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INTRODUCTION

WHAT THIS BOOK IS ABOUT

Network Calculus is a set of recent developments that peodt@kbp insights into flow problems encountered
in networking. The foundation of network calculus lies ie timathematical theory of dioids, and in partic-
ular, the Min-Plus dioid (also called Min-Plus algebra).tMfetwork calculus, we are able to understand
some fundamental properties of integrated services nksyarindow flow control, scheduling and buffer

or delay dimensioning.

This book is organized in three parts. Part | (Chapters 1 ansl 2 self contained, first course on network
calculus. It can be used at the undergraduate level or agrcenrse at the graduate level. The prerequisite
is a first undergraduate course on linear algebra and onelamusm Chapter 1 provides the main set of
results for a first course: arrival curves, service curvektha powerful concatenation results are introduced,
explained and illustrated. Practical definitions such akyéucket and generic cell rate algorithms are cast
in their appropriate framework, and their fundamental prtps are derived. The physical properties of
shapers are derived. Chapter 2 shows how the fundamentittisre§ Chapter 1 are applied to the Internet.
We explain, for example, why the Internet integrated sewimternet can abstract any router by a rate-
latency service curve. We also give a theoretical foundaticsome bounds used for differentiated services.

Part Il contains reference material that is used in vari@amspf the book. Chapter 3 contains all first level
mathematical background. Concepts such as min-plus agimeland sub-additive closure are exposed in
a simple way. Part | makes a number of references to Chaptaut3s still self-contained. The role of
Chapter 3 is to serve as a convenient reference for futureGlsapter 4 gives advanced min-plus algebraic
results, which concern fixed point equations that are nal usart I.

Part lll contains advanced material; it is appropriate fgraduate course. Chapter 5 shows the application
of network calculus to the determination of optimal playbdelays in guaranteed service networks; it ex-
plains how fundamental bounds for multimedia streaminglEadetermined. Chapter 6 considers systems
with aggregate scheduling. While the bulk of network calsuh this book applies to systems where sched-
ulers are used to separate flows, there are still some ititegeesults that can be derived for such systems.
Chapter 7 goes beyond the service curve definition of Chdpaerd analyzes adaptive guarantees, as they
are used by the Internet differentiated services. ChapteraB/zes time varying shapers; it is an extension
of the fundamental results in Chapter 1 that considers tfeetedf changes in system parameters due to
adaptive methods. An application is to renegotiable reskservices. Lastly, Chapter 9 tackles systems
with losses. The fundamental result is a novel representati losses in flow systems. This can be used to
bound loss or congestion probabilities in complex systems.

Network calculus belongs to what is sometimes called “exaltjebras” or “topical algebras”. This is a set
of mathematical results, often with high description cosmjiy, that give insights into man-made systems

XV



XVi INTRODUCTION

such as concurrent programs, digital circuits and, of aguremmunication networks. Petri nets fall into
this family as well. For a general discussion of this prongsarea, see the overview paper [35] and the
book [28].

We hope to convince many readers that there is a whole segefyaunexplored, fundamental relations that
can be obtained with the methods used in this book. Resuits &1 “shapers keep arrival constraints” or
“pay bursts only once”, derived in Chapter 1 have physicadrpretations and are of practical importance
to network engineers.

All results here are deterministic. Beyond this book, areaded book on network calculus would explore
the many relations between stochastic systems and therdeistic relations derived in this book. The
interested reader will certainly enjoy the pioneering wiork28] and [11]. The appendix contains an index
of the terms defined in this book.

NETWORK CALCULUS, A SYSTEM THEORY FOR COMPUTER NETWORKS

In the rest of this introduction we highlight the analogybeen network calculus and what is called “system
theory”. You may safely skip it if you are not familiar with sgm theory.

Network calculus is a theory afeterministic queuingystems found in computer networks. It can also
be viewed as thaystem theoryhat applies to computer networks. The main difference walditional
system theory, as the one that was so successfully applidddign electronic circuits, is that here we
consider another algebra, where the operations are chasgiilows: addition becomes computation of
the minimum, multiplication becomes addition.

Before entering the subject of the book itself, let us bridflystrate some of the analogies and differences
between min-plus system theory, as applied in this book nonconication networks, and traditional system
theory, applied to electronic circuits.

Let us begin with a very simple circuit, such as the RC celtespnted in Figure 1. If the input signal is
the voltagex(t) € R, then the outpuy(t) € R of this simple circuit is the convolution af by the impulse
response of this circuit, which is hek¢t) = exp(—t/RC)/RC for t > 0:

yt) = (h®x)(t) = /0 h(t — s)x(s)ds.

Consider now a node of a communication network, which islided as a (greedy) shaper. A (greedy)
shaper is a device that forces an input fleg) to have an outpug(¢) that conforms to a given set of rates
according to a traffic envelope (the shaping curve), at the expense of possibly delayirgimithe buffer.
Here the input and output ‘signals’ are cumulative flow, dedias the number of bits seen on the data flow
in time interval[0, ¢{]. These functions are non-decreasing with timd>arametet can be continuous or
discrete. We will see in this book thatandy are linked by the relation

inf {o(t—s)+z(s)}.

t) = t) =
y( ) (U ® x)( ) sER suchlthat 0<s<t

This relation defines the min-plus convolution betweesndz.

