epfl.ch

http://icawww.epfl.ch

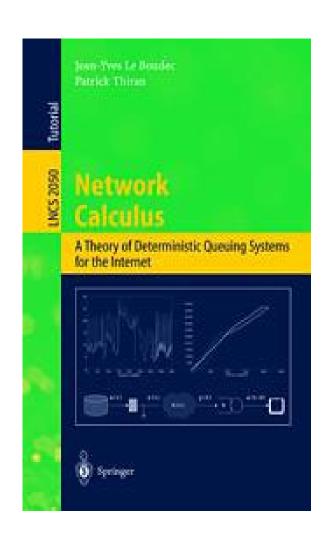
The Network Calculus Book

□ available on-line (free download) from
 Le Boudec's or Thiran's home page

or

ica1www.epfl.ch/PS_files/NetCal.htm

□ this presentation: based on chapters 1, 5 and 6 of the online version



Contents

- 1. What is "Network Calculus"?
 - 2. Preliminary Concepts
 Sections 1.2, 1.3, 1.4.1
- 3. Another linear system theory: Min-Plus

Section 3.1

4. The composition theorem

Section 1.4.2

5. Optimal Shaping

Section 1.5

6. Optimal Smoothing

Reference [54] Le Boudec Verscheure 2000 http://lcawww.epfl.ch/Publications/LeBoudec/LeBoudecV00.pdf

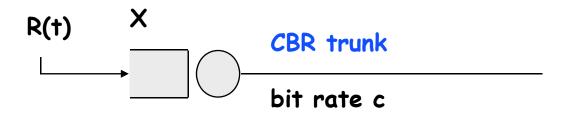
7. Diff-Serv Bounds

Section 2.4.2

1. What is Network Calculus?

- □ Deterministic analysis of queuing / flow systems arising in communication networks
- ☐ Abstraction of schedulers
- uses min, max as binary operators and integrals (min-plus. max-plus algebra)

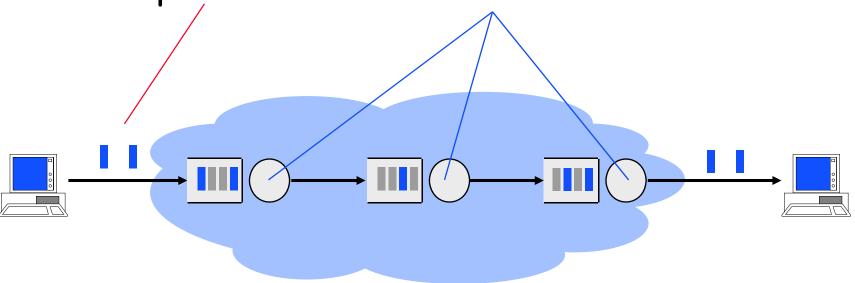
A simple example



- \square assume R(t) = sum of arrived traffic in [0, t] is known
- \square required **buffer** for a bit rate c is $\sup_{s \le t} \{R(t) R(s) c(t-s)\}$

2. Preliminary Concepts Arrival and Service Curves

☐ Internet integrated services use the concepts of arrival curve and service curves

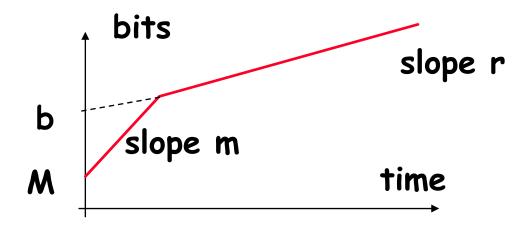


Arrival Curves

 \square Arrival curve α : $R(t) - R(s) \le \alpha(t-s)$

Examples:

- \Box leaky bucket $\alpha(u) = ru+b$
- \Box standard arrival curve in the Internet $\alpha(u) = \min(pu+M, ru+b)$



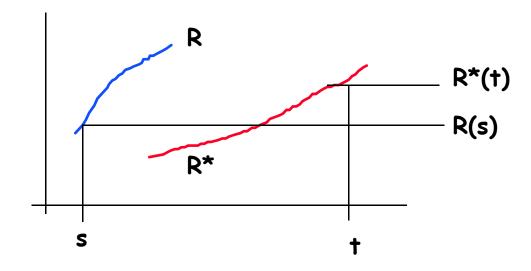
Arrival Curves can be assumed subadditive

