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The Network Calculus Book
 available on-line (free 

download) from 
Le Boudec’s or Thiran’s 
home page

or

ica1www.epfl.ch/PS_files
/NetCal.htm

 this presentation : based 
on chapters 1, 5 and 6 of 
the online version
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1. What is Network Calculus ?

 Deterministic analysis of queuing / flow 
systems arising in communication networks

 Abstraction of schedulers
 uses min, max as binary operators and 

integrals (min-plus. max-plus algebra)
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A simple example

 assume R(t) = sum of arrived traffic in [0, t] 
is known

 required buffer for a bit rate c  is 
sup s  t {R(t) - R(s) - c (t-s)}

CBR trunk

bit rate c

XR(t)



52. Preliminary Concepts
Arrival and Service Curves

 Internet integrated services use the 
concepts of arrival curve and service curves
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Arrival Curves

 Arrival curve  R(t) -R(s)  (t-s)

Examples:
 leaky bucket  (u) = ru+b
 standard arrival curve in the Internet

(u) = min (pu+M, ru+b)

time

bits

b

M

slope r

slope m
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Arrival Curves can be assumed sub-
additive

 Theorem: can be replaced by a sub-additive
function

 sub-additive: (s+t)  (s) + (t)

 concave => subadditive
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Service Curve

 System S offers a service curve  to a flow 
iff for all t there exists some s such that

R * (t )  R(s)   (t  s)

ts

R*(t)

R(s)

R

R*



9The constant rate server has 
service curve (t)=ct

Proof: take s = beginning of busy period: 
R*(t) – R*(s) = c  (t-s)
R*(t) – R(s)   = c  (t-s)

buffer

s           t
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The guaranteed-delay node 
has service curve T

seconds

 T

R
R*

0     T

T   (t)

Function T

t



11The standard model for an 
Internet router

 rate-latency service curve

T

bits

R

seconds
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Tight Bounds on delay and backlog 

If flow has arrival curve  and node offers 
service curve  then

 backlog  sup ((s) -(s))
 delay  h(, )





h(, )

backlog
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Example

 delay bound: b/R + T
 backlog bound: b + rT

T

h()

x
b

r

R
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3. Another linear system theory: 
Min-Plus

 Standard algebra: R, +, 
a (b + c) = (a  b) + (a  c)

 Min-Plus algebra: R, min, +
a (b  c) = (a b) (a + c)
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Min-plus convolution
 Standard convolution:

 Min-plus convolution
f  g (t) = infu { f(t-u) + g(u) }

  duugutftgf )()())((

t

f(t)

g(t)

(f  g)(t)
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r1

r2

s1

s2

u1

 =

t1

Examples of Min-Plus convolution

 f  T (t) = f (t-T)
 convex piecewise linear curves, put segments 

end to end with increasing slope

s1

u1

r1

u1 + t1

r2
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4. We can express arrival and 
service curves with min-plus

 Arrival Curve property means
R  R 

 Service Curve guarantee means
R*  R 
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The composition theorem
 Theorem: the concatenation of two network elements 

each offering service curve i offers the service 
curve 1  2




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R1 R2

T2

 =

T1

Example
 tandem of routers

R1

T2 T1+T2
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Pay Bursts Only Once



D1 D2

 

D

 

D  b /R + T1 + T2

end to end delay bound is less

D1 +D2  (2b + RT1)/ R + T1 + T2
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5. Linear Characterization 
of Shapers 

Definition: shaper
 forces output to be constrained by 
 storesdata in a buffer if needed

Theorem
 Output of shaper is R* = R

fresh traffic shaper 
 

R R*
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Proof of Shaper Theorem is a 
typical Min-Plus result

 R*()  is the maximum function x() such that 
(1) x  x 
(2) x  R

 Solution: x0 = R
xi = xi-1 

R* is given by R* = inf {x0, x1, ..., xi, ...}
 Here:   = 

xi = R  for all i  1
R* = R 
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Application: Re-shaping does not 
increase worst-case delay

 Re-shaping is for free:
 Proof :

h(, 12 ) = h( 12  )= h(12 )

fresh traffic
constrained by



shaper
  
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Shaper Keeps Arrival Constraints

 The output of the shaper is still constrained by 
 Proof

R* = R  (R R R* 

shaper 
input traffic

constrained by 
R R*
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6. Optimal Smoothing 
with pre-fecthing

 smoother is a scheduler which produces a -
smooth output 

 may look-ahead
 Q: given signal R(t),  and 

what is the minimum playback delay D ?