Convolution in traditional system theory is both commu&tand associative, and this property allows to
easily extend the analysis from small to large scale cisclibr example, the impulse response of the circuit
of Figure 2(a) is the convolution of the impulse responsesagh of the elementary cells:

h(t) = (hl ® hz)(t) = /Ot hl(t — S)hg(s)dé’.
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X(f) Q_»y(f)
— o

(b)

Figure 1: An RC circuit (a) and a greedy shaper (b), which are two elementary linear systems in their
respective algebraic structures.

The same property applies to greedy shapers, as we will $8bdpter 1. The output of the second shaper
of Figure 2(b) is indeed equal idt) = (o ® x)(t), where

J(t) - (Ul © 02)(t) - seR suchi?}fat 0<s<t {Ul (t B 8) + 02(8)} '

This will lead us to understand the phenomenon known as “past lonly once” already mentioned earlier
in this introduction.

() o e T YW
-0 o o -
@
Smotmor

B o B

Figure 2:The impulse response of the concatenation of two linear circuit is the convolution of the individual
impulse responses (a), the shaping curve of the concatenation of two shapers is the convolution of the

individual shaping curves (b).

There are thus clear analogies between “conventional’litiand system theory, and network calculus.
There are however important differences too.

A first one is the response of a linear system to the sum of {hasn This is a very common situation, in
both electronic circuits (take the example of a linear laaspfilter used to clean a signal) from additive
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noisen(t), as shown in Figure 3(a)), and in computer networks (takexaenple a link of a buffered node
with output link capacityC', where one flow of interest(¢) is multiplexed with other background traffic
n(t), as shown in Figure 3(b)).

n(t)” T Oy
. = yrt(t) L.
x(1) h ) ()
@

n(t)

|

x(t)
(b)

Figure 3:The response y;.:(t) of a linear circuit to the sum of two inputs z + n is the sum of the individual
responses (a), but the response y;,.(t) of a greedy shaper to the aggregate of two input flows = + n is not
the sum of the individual responses (b).

Since the electronic circuit of Figure 3(a) is a linear systthe response to the sum of two inputs is the sum
of the individual responses to each signal. @ét) the response of the system to the pure sigtta), y,,(t)

the response to the nois€t), andy;(t) the response to the input signal corrupted by neigg + n(t).
Theny:(t) = y(t) + yn(t). This useful property is indeed exploited to design theroglilinear system
that will filter out noise as much as possible.

If traffic is served on the outgoing link as soon as possiblthnFIFO order, the node of Figure 3(b) is
equivalent to a greedy shaper, with shaping curi#g = C't for ¢ > 0. It is therefore also a linear system,
but this time in min-plus algebra. This means that the respémthe minimum of two inputs is the minimum
of the responses of the system to each input taken separdi@hyever, this also mean that the response to
the sum of two inputs is no longer the sum of the responseseo$yhtem to each input taken separately,
because now(t) +n(t) is a nonlinear operation between the two inputs) andn(t): it plays the role of a
multiplication in conventional system theory. Therefdre tinearity property does unfortunately not apply
to the aggregate(t) + n(t). As a result, little is known on the aggregate of multiplefiesvs. Chapter 6
will learn us some new results and problems that appear sibnilare still open today.

In both electronics and computer networks, nonlinear asystare also frequently encountered. They are
however handled quite differently in circuit theory and &twork calculus.

Consider an elementary nonlinear circuit, such as the BJJlifien circuit with only one transistor, shown
in Figure 4(a). Electronics engineers will analyze thislim@ar circuit by first computing a static operating
point y* for the circuit, when the input* is a fixed constant voltage (this is the DC analysis). Nexy the
will linearize the nonlinear element (i.e the transistaguad the operating point, to obtain a so-called small
signal model, which a linear model of impulse respoh$g (this is the AC analysis). Now;,(t) =
x(t) — «* is a time varying function of time within a small range arourtd so thaty;;,(t) = y(t) — y*

is indeed approximately given hy;,(t) ~ (h ® x;;,)(t). Such a model is shown on Figure 4(b). The
difficulty of a thorough nonlinear analysis is thus bypasigdestricting the input signal in a small range
around the operating point. This allows to use a linearizedehwhose accuracy is sufficient to evaluate
performance measures of interest, such as the gain of thifiamp
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Figure 4: An elementary nonlinear circuit (a) replaced by a (simplified) linear model for small signals (b),
and a nonlinear network with window flow control (c) replaced by a (worst-case) linear system (d).

In network calculus, we do not decompose inputs in a smaljgaime-varying part and another large
constant part. We do however replace nonlinear elementsésrisystems, but the latter ones are now a
lower bound of the nonlinear system. We will see such an el@nmvjih the notion of service curve, in
Chapter 1: a nonlinear systeni) = I1(z)(t) is replaced by a linear system,,(t) = (8 ® z)(t), whereg
denotes this service curve. This model is such #hatt) < y(t) for all ¢ > 0, and all possible inputs(t).
This will also allow us to compute performance measured) asaelays and backlogs in nonlinear systems.
An example is the window flow controller illustrated in Figugé(c), which we will analyze in Chapter 4. A
flow z is fed via a window flow controller in a network that realizesre mapping/ = II(z). The window
flow controller limits the amount of data admitted in the netlvin such a way that the total amount of data
in transit in the network is always less than some positivealmer (the window size). We do not know the
exact mappindI, we assume that we know one service cubvior this flow, so that we can replace the
nonlinear system of Figure 4(c) by the linear system of Fegi(d), to obtain deterministic bounds on the
end-to-end delay or the amount of data in transit.