- lacksquare Theorem: α can be replaced by a *sub-additive* function
- \square sub-additive: $\alpha(s+t) \leq \alpha(s) + \alpha(t)$
- concave => subadditive

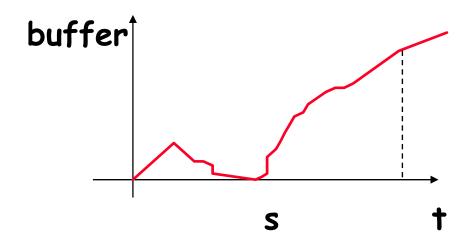
Service Curve

 \Box System S offers a service curve β to a flow iff for all t there exists some s such that

$$R^*(t) - R(s) \ge \beta(t - s)$$



The constant rate server has service curve $\beta(t)=ct$

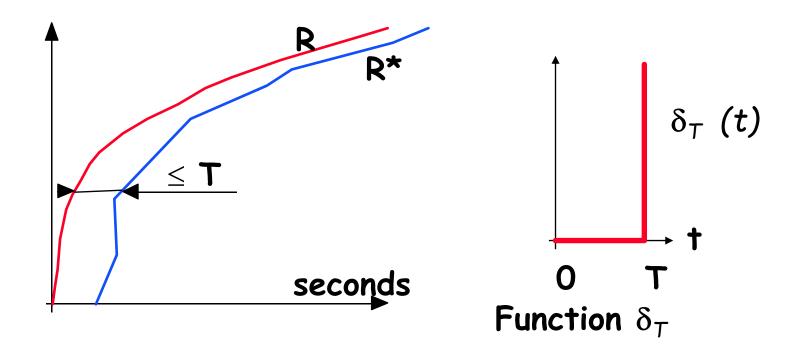


Proof: take s = beginning of busy period:

$$R^*(t) - R^*(s) = c (t-s)$$

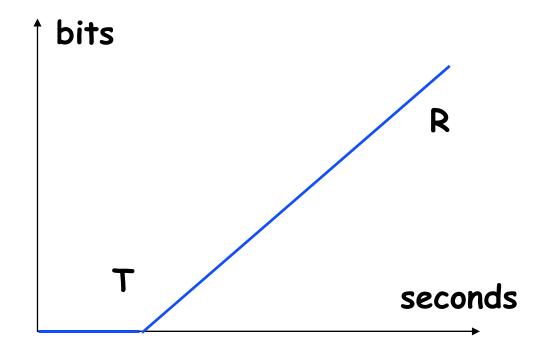
$$R^*(t) - R(s) = c (t-s)$$

The guaranteed-delay node has service curve δ_{T}



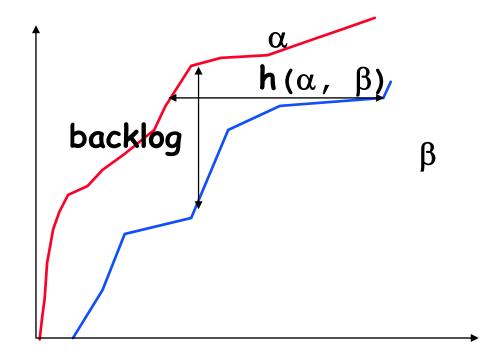
The standard model for an Internet router

□ rate-latency service curve

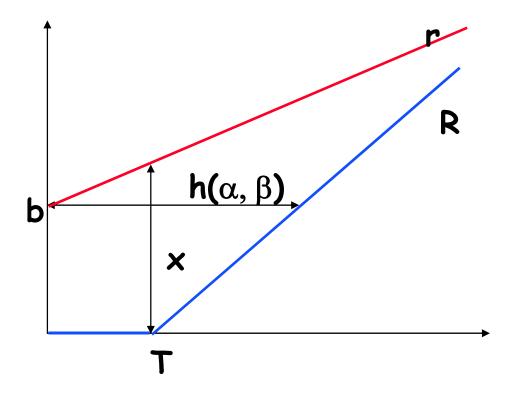


Tight Bounds on delay and backlog

- If flow has arrival curve α and node offers service curve β then
- \Box backlog \leq sup $(\alpha(s) \beta(s))$
- \Box delay \leq h(α , β)