 R(t-D)R’(t) R*(t)

NetworkSmoother

ß(t)


Video 
display

Video 
server

R(t)
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System Equations

 (1)  R’ is -smooth
 (2)  (R’(t)  R(t-D)
 R’(t) = 0 for t  0 

 Define min-plus deconvolution 
(a Ø b)(t) = sups 0 [a(s+t)-b(s)]

 x    y   <->  x Ø   y 

 R(t-D)R’(t) R*(t)

NetworkSmoother

ß(t)


Video 
display

Video 
server

R(t)
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A max-plus model

 (1) R’  R’ Ø 
 (2) R’  (R Ø  )(t-D)
 this is a max-plus problem, with minimum

solution  
x* = inf {x0, x1, ..., xi, ...}

x0 (t) = (R Ø  (t-D) 
xi = xi-1 Ø 

 thus R’ = (R Ø  ) Ø  (t-D) = R Ø (  ) (t-D) 

 R(t-D)R’(t) R*(t)

NetworkSmoother

ß(t)


Video 
display

Video 
server

R(t)
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Example

R(t)R(t)

 (t) (t)

-50               0               50              100            150             200            250            300            350           400           450

Frame #

5

4

3

2

1

* 106

R  ( )R  ( )

minimum value of Dminimum value of D
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Minimum Playback Delay

 D must satisfy :
R Ø (  ) (-D)  0

 this is equivalent to
D  h(R,   )
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Back to our example

D=h(R, )D=h(R, )

 (t) (t)
R(t)R(t)

-50               0               50              100            150             200            250            300            350           400           450

Frame #

5

4

3

2

1

* 106
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100 200 300 400
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10000 R(t)
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 t
D = 435 ms
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 t

D = 102 ms
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Other examples

 Bounds for Diff-serv (chapter 2)
 Packet Scale Rate Guarantee (chapter 7)

� used in the definition of EF (infocom 2001)



337. Diff-Serv Bounds 
Problem Definition

 Consider a network implementing aggregate 
scheduling
� For example: Expedited Forwarding (EF)

 Problem: find a bound for the end-to-end delay 
variation that is 
� valid for any network topology
� has closed form
� does not require per flow information
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microflows constrained by leaky buckets (i, i)

the aggregate receives a guaranteed service, 
with service curve     lll etrt

We assume aggregate 
scheduling and leaky bucket 

constraint microflows
4, 4

r1, e1 r2, e2

r4, e4

r3, e3

5, 5 6, 6

1, 1
2, 2

3, 3
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 Utilization factor   = maxl (f f / rl)

 Even if network is subcritical ( <1), we don’t 
know:
� good bounds for a general topology
� if network is stable

 M. Andrews presents an example of a 
network which is unstable for  = 1 and 
claims it is also true for some  < 1

State of the art
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)1(
1



hcrit

Our main result is a delay bound 
valid for small utilization factors

 





 e
h
hD

)1(1

 A better bound exists when peak rates Cm
are known
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

D

Cm not known
Cm = 2 r

0.111 0.200
0 ms

100 ms

Examples (h=10 hops)

Cm not known
cri= 1 / (h-1) Cm = 2C

cri= 2 / h 
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Derivation of the bound
 Assume nodes are GR (orFIFO-per aggregate rate latency 

service curve elements)
1) Assume delay bound hD on low delay traffic (EF) exists, 

where h = max number of hops, D = max delay bound per 
node

2) An arrival curve of aggregate traffic at node i 
i(t) = m  i (mt + (h-1)mD + m) = iRit + (h-1) iRiD + 

iRi i
where i = (m  i m )/Ri and i = (m  i m )/ (m  i rm )

3) Compute horizontal distance between i(t) and i(t):
Di= ei + (h-1) iD + ii

4) Deduce  D <= (e + )/(1 – (h-1)) where
e = maxi ei ,  = maxi i and = maxi i 

5) Show that finite bound exists 
at any time t, and let t ->  

Ri

Ti

Di

(h
-1

) 
iR

iD
 +

 
 i

R i
 

i

iRi
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 No 

 Consider only cri

 Example: 
� Unidirectional ring with n

nodes
� n flows, each of them going 

through n hops 
� cri = 1 [Tassiulas96]

Is the bound tight ?
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 1. No 

 2. Yes

 However, the explosion may always occur at 
the point predicted by the bound

 More precisely, if  > h, we can always 
construct a network where the worst case
delay can be arbitrarily large

Is the bound tight ?



41The elements in our toy network

 If transit sources are able to send b packets 
back to back, then we can arrange the 
internal source to output a burst of b+1 
packets

internal node one internal source

many transit sources

h-1 internal nodes

(h-1) kh inputs
1 data
source

1 output

(h-1) kh data sinks

building block
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level J-1

level J

The output of level J-1 building 
blocks is a transit source for 

level J building blocks 

b packets back to back

b+1 packets back to back
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level J - 2

level J-1

level J

A network where  > cri with 
arbitrarily large delay

 The worst-case delay at level J is at least J, 
with  depending only on  and h
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Conclusion

 Network Calculus is a set of tools and 
theories for the deterministic analysis of 
communication networks

 Application of min-plus algebra

 Explains and proves delay and backlog 
properties in networks

 Book and slides available online at Le Boudec’s 
or Thiran’s home page