The reader familiar with traditional circuit and systemadhewill discover many other analogies and differ-
ences between the two system theories, while reading thois. e should insist however that no prerequi-
site in system theory is needed to discover network calasdusis exposed in this book.
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CHAPTER 1

NETWORK CALCULUS

In this chapter we introduce the basic network calculus eptscof arrival, service curves and shapers. The
application given in this chapter concerns primarily netwowith reservation services such as ATM or the
Internet integrated services (“Intserv”). Applicatiomsother settings are given in the following chapters.

We begin the chapter by defining cumulative functions, witiah handle both continuous and discrete time
models. We show how their use can give a first insight into qiayuffer issues, which will be revisited
with more detail in Chapter 5. Then the concepts of Leaky Btgknd Generic Cell Rate algorithms are
described in the appropriate framework, of arrival curv&&e address in detail the most important arrival
curves: piecewise linear functions and stair functionsintyshe stair functions, we clarify the relation
between spacing and arrival curve.

We introduce the concept of service curve as a common modahariety of network nodes. We show that
all schedulers generally proposed for ATM or the Internétdrated services can be modeled by a family
of simple service curves called the rate-latency serviggesu Then we discover physical properties of
networks, such as “pay bursts only once” or “greedy shapegp krrival constraints”. We also discover that
greedy shapers are min-plus, time invariant systems. Themtnoduce the concept of maximum service
curve, which can be used to account for constant delays omédimum rates. We illustrate all along
the chapter how the results can be used for practical buifieersioning. We give practical guidelines for
handling fixed delays such as propagation delays. We alsesslthe distortions due to variability in packet
size.

1.1 MODELS FOR DATA FLOWS

1.1.1 QUMULATIVE FUNCTIONS, DISCRETE TIME VERSUS CONTINUOUS TIME MOD-
ELS

It is convenient to describe data flows by means of the cumaléinction R(t), defined as the number of
bits seen on the flow in time intervél, ¢]. By convention, we takdé?(0) = 0, unless otherwise specified.
Function R is always wide-sense increasing, that is, it belongs to peee? defined in Section 3.1.3
on Page 105. We can use a discrete or continuous time modeallsystems, there is always a minimum
granularity (bit, word, cell or packet), therefore diserétme with a finite set of values fd¢(¢) could always
be assumed. However, it is often computationally simpleotwsider continuous time, with a functiétithat
may be continuous or not. R(¢) is a continuous function, we say that we haviua model Otherwise,

3
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we take the convention that the function is either right d-éentinuous (this makes little difference in
practice)! Figure 1.1.1 illustrates these definitions.

CoNVENTION:  Aflowis described by a wide-sense increasing funcfign); unless otherwise specified,
in this book, we consider the following types of models:

e discrete timetr € N=1{0,1,2,3,...}
e fluid model:t € RT = [0, +oc0) andR is a continuous function
e general, continuous time modelc R* andR is a left- or right-continuous function

Sk A bltS Sk A -
a4k 4k 2 -
3k 3k - ’7
| Ry*
2%k 2%k 2
1k 1k
time
L S B B B B B T T LN R >
1 2 3 4 5 6 7 8 9 10111213 14 1 2 3 4 5 6 7 8 9 10111213 14

123 45 6 7 8 9 1011121314

Figure 1.1:Examples of Input and Output functions, illustrating our terminology and convention. R; and R}
show a continuous function of continuous time (fluid model); we assume that packets arrive bit by bit, for a
duration of one time unit per packet arrival. R» and R} show continuous time with discontinuities at packet
arrival times (times 1, 4, 8, 8.6 and 14); we assume here that packet arrivals are observed only when the
packet has been fully received; the dots represent the value at the point of discontinuity; by convention, we
assume that the function is left- or right-continuous. R3; and R; show a discrete time model; the system is
observed only at times 0, 1, 2...

If we assume thaR(t) has a derivativés = r(t) such thatR(t) = fot r(s)ds (thus we have a fluid model),

thenr is called the rate function. Here, however, we will see thit inuch simpler to consider cumulative
functions such ag rather than rate functions. Contrary to standard algebith, min-plus algebra we do

not need functions to have “nice” properties such as havidgrizative.

Itis always possible to map a continuous time ma&lel) to a discrete time modél(n), n € N by choosing
a time slotd and sampling by

LIt would be nice to stick to either left- or right-continuciusictions. However, depending on the model, there is nodbeste:
see Section 1.1.2, Section 1.2.1 and Section 1.7.
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S(n) = R(nd) (1.1)

In general, this results in a loss of information. For theeree mapping, we use the following convention.
A continuous time model can be derived fratn), n € N by letting?

R(t)=S(51) (1.2)

The resulting function?’ is always left-continuous, as we already required. Figutellillustrates this
mapping withd = 1, S = Rz andR' = R».

Thanks to the mapping in Equation (1.1), any result for ainoous time model also applies to discrete
time. Unless otherwise stated, all results in this bookappboth continuous and discrete time. Discrete
time models are generally used in the context of ATM; in castirhandling variable size packets is usually
done with a continuous time model (not necessarily fluid)teNbat handling variable size packets requires
some specific mechanisms, described in Section 1.7.