Example



- \Box delay bound: b/R + T
- \Box backlog bound: b + rT

3. Another linear system theory: Min-Plus

- ☐ Standard algebra: $R, +, \times$ $a \times (b + c) = (a \times b) + (a \times c)$
- ☐ Min-Plus algebra: R, min, + $a + (b \land c) = (a + b) \land (a + c)$

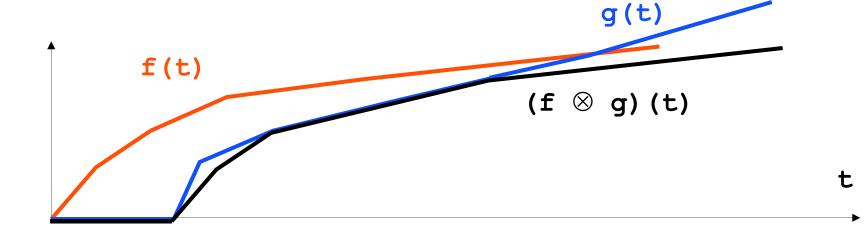
Min-plus convolution

☐ Standard convolution:

$$(f*g)(t) = \int f(t-u)g(u)du$$

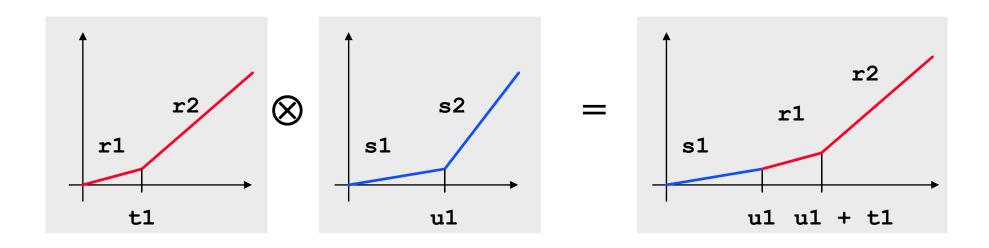
☐ Min-plus convolution

$$f \otimes g(t) = \inf_{u} \{ f(t-u) + g(u) \}$$



Examples of Min-Plus convolution

- $\Box f \otimes \delta_{\mathsf{T}}(t) = f(t-\mathsf{T})$
- □ convex piecewise linear curves, put segments end to end with increasing slope



4. We can express arrival and service curves with min-plus

☐ Arrival Curve property means

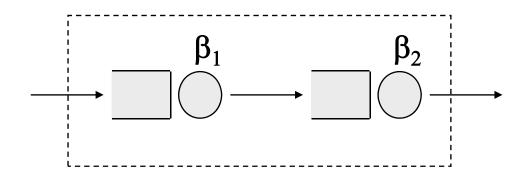
$$R \leq R \otimes \alpha$$

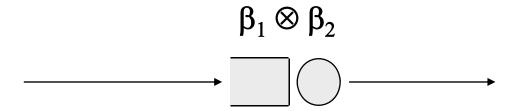
☐ Service Curve guarantee means

$$R^* \geq R \otimes \beta$$

The composition theorem

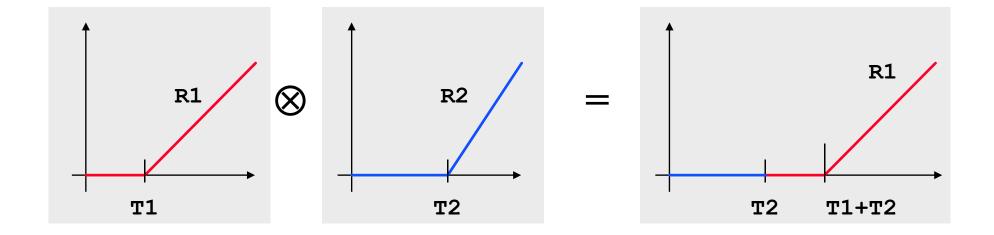
Theorem: the concatenation of two network elements each offering service curve β_i offers the service curve $\beta_1 \otimes \beta_2$



