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1. What is Network Calculus ?

d Deterministic analysis of queuing / flow
systems arising in communication networks

d Abstraction of schedulers

1 uses min, max as binary operators and
integrals (min-plus. max-plus algebra)




A simple example

CBR trunk

bit rate ¢

0 assume R(T) = sum of arrived traffic in [O, t]
is known

d required buffer for a bit rate ¢ is
sup s <+ {R(t) - R(s) - ¢ (-s)}



2. Preliminary Concepts
Arrival and Service Curves

0 Internet integrated services use the
concepts of arrival curve and service curves
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Arrival Curves
3 Arrival curve a:  R(t) -R(s) < a(t-s)

Examples:
Q leaky bucket o(u) = ru+b

O standard arrival curve in the Internet
a(u) = min (pu+M, ru+b)




Arrival Curves can be assumed sub-
additive

1 Theorem: o can be replaced by a sub-additive
function

A sub-additive: a(s+t) < o(s) + a(t)

d concave => subadditive



Service Curve

0 System S offers a service curve B to a flow
iff for all t there exists some s such that

R ()= R(s) > B(t - s)

i

R*

R*(t)
R(s)



The constant rate server has
service curve B(t)=ct

buffer|

s '
Proof: take s = beginning of busy period:

R*(t) - R*(s) = ¢ (t-s)
R*(t) - R(s) =c (t-s)
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The guaranteed-delay node
has service curve 6+

Sr (t)

1.
0 T

secorLds

Function 6+



The standard model for an
Internet router

L rate-latency service curve

! bits

seconds
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Tight Bounds on delay and backlog

If flow has arrival curve o and node offers
service curve B then

Q backlog < sup (a(s) -B(s))
Q delay < h(a, B)

I h(a, B)
backlog B




Example

h(a., B)

T

d delay bound: b/R+ T
O backlog bound: b + rT
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3. Another linear system theory:

Min-Plus

d Standard algebra: R, +, x
ax(b+c)= (ax b)+(axc)

O Min-Plus algebra: R, min, +
a+(bac)= (a+b)A (a+c)
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Min-plus convolution
O Standard convolution:

(f *2)O)= | f(t—u)gu)du

[ Min-plus convolution
f®g((t)=inf, { f(t-u) +g(u)}

f£(t)

(f ® g) (t)
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Examples of Min-Plus convolution

Q f® 5. (t) = f(t-T)

1 convex piecewise linear curves, put segments
end to end with increasing slope

rl

r2

tl

®

sl

s2

ul

sl

r2
rl

ul ul + tl
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4. We can express arrival and
service curves with min-plus

d Arrival Curve property means
R<R®a

d Service Curve guarantee means
R*>R® B
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The composition theorem

d Theorem: the concatenation of two network elements
each offering service curve B; offers the service
curve B; ® f3,

__________________________________________
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Example

O tandem of routers

/@ 7= /

T1 T2 T2 T1+4+T2



Pay Bursts Only Once

DI >« D2 >

a —| B B,
D1 +D2 < (Zb + RTI)/R + Tl + TZ
D

o —| B;® B,

D<b/R+T;+T,

end to end delay bound is less



5. Linear Characterization
of Shapers

fresh traffic shaper o

— 61 —l— 62é
R  R*

Definition: shaper
L forces output to be constrained by o
O stores data in a buffer if needed

Theorem
d Output of shaperisR*=R®oc
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Proof of Shaper Theorem is a
typical Min-Plus result

d R*() is the maximum function x() such that
(1) x<x®oc
(2) x<R

Q Solution: x%=R
X=x1®c
R* is given by R* = inf {x0, x!, ..., X/, ...}
d Here: c®oc=o0

X'=R®oc foralli>1
R*=R®oc



Application: Re-shaping does not
increase worst-case delay

fresh traffic shaper B,
cons‘rr'amed byj@ Gi" j@
O Re-shaping is for free:
O Proof :

h(a, B1®c®B,) = h(a, s ® B1® B, )= h(a, B®P,)
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Shaper Keeps Arrival Constraints |

shaper c
input traffic

constrained by a —|—'.—|—'
R R*

O The output of the shaper is still constrained by o

3 Proof
R*=R®0c <(R®0)®c=(R®c)®a=R*®«



6. Optimal Smoothing
o With pre-fecthing

server Smoother Network Zicsi:iay

R(t) R*(t)—m R(t-D)
\ | { Sh bt N @
o]

1 smoother is a scheduler which produces a -
smooth output

J may look-ahead

d Q: given signal R(T), o and 3
what is the minimum playback delay D ?
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System Equations

Video
server Smoother Network

Video
display

R(t) R*(t)———v/\\ R(t-D
\ I { | B (%) N
o]

d (1) R is 5-smooth
Q (2) (R®B)(t) = R(T+-D)
d R({#F)=0fort<0

d Define min-plus deconvolution
(a @ b)(t) = sups o [a(s+1)-b(s)]
A x <y®p <> x@p <y

(.