Consider now a systei, which we view as a blackbox§ receives input data, described by its cumulative
function R(t), and delivers the data after a variable delay. Q#i(¢) the output function namely, the
cumulative function at the output of systeth SystemS might be, for example, a single buffer served at a
constant rate, a complex communication node, or even a epenpetwork. Figure 1.1.1 shows input and
output functions for a single server queue, where everygidgekes exactly 3 time units to be served. With
output functionR; (fluid model) the assumption is that a packet can be servedas as a first bit has
arrived (cut-through assumption), and that a packet defadan be observed bit by bit, at a constant rate.
For example, the first packet arrives between times 1 andleawves between times 1 and 4. With output
function R; the assumption is that a packet is served as soon as it hasutlgerceived and is considered
out of the system only when it is fully transmitted (store dadvard assumption). Here, the first packet
arrives immediately after time 1, and leaves immediatelgrafme 4. With output functior?; (discrete
time model), the first packet arrives at time 2 and leavesra 8.

1.1.2 BACKLOG AND VIRTUAL DELAY

From the input and output functions, we derive the two follmpwquantities of interest.

DerINITION 1.1.1 (Backlog and Delay)For a lossless system:

e Thebacklogat timet is R(t) — R*(t).
e Thevirtual delayat timet is

dit)=inf{r >0: R(t) < R*(t+71)}

The backlog is the amount of bits that are held inside theegysif the system is a single buffer, it is the
gueue length. In contrast, if the system is more complexj the backlog is the number of bits “in transit”,
assuming that we can observe input and output simultanedadsFigure 1.1.1, the backlog, calledt), is
shown as the vertical deviation between input and outpudtioins.

Roughly speaking, the virtual delay at tinés the delay that is experienced by a bit arriving at titne
if all bits received before it are served before it (we sayt thach a system iEIFO for this flow, where
FIFO stands for “First In, First Out”). On the figure, it is therizontal deviation between input and output
functions. More precisely, if these functions are left4iamous (as in Figure 1.1.1, subfigure 2), and for a
FIFO system(t) is the delay for a hypothetical bit that would arriust beforetime ¢; the delay for a bit

2[z] (“ceiling of ") is defined as the smallest integerz; for example[2.3] = 3 and[2] = 2
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that arrivesat time ¢ is the limit from the right ofd(¢), namely,d,(¢) def limg_ys ¢5¢ d(s) . In contrast, if
the input and output functions are right-continuous, ancaf&IFO systemd(t) is the delay for a bit that
arrives at time.

In Figure 1.1.1, we see that the values of backlog and vidakly slightly differ for the three models. Thus
the delay experienced by the last bit of the first packet(’y = 2 time units for the first subfigure; in
contrast, itis equal td, (1) = 3 time units on the second subfigure. This is of course in aecwe with the
different assumptions made for each of the models. Simijldre delay for the fourth packet on subfigure 2
is d,-(8.6) = 5.4 time units, which corresponds to 2.4 units of waiting timel 8nunits of service time. In
contrast, on the third subfigure, it is equald®) = 6 units; the difference is the loss of accuracy resulting
from discretization.

1.1.3 BEXAMPLE : THE PLAYOUT BUFFER

Cumulative functions are a powerful tool for studying delayd buffers. In order to illustrate this, consider
the simple playout buffer problem that we describe now. @mmsa packet switched network that carries
bits of information from a source with a constant bit rat@igure 1.2) as is the case for example, with
circuit emulation. We take a fluid model, as illustrated igu¥e 1.2. We have a first syste$h the network,
with input function R(t) = rt. The network imposes some variable delay, because of queuaimts,
therefore the outpuR* does not have a constant rateWhat can be done to recreate a constant bit stream
? A standard mechanism is to smooth the delay variation imygopk buffer. It operates as follows. When

A bits R(T)

(D2)
R(1) R*(t)  S(1)

—» S —» S

R*(1)

&

v

11

N
d(d) - Ad(0+) d(0+) + A

Figure 1.2:A Simple Playout Buffer Example

the first bit of data arrives, at timé.(0), it is stored in the buffer until a fixed tim& has elapsed. Then the
buffer is served at a constant ratevhenever it is not empty. This gives us a second sys$&énwith input
R* and outputS.

Let us assume that the network delay variation is bounded byl his implies that for every time, the
virtual delay (which is the real delay in that case) satisfies

—A <d(t)—d.(0) <A
Thus, since we have a fluid model, we have
r(t — dr(O) — A) < R*(t) < r(t — dr(O) + A)

which is illustrated in the figure by the two lines (D1) and {Dgarallel to R(¢). The figure suggests
that, for the playout buffesS’ the input functionR* is always above the straight line (D2), which means

30Other authors often use the notatiéfi ™) for d,.(t).
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that the playout buffer never underflows. This suggests rin toat the output functiorb(¢) is given by
S(t) =r(t—d.(0) —A).

Formally, the proof is as follows. We proceed by contraditti Assume the buffer starves at some time,
and lett; be the first time at which this happens. Clearly the playodtebus empty at timet;, thus
R*(t1) = S(t1). There is a time intervdty, t; + €] during which the number of bits arriving at the playout
buffer is less thame (see Figure 1.2). Thug(t; + ¢) > d,-(0) + A which is not possible. Secondly, the
backlog in the buffer at timeis equal toR*(t) — S(¢), which is bounded by the vertical deviation between
(D1) and (D2), namely2rA.

We have thus shown that the playout buffer is able to removaléhay variation imposed by the network.
We summarize this as follows.

ProrPosITION 1.1.1. Consider a constant bit rate stream of rate modified by a network that imposes
a variable delay variation and no loss. The resulting flow i mto a playout buffer, which operates by
delaying the first bit of the flow b}, and reading the flow at rate. Assume that the delay variation
imposed by the network is boundeddythen

1. the playout buffer never starves and produces a constapubat rater;
2. abuffer size 02Ar is sufficient to avoid overflow.