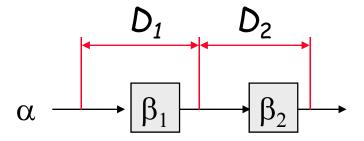


Example

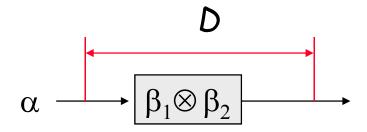
□ tandem of routers



Pay Bursts Only Once



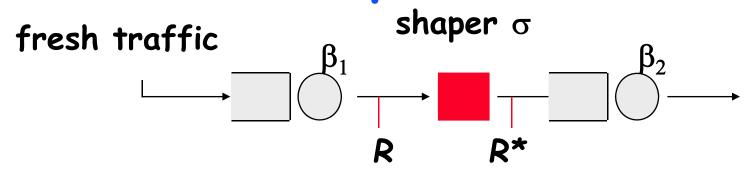
$$D_1 + D_2 \le (2b + RT_1)/R + T_1 + T_2$$



$$D \leq b/R + T_1 + T_2$$

end to end delay bound is less

5. Linear Characterization of Shapers



Definition: shaper

- \Box forces output to be constrained by σ
- stores data in a buffer if needed

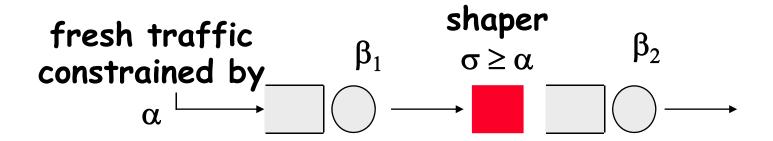
Theorem

 \Box Output of shaper is R* = R \otimes σ

Proof of Shaper Theorem is a typical Min-Plus result

 \square R*() is the maximum function x() such that (1) $x \leq x \otimes \sigma$ (2) $x \leq R$ \square Solution: $x^0 = R$ $x^i = x^{i-1} \otimes \sigma$ R* is given by $R^* = \inf \{x^0, x^1, ..., x^i, ...\}$ ☐ Here: $\sigma \otimes \sigma = \sigma$ $x^i = R \otimes \sigma$ for all $i \geq 1$ $R^* = R \otimes \sigma$

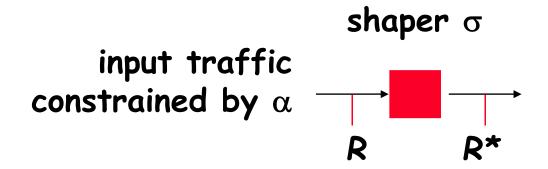
Application: Re-shaping does not increase worst-case delay



- □ Re-shaping is for free:
- ☐ Proof:

$$h(\alpha, \beta_1 \otimes \sigma \otimes \beta_2) = h(\alpha, \sigma \otimes \beta_1 \otimes \beta_2) = h(\alpha, \beta_1 \otimes \beta_2)$$

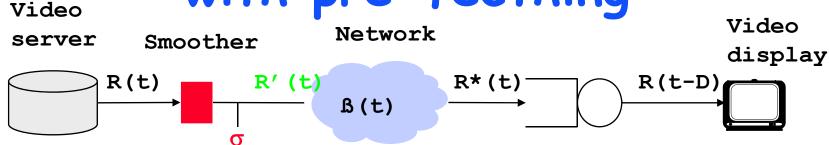
Shaper Keeps Arrival Constraints



- $lue{}$ The output of the shaper is still constrained by α
- ☐ Proof

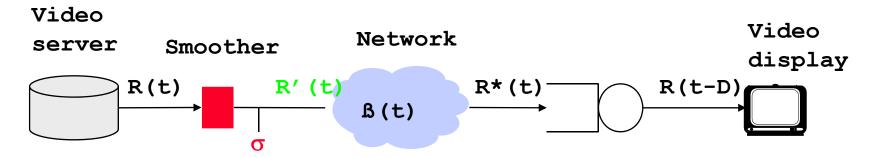
$$R^* = R \otimes \sigma \leq (R \otimes \alpha) \otimes \sigma = (R \otimes \sigma) \otimes \alpha = R^* \otimes \alpha$$