26



A max-plus model

Video

server Smoother Network Zicsi:iay

R(t) R*(t)—m R(t-D)
\ | { Sh bt N @
o]

d (DR >R gc
ad (2) R">(RaB)(t-D)
Q this is a max-plus problem, with minimum
solution
x* = inf {x0, x!, ..., xi, ..}
X0 (1) = (R @ B)(-D)
X=x"1goc
Q thusR'=(R@B)dc (+-D)=R I (B ® o) (+-D)
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o Example oot

| | |
250 300 350 400 450

minimum value of D+



Minimum Playback Delay

d D must satisfy :
Ra(B®oc)(-D)=0

d this is equivalent to
D > h(R, B ® o)
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= Back to our example

D=h(R,c ® B)

R(*)

0 50 100 150 200 250 300 350 400 450

Frame #



(c ® B)(t)

(c ® B)(¥)



Other examples

L Bounds for Diff-serv (chapter 2)

1 Packet Scale Rate Guarantee (chapter 7)
0 used in the definition of EF (infocom 2001)
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7. Diff-Serv Bounds
Problem Definition

O Consider a network implementing aggregate
scheduling
0 For example: Expedited Forwarding (EF)

d Problem: find a bound for the end-to-end delay
variation that is
0 valid for any network topology
0 has closed form
0 does not require per flow information

33



34

We assume aggregate
scheduling and leaky bucket
constraint microflows

p5/ 65

P4, Oy Pe. Op

P1. 01 \ M1, € r>, €,
o
P3. O3 rs, €3 .

4, €4

v
dmicroflows constrained by leaky buckets (p;, o))

dthe aggregate receives a guaranteed service,
with service curve B, (f): y (f — € )+



State of the art

L Utilization factor v =max, (Z¢pf/ 1))

A Even if network is subcritical (v <1), we don't
know:
0 good bounds for a general topology
0 if network is stable

d M. Andrews presents an example of a
hetwork which is unstable for v = 1 and
claims it is also true for some v < 1



Our main result is a delay bound
valid for small utilization factors

h

D =
1—(h=1)v

(e+7)

1
crit (h—l)

1 A better bound exists when peak rates C,
are known



37

Examples (h=10 hops)

1D

C,, not knowA

Ch,=2r
100 ms J J

O ms
0.111 0.200
C,, hot known ¢ =2C

Veri™ 1/ (h"l)
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Derivation of the bound

[ Assume nodes are GR (orFIFO-per aggregate rate latency
service curve elements)

1) Assume delay bound 1D on low delay traffic (EF) exists,
where h = max number of hops, D = max delay bound per
hode

2) An arrival curve of aggregate traffic at node i

o(t) = Xy 5i (ot + (h-DpD + o) = viRit + (h-1) viR.D +
ViR T;
Where Vi - (Zmaipm)/Ri Gnd Ti - (Zmai Gm)/(zmai I"m)
3) Compute horizontal distance between o,(t) and B,(t):

=z e +(h-1) v.D + v,

4) Deduce where |
e = max;e; , v = max;v;and 1 = max;t, §>
5) Show that finite bound exists Sz

at any time t,and let t -> «



Is the bound tight ?
3 No

1 Consider only v,
d Example:

0 Unidirectional ring with n
hodes

0 n flows, each of them going &#
through n hops |

0 v = 1 [Tassiulas96]
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Is the bound tight ?

3 1. No
d 2. Yes

1 However, the explosion may always occur at
the point predicted by the bound

d More precisely, if v>1/(h-1), we can always
construct a network where the worst case
delay can be arbitrarily large
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The elements in our toy network ¢

internal node 2 =11 one infernal source
J;_v many transit sources
1 dClTG (h-1) kh inputs
souTcg A -
building block 1 output

h-1 internal nodes (h-1) kh data sinks

Q If fransit sources are able to send b packets
back to back, then we can arrange the
internal source to output a burst of b+1
packets
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The output of level J-1 building
blocks is a transit source for
level J building blocks

level J-1 B B9 b b9 G 6o B B F

b packets back to back

level J

b+1 packets back to back




A network where a > a . with
arblfr'ar'lly large delay

R
lllll R




Conclusion

O Network Calculus is a set of tools and
theories for the deterministic analysis of
communication networks

[ Application of min-plus algebra

0 Explains and proves delay and backlog
properties in networks

1 Book and slides available online at Le Boudec's
or Thiran's home page
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