We study playout buffers in more details in Chapter 5, ushegrietwork calculus concepts further intro-
duced in this chapter.

1.2 ARRIVAL CURVES

1.2.1 DerFINITION OF AN ARRIVAL CURVE

Assume that we want to provide guarantees to data flows. &tisnes some specific support in the network,
as explained in Section 1.3; as a counterpart, we need totheitraffic sent by sources. With integrated
services networks (ATM or the integrated services intgrrtbis is done by using the concept of arrival
curve, defined below.

DEFINITION 1.2.1 (Arrival Curve).Given a wide-sense increasing functierefined fort > 0 we say that
a flow R is constrained by if and only if for all s < ¢:

R(t) — R(s) < ot — s)
We say thatR hasa as an arrival curve, or also thaR is a-smooth.

Note that the condition is over a set of overlapping intexvak Figure 1.3 illustrates.

AFFINE ARRIVAL CURVES:  For example, ifa(t) = rt, then the constraint means that, on any time
window of width7, the number of bits for the flow is limited by-. We say in that case that the flow is peak
rate limited. This occurs if we know that the flow is arriving a link whose physical bit rate is limited by
r b/s. A flow where the only constraint is a limit on the peak iateften (improperly) called a “constant bit
rate” (CBR) flow, or “deterministic bit rate” (DBR) flow.

Having «(t) = b, with b a constant, as an arrival curve means that the maximum nuofiéts that may
ever be sent on the flow is at mdst

More generally, because of their relationship with leakgkaits, we will often usaffinearrival curvesy,. s,
defined byxy, ,(t) = rt+bfor ¢t > 0 and0 otherwise. Havingy, ; as an arrival curve allows a source to send
b bits at once, but not more tharb/s over the long run. Parametérandr are called the burst tolerance (in
units of data) and the rate (in units of data per time unityufé 1.3 illustrates such a constraint.
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bits

bits

R(t) time

Figure 1.3:Example of Constraint by arrival curve, showing a cumulative function R(¢) constrained by the
arrival curve «(t).

STAIR FUNCTIONS AS ARRIVAL CURVES: In the context of ATM, we also use arrival curves of the
form kvr -, wherevr ;- is the stair functions defined by ,(¢) = [”TT] for t > 0 and0 otherwise (see
Section 3.1.3 for an illustration). Note that (t) = vro(t + 7), thusvr. results fromuvro by a time
shift to the left. ParametéF (the “interval”) andr (the “tolerance”) are expressed in time units. In order
to understand the use of ,, consider a flow that sends packets of a fixed size, equalunit of data
(for example, an ATM flow). Assume that the packets are spagedt leastl” time units. An example

is a constant bit rate voice encoder, which generates maglestodically during talk spurts, and is silent
otherwise. Such a flow hdsir o as an arrival curve.

Assume now that the flow is multiplexed with some others. Apway to think of this scenario is to
assume that the packets are put into a queue, together \wigh fidws. This is typically what occurs at a
workstation, in the operating system or at the ATM adaptée queue imposes a variable delay; assume it
can be bounded by some value equat tame units. We will see in the rest of this chapter and in Ceaft
how we can provide such bounds. CAlt) the input function for the flow at the multiplexer, afd (¢) the
output function. We hav&*(s) > R(s — 7), from which we derive:

R*(t) — R*(s) < R(t) — R(s — 1) < kvro(t —s+7) = kvr,(t — s)

Thus R* haskvr > as an arrival curve. We have shown thgperiodic flow, with period’, and packets of
constant size:, that suffers a variable delay 7, haskvr » as an arrival curve The parameter is often
called the “one-point cell delay variation”, as it corresgs to a deviation from a periodic flow that can be
observed at one point.

In general, functionr , can be used to expressnimum spacingpetween packets, as the following propo-
sition shows.

PrROPOSITION1.2.1 (Spacing as an arrival constraingonsider a flow, with cumulative functid®(t), that
generates packets of constant size equdl ttata units, with instantaneous packet arrivals. Assume tim
is discrete or time is continuous ardis left-continuous. Calt, the arrival time for thenth packet. The
following two properties are equivalent:

1. forallm,n, tyyp —tym, >nT — 7
2. the flow hasvr » as an arrival curve

The conditions on packet size and packet generation meamthahas the formnk, with n € N. The
spacing condition implies that the time interval between t@nsecutive packets is 7' — 7, between a
packet and the next but oneXs27T — 7, etc.
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PROOF:  Assume that property 1 holds. Consider an arbitrary intessat], and calln the number of
packet arrivals in the interval. Say that these packetsamberedn + 1,...,m + n, so thats < t,,11 <
oo < tyman < t, from which we have

t—s > tm+n _tm+1

Combining with property 1, we get
t—s>n—-1)T—71

From the definition ob ; it follows thatvr - (t — s) > n. ThusR(t) — R(s) < kvr.(t — s), which shows
the first part of the proof.

Conversely, assume now that property 2 holds. If time isrdis¢ we convert the model to continuous time
using the mapping in Equation 1.2, thus we can consider teaire in the continuous time case. Consider
some arbitrary integens:, n; for all ¢ > 0, we have, under the assumption in the proposition:

R(tmin +€) — R(ty) > (n+ 1)k

thus, from the definition ofr .,
tm4n —tm+e>nT —71

This is true for alle > 0, thust,, 1, — ty, > nT — 7. O

In the rest of this section we clarify the relationship begwarrival curve constraints defined by affine and
by stair functions. First we need a technical lemma, whiclbamis to saying that we can always change an
arrival curve to be left-continuous.