6. Optimal Smoothing with pre-fecthing



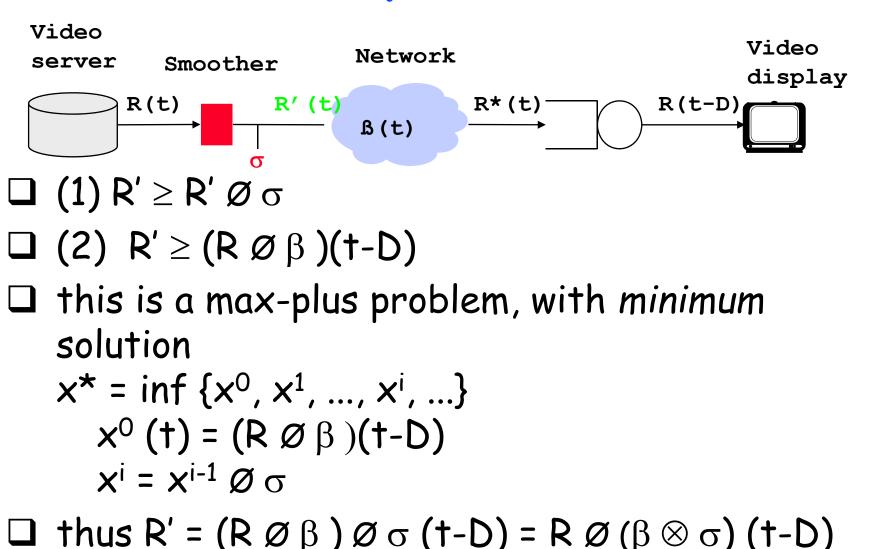
- ☐ smoother is a scheduler which produces a σsmooth output
- ☐ may look-ahead
- \square Q: given signal R(t), σ and β what is the minimum playback delay D?

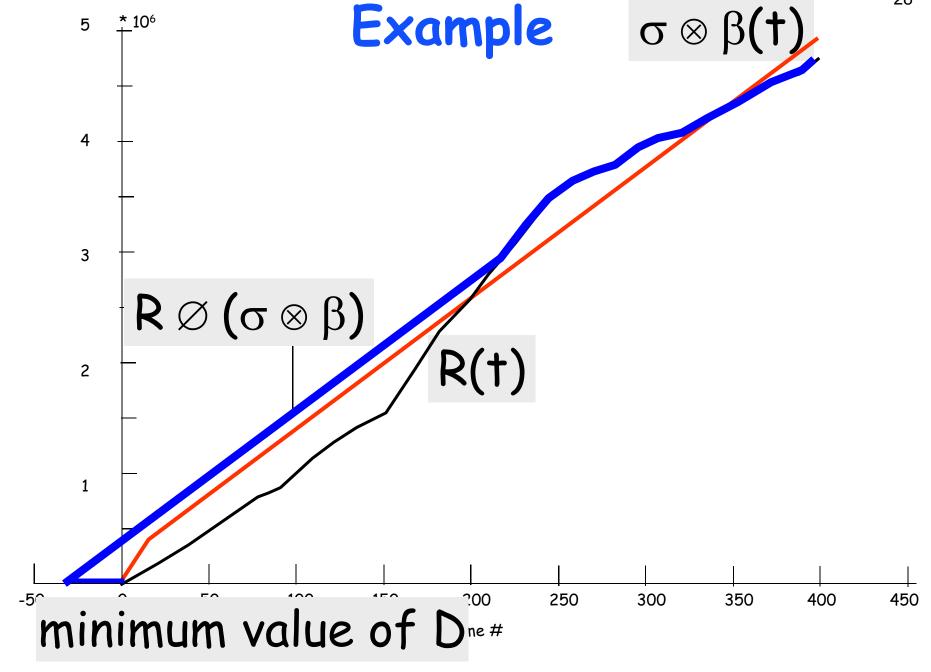
System Equations



- \Box (1) R' is σ -smooth
- \square (2) $(R' \otimes \beta)(t) \geq R(t-D)$
- \square R'(t) = 0 for t \leq 0
- Define min-plus deconvolution $(a \varnothing b)(t) = \sup_{s>0} [a(s+t)-b(s)]$
- $\square x \leq y \otimes \beta \leftrightarrow x \varnothing \beta \leq y$