LEmMMA 1.2.1 (Reduction to left-continuous arrival curve§)onsider a flowRz(¢) and a wide sense increas-
ing functiona(t), defined fort > 0. Assume that is either left-continuous, or right-continuous. Denote
with o (¢) the limit from the left ofv at ¢ (this limit exists at every point becauads wide sense increasing);
we havey(t) = sup,, a(s). If ais an arrival curve forR, then so isy;.

PrROOF:  Assume first thatR is left-continuous. For some < t, lett, be a sequence of increasing
times converging towards with s < ¢, < t. We haveR(t,) — R(s) < a(t, —s) < ay(t —s). Now
lim,,—, 1o R(t,) = R(t) since we assumed th&tis left-continuous. Thu(t) — R(s) < a;(t — s).

If in contrast R is right-continuous, consider a sequengeconverging towards from above. We have
similarly R(t) — R(sp) < a(t—s,) < oq(t—s) andlim,,_, 1 oo R(sp) = R(s), thusR(t) — R(s) < oq(t—s)

as well. 0
Based on this lemma, we can always reduce an arrival curve leftscontinuou$. Note thaty, , andvr ,

are left-continuous. Also remember that, in this book, weethe convention that cumulative functions such
asR(t) are left continuous; this is a pure convention, we might alé ee chosen to consider only right-
continuous cumulative functions. In contrast, an arrivalve can always be assumed to be left-continuous,
but not right-continuous.

In some cases, there is equivalence between a constraiméddlyy, , andvr . For example, for an ATM
flow (namely, a flow where every packet has a fixed size equahéounit of data) a constraint., with
r= % andb = 1 is equivalent to sending one packet evéryime units, thus is equivalent to a constraint
by the arrival curverro. In general, we have the following result.

PROPOSITION1.2.2. Consider either a left- or right- continuous floi(t), ¢ € R™, or a discrete time flow
R(t),t € N, that generates packets of constant size equialdata units, with instantaneous packet arrivals.
For someT" and T, letr = % andb = k(7 + 1). Itis equivalent to say thak is constrained by, ; or by
kUTﬂ-.

“If we considera. (t), the limit from the right ofa at¢, thena < «, thusa. is always an arrival curve, however it is not better
thana.
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PROOF:  Since we can map any discrete time flow to a left-continuoasticuous time flow, it is suffi-
cient to consider a left-continuous floi(t),t € R*. Also, by changing the unit of data to the size of one
packet, we can assume without loss of generality that1. Note first, that with the parameter mapping in
the proposition, we haver » < ~,, which shows that i, is an arrival curve for?, then so isy, ;.

Conversely, assume now thathasy, , as an arrival curve. Then for all< ¢, we haveR(t) — R(s) < rt+b,
and sinceR(t) — R(s) € N, this impliesR(t) — R(s) < |rt + b], Call «(t) the right handside in the above
equation and apply Lemma 1.2.1. We hayé/) = [rt +b — 1] = vr,(1). O

Note that the equivalence holds if we can assume that theepaide is constant and equal to the step size
in the constrainkvr . In general, the two families of arrival curve do not providentical constraints. For
example, consider an ATM flow, with packets of size 1 data, thit is constrained by an arrival curve of
the formkvr -, for somek > 1. This flow might result from the superposition of several ATlbvs. You
can convince yourself that this constraint cannot be mappedconstraint of the forny, ;. We will come
back to this example in Section 1.4.1.

1.2.2 LEAKY BUCKET AND GENERIC CELL RATE ALGORITHM

Arrival curve constraints find their origins in the concepiaaky bucket and generic cell rate algorithms,
which we describe now. We show that leaky buckets corresporaffine arrival curvesy, ;, while the
generic cell rate algorithm corresponds to stair functions. For flows of fixed size packets, such as ATM
cells, the two are thus equivalent.

DEFINITION 1.2.2 (Leaky Bucket Controller)A Leaky Bucket Controller is a device that analyzes the data
on a flowR(t) as follows. There is a pool (bucket) of fluid of siz& he bucket is initially empty. The bucket
has a hole and leaks at a rate ounits of fluid per second when it is not empty.

Data from the flowRz(¢) has to pour into the bucket an amount of fluid equal to the arnofshata. Data that
would cause the bucket to overflow is declared non-confornadimerwise the data is declared conformant.

Figure 1.2.2 illustrates the definition. Fluid in the leakicket does not represent data, however, it is counted
in the same unit as data.

Data that is not able to pour fluid into the bucket is said to hen“conformant” data. In ATM systems,
non-conformant data is either discarded, tagged with a lewvity for loss (“red” cells), or can be putin a
buffer (buffered leaky bucket controller). With the Intetgd Services Internet, non-conformant data is in
principle not marked, but simply passed as best effort tréffamely, normal IP traffic).

We want now to show that a leaky bucket controller enforcearamal curve constraint equal tg.;,. We
need the following lemma.