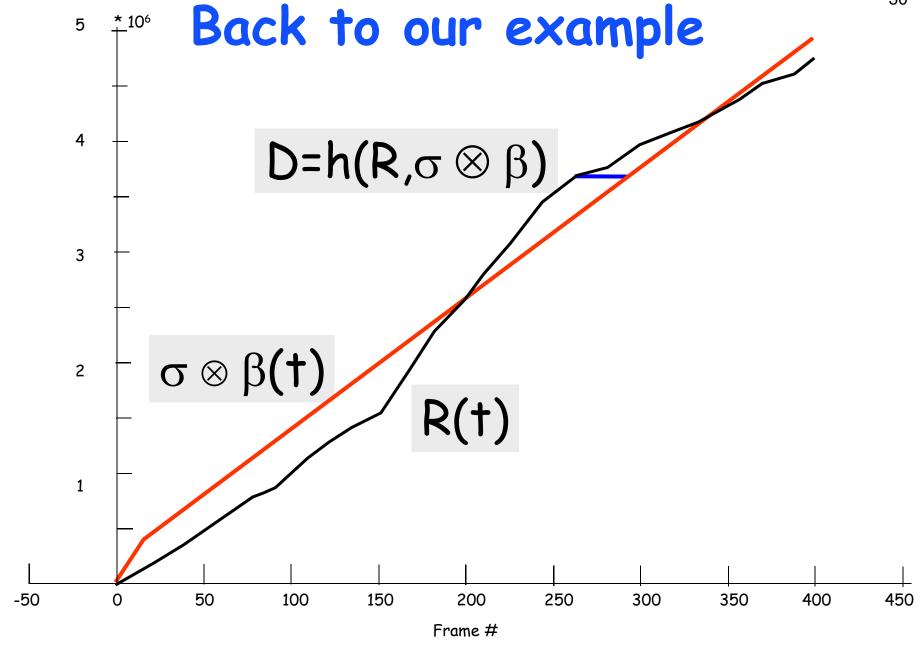
A max-plus model

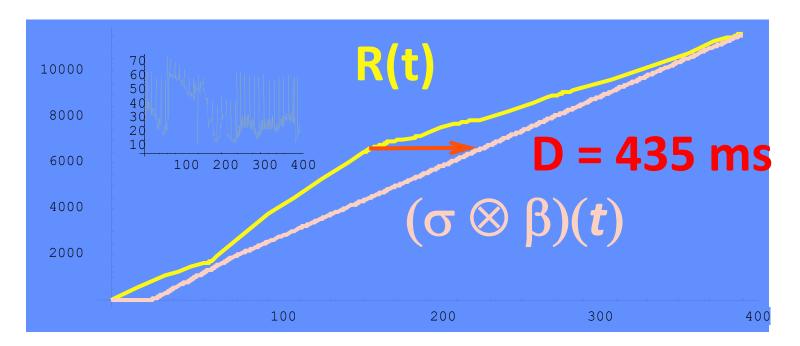


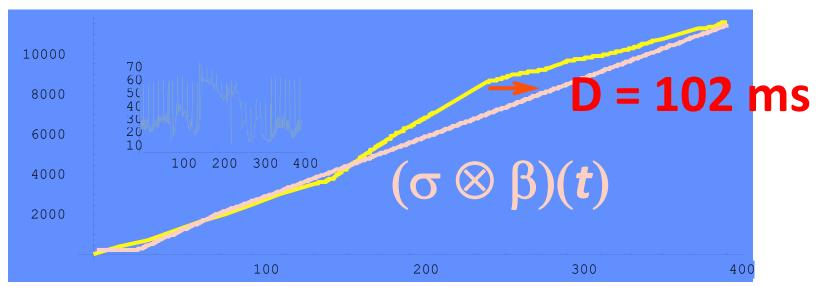


Minimum Playback Delay

- D must satisfy: $R \emptyset (\beta \otimes \sigma) (-D) \geq 0$
- □ this is equivalent to $D \ge h(R, \beta \otimes \sigma)$







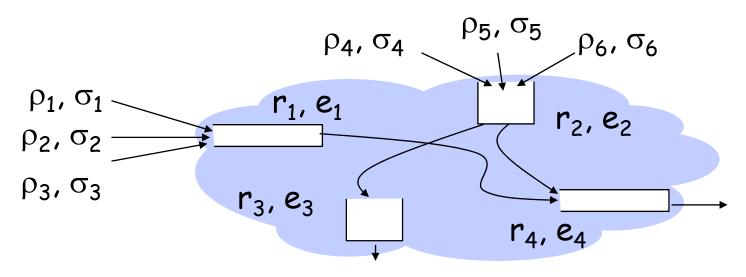
Other examples

- ☐ Bounds for Diff-serv (chapter 2)
- □ Packet Scale Rate Guarantee (chapter 7)
 - □ used in the definition of EF (infocom 2001)