LEMMA 1.2.2. Consider a buffer served at a constant rateAssume that the buffer is empty at tihé he
input is described by the cumulative functi@t). If there is no overflow during), ¢], the buffer content at
timet is given by

x(t) = sup{R(t) — R(s) — r(t — s)}

s:s<t

PrROOF: The lemma can be obtained as a special case of Corollary dn5page 32, however we give
here a direct proof. First note that for alsuch thats < ¢, (t — s)r is an upper bound on the number of bits
output in|s, t], therefore:

R(t) — R(s) —x(t) + z(s) < (t — s)r

Thus
x(t) > R(t) — R(s) + x(s) — (t — s)r > R(t) — R(s) — (t — s)r
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Figure 1.4:A Leaky Bucket Controller. The second part of the figure shows (in grey) the level of the bucket
x(t) for a sample input, with » = 0.4 kbits per time unit and b = 1.5 kbits. The packet arriving at time ¢ = 8.6
is not conformant, and no fluid is added to the bucket. If b would be equal to 2 kbits, then all packets would
be conformant.

which proves that(t) > supg. <, {R(t) — R(s) —r(t — s)}.
Conversely, callj the latest time at which the buffer was empty before time

to =sup{s: s <t,z(s) =0}

(If z(t) > 0 thent, is the beginning of the busy period at tinje During |to, t], the queue is never empty,
therefore it outputs bit at rate and thus

z(t) = z(to) + R(t) — R(to) — (¢t — to)r (1.3)

We assume thak is left-continuous (otherwise the proof is a little more gex); thusz(ty) = 0 and thus
w(t) < Sups:sgt{R(t) - R(S) - 7a(t - 3)}
Now the content of a leaky bucket behaves exactly like a bgteved at rate, and with capacity. Thus,
a flow R(t) is conformant if and only if the bucket contentt) never exceeds. From Lemma 1.2.2, this
means that

sup{R(t) — R(s) —r(t—s)} <b

s:s<t
which is equivalent to

R(t)— R(s) <r(t—s)+b

for all s < t. We have thus shown the following.

PROPOSITION1.2.3. A leaky bucket controller with leak rateand bucket sizé forces a flow to be con-
strained by the arrival curve;, ;, namely:

1. the flow of conformant data has; as an arrival curve;
2. if the input already has, ; as an arrival curve, then all data is conformant.

We will see in Section 1.4.1 a simple interpretation of trekiebucket parameters, namelyis the mini-
mum rate required to serve the flow, anig the buffer required to serve the flow at a constant rate.

Parallel to the concept of leaky bucket is the Generic CetéRédgorithm (GCRA), used with ATM.
DEFINITION 1.2.3 (GCRAT, 7)). The Generic Cell Rate Algorithm (GCRA) with parametétsr{) is used

with fixed size packets, called cells, and defines conforells as follows. It takes as input a cell arrival
timet and returnsr esul t . It has an internal (static) variableat (theoretical arrival time).
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e initially, tat = 0
e when a cell arrives at time, then
if (t <tat - tau)
result = NON- CONFORMANT;
el se {
tat = max (t, tat) + T;
result = CONFORMANT;
}

Table 1.1 illustrate the definition of GCRA. It iIIustratdmt% is the long term rate that can be sustained
by the flow (in cells per time unit); while is a tolerance that quantifies how early cells may arrive with
respect to an ideal spacing ‘bfbetween cells. We see on the first example that cells may betse? time
units (cells arriving at times 18 to 48), however this may Im®tcumultated, otherwise the rate%fwould

be exceeded (cell arriving at time 57).

(@)

arrival time 10| 18| 28 | 38| 48 57
tat before arrival 10| 20| 30| 40|50| 60
result|fc| c| c| c| c| ¢ | non-c

(@)

arrival time || 0 | 10 15 25| 35
tat before arrivall| 0 | 10| 20 | 20| 30
result| c| ¢ | non-c| ¢ | C

Table 1.1:Examples for GCRA(10,2). The table gives the cell arrival times, the value of the t at internal
variable just before the cell arrival, and the result for the cell (c = conformant, non-c = non-conformant).

In general, we have the following result, which establistiesrelationship between GCRA and the stair
functionsvr ;.

PrRoPOSITION1.2.4. Consider a flow, with cumulative functioR(¢), that generates packets of constant
size equal tdk data units, with instantaneous packet arrivals. Assume tgwiscrete or time is continuous
and R is left-continuous. The following two properties are eaqiewt:

1. the flow is conformant to GCRA(r)
2. the flow hask vr ) as an arrival curve

ProOF:  The proof uses max-plus algebra. Assume that property Ish@enote withp,, the value of
t at just after the arrival of thexth packet (or cell), and by conventiglh = 0. Also call ¢,, the arrival
time of thenth packet. From the definition of the GCRA we haye= max(t,,0,—1) + 7. We write this
equation for alln < n, using the notatiow for max. The distributivity of addition with respect to gives:

0, = (Hn—l + T) vV (tn + T)
anfl +T = (9n72 + 2T) \ (tnfl + 2T)
91 + (n — 1)T = (90 + nT) V (tl + TLT)

Note that(fy + nT) V (t1 + nT) = t; + nT because), = 0 andt; > 0, thus the last equation can be
simplified tof; + (n — 1)T = t; +nT. Now the iterative substitution of one equation into thevjmes one,
starting from the last one, gives

Op={tn+T)V (tn—1 +2T)V ...V (t1 +nT) (1.4)
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Now consider thgm + n)th arrival, for somem,n € N, with m > 1. By property 1, the packet is
conformant, thus
tmtn = Hm—i—n—l -7 (15)

Now from Equation (1.4)¢,,1n—1 > t; + (m+n —j)T foralll1 < j < m+n—1. Forj = m, we
obtainé,,, 1 > t, + nT. Combining this with Equation (1.5), we havg., > t,, + nT — 7. With
proposition 1.2.1, this shows property 2.