7. Diff-Serv Bounds Problem Definition

- Consider a network implementing aggregate scheduling
 - For example: Expedited Forwarding (EF)
- Problem: find a bound for the end-to-end delay variation that is
 - valid for any network topology
 - □ has closed form
 - does not require per flow information

We assume aggregate scheduling and leaky bucket constraint microflows



- \square microflows constrained by leaky buckets (ρ_i , σ_i)
- The aggregate receives a guaranteed service, with service curve $\beta_l(t) = r_l(t e_l)^+$

State of the art

- \Box Utilization factor $v = \max_{l} (\sum_{f} \rho_{f} / r_{l})$
- \square Even if network is subcritical (\vee <1), we don't know:
 - good bounds for a general topology
 - □ if network is stable
- \square M. Andrews presents an example of a network which is unstable for v = 1 and claims it is also true for some v < 1

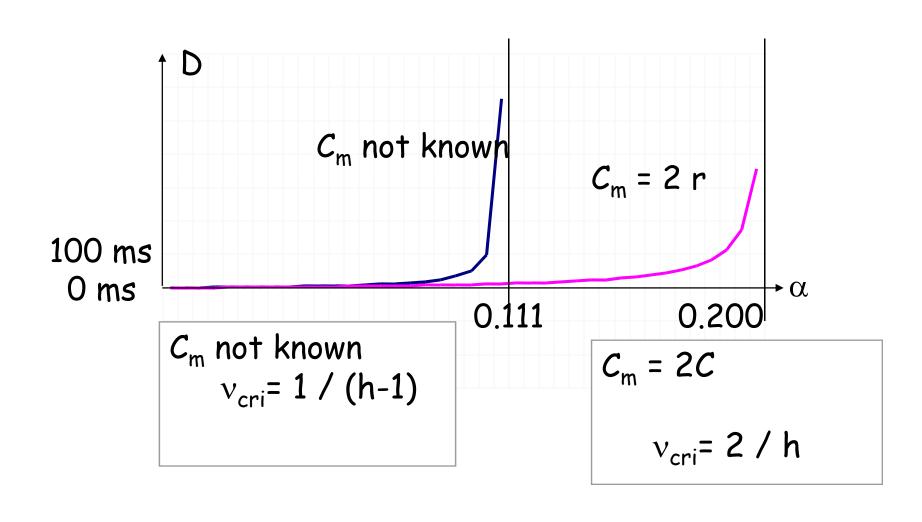
Our main result is a delay bound valid for small utilization factors

$$D = \frac{h}{1 - (h-1)\nu} (e+\tau)$$

$$v \le v_{crit} = \frac{1}{(h-1)}$$

 \square A better bound exists when peak rates C_m are known

Examples (h=10 hops)



Derivation of the bound

- ☐ Assume nodes are GR (orFIFO-per aggregate rate latency service curve elements)
- 1) Assume delay bound hD on low delay traffic (EF) exists, where $h = \max$ number of hops, $D = \max$ delay bound per node
- 2) An arrival curve of aggregate traffic at node i

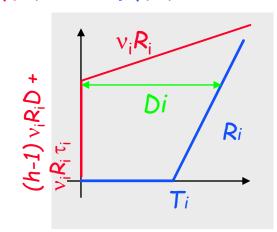
$$\alpha_{i}(t) = \sum_{m \ni i} (\rho_{m}t + (h-1)\rho_{m}D + \sigma_{m}) = v_{i}R_{i}t + (h-1)v_{i}R_{i}D + v_{i}R_{i}\tau_{i}$$

where
$$v_i = (\Sigma_{m \ni i} \rho_m)/R_i$$
 and $\tau_i = (\Sigma_{m \ni i} \sigma_m)/(\Sigma_{m \ni i} r_m)$

3) Compute horizontal distance between $\alpha_i(t)$ and $\beta_i(t)$:

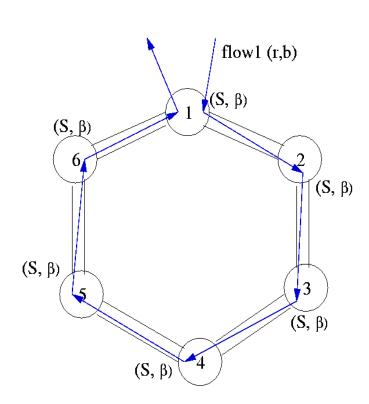
$$D_i = e_i + (h-1) v_i D + v_i \tau_i$$

- 4) Deduce $D \leftarrow (e + v\tau)/(1 (h-1)v)$ where $e = \max_i e_i$, $v = \max_i v_i$ and $\tau = \max_i \tau_i$
- 5) Show that finite bound exists at any time t, and let t -> ∞



Is the bound tight?

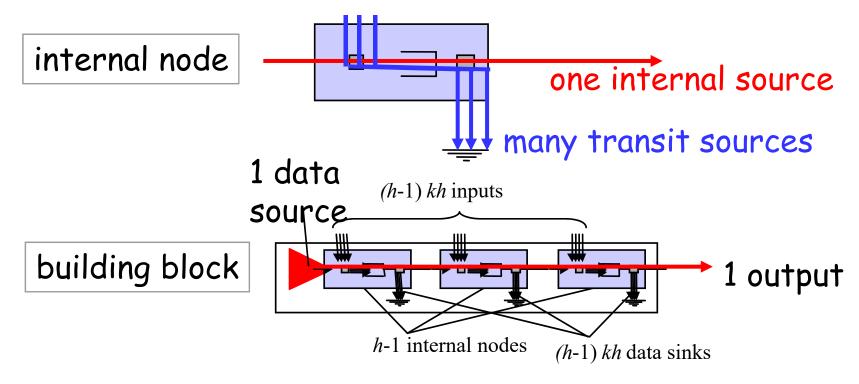
- □ No
- \Box Consider only v_{cri}
- ☐ Example:
 - Unidirectional ring with n nodes
 - n flows, each of them going through n hops
 - $\square v_{cri} = 1 [Tassiulas 96]$



Is the bound tight?

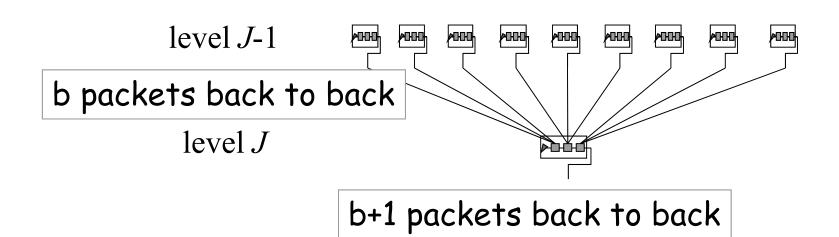
- □ 1. No
- □ 2. Yes
- ☐ However, the explosion may always occur at the point predicted by the bound
- \square More precisely, if v > 1/(h-1), we can always construct a network where the worst case delay can be arbitrarily large

The elements in our toy network

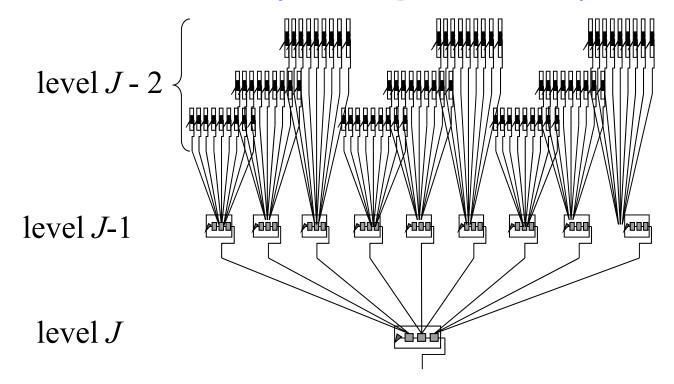


☐ If transit sources are able to send b packets back to back, then we can arrange the internal source to output a burst of b+1 packets

The output of level J-1 building blocks is a transit source for level J building blocks



A network where $\alpha > \alpha_{cri}$ with arbitrarily large delay



 \Box The worst-case delay at level J is at least $J\tau$, with τ depending only on α and h

Conclusion

- □ Network Calculus is a set of tools and theories for the deterministic analysis of communication networks
- ☐ Application of min-plus algebra
- Explains and proves delay and backlog properties in networks
- Book and slides available online at Le Boudec's or Thiran's home page