Conversely, assume now that property 2 holds. We show bytimtuonn that thenth packet is conformant.
This is always true fon = 1. Assume it is true for alln < n. Then, with the same reasoning as above,
Equation (1.4) holds for. We rewrite it a®,, = max;<;<n{t;+(n—j+1)T}. Now from proposition 1.2.1,
the1 > tj+(n—j+1)T—7foralll < j < n,thust,;1 > maxi<j<p{t;+(n—3j+1)T} —7. Combining
the two, we find that,,.; > 6,, — 7, thus the(n + 1)th packet is conformant. O

Note the analogy between Equation (1.4) and Lemma 1.2.2ebhdrom proposition 1.2.2, for packets of
constant size, there is equivalence between arrival @ntdrby affine functions,., and by stair functions
vt ~. This shows the following result.

COROLLARY 1.2.1. For a flow with packets of constant size, satisfying the GARAYis equivalent to
satisfying a leaky bucket controller, with rateand burst tolerancé given by:

.
b=(=+1)
(Z+1)

0
r=—
T
In the formulasy is the packet size in units of data.

The corollary can also be shown by a direct equivalence odBBRA algorithm to a leaky bucket controller.

Take the ATM cell as unit of data. The results above show traafi ATM cell flow, being conformant to
GCRA(T, 7) is equivalent to havingr - as an arrival curve. It is also equivalent to havipg as an arrival
curve, withr = £ andb = % + 1.

Consider a family ofl leaky bucket controllers (or GCRAS), with parameters,, for 1 < < I. If we
apply all of them in parallel to the same flow, then the confambdata is data that is conformant for each
of the controllers in isolation. The flow of conformant datstas an arrival curve
t) = mi b, (1)) = mi it + b;
o(t) = min (y,p,(t)) = min (rit +b;)
It can easily be shown that the family of arrival curves thaat be obtained in this way is the set of concave,

piecewise linear functions, with a finite number of piecese Will see in Section 1.5 some examples of
functions that do not belong to this family.

APPLICATION TO ATM AND THE INTERNET Leaky buckets and GCRA are used by standard bodies to
define conformant flows in Integrated Services Networksh\WWiEM, a constant bit rate connection (CBR)
is defined by one GCRA (or equivalently, one leaky bucketjhwparametersT', 7). T is called the ideal
cell interval, andr is called the Cell Delay Variation Tolerance (CDVT). StilitwATM, a variable bit rate
(VBR) connection is defined as one connection with an arduale that corresponds to 2 leaky buckets
or GCRA controllers. The Integrated services frameworkhef internet (Intserv) uses the same family of
arrival curves, such as

a(t) = min(M + pt,rt +b) (1.6)

where M is interpreted as the maximum packet sizes the peak raté, as the burst tolearance, ands
the sustainable rate (Figure 1.5). In Intserv jargon, theplé-(p, M, r,b) is also called a T-SPEC (traffic
specification).
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rate p

rate r

v

Figure 1.5:Arrival curve for ATM VBR and for Intserv flows

1.2.3 SB-ADDITIVITY AND ARRIVAL CURVES

In this Section we discover the fundamental relationshigvben min-plus algebra and arrival curves. Let
us start with a motivating example.

Consider a flowR(t) € N with ¢t € N; for example the flow is an ATM cell flow, counted in cells. Tinse
discrete to simplify the discussion. Assume that we know tihe flow is constrained by the arrival curve
3v10,0; for example, the flow is the superposition of 3 CBR connedtiof peak raté.1 cell per time unit
each. Assume in addition that we know that the flow arrivef@tbint of observation over a link with a
physical characteristic of 1 cell per time unit. We can cadelthat the flow is also constrained by the arrival
curvev; o. Thus, obviously, it is constrained layy = min(3v19,, v1,0). Figure 1.6 shows the functiam; .

cells cells

‘\\\\\\\\\1\0\\\\\\\\\}\tlm\e\SIQt?;

‘\\\\\\\\\I}O\\\\\\\\\}\tl\lll\e\Slﬂ)t%;

Figure 1.6:The arrival curve a; = min(3v10,0,v1,0) On the left, and its sub-additive closure (“good” function)
a7 on the right. Time is discrete, lines are put for ease of reading.

Now the arrival curvey; tells us that?(10) < 3 andR(11) < 6. However, since there can arrive at most 1
cell per time unit , we can also conclude thtl1) < R(10) + [R(11) — R(10)] < a1(10) 4+ a;(1) = 4.

In other words, the sheer knowledge tliats constrained by, allows us to derive a better bound than
itself. This is because; is not a “good” function, in a sense that we define now.

DEFINITION 1.2.4. Consider a functiony in 7. We say thatv is a “good” function if any one of the
following equivalent properties is satisfied

a is sub-additive andv(0) = 0
a=0a@®«

ao=«

« = a (sub-additive closure af).

NP

The definition uses the concepts of sub-additivity, minsptonvolution, min-plus deconvolution and sub-
additive closure, which are defined in Chapter 3. The eqeivad between the four items comes from
Corollaries 3.1.1 on page 120 and 3.1.13 on page 125. Sutivagditem 1) means thaty(s + t) <



1.2. ARRIVAL CURVES 15

a(s) + a(t). If o is not sub-additive, then(s) + a(t) may be a better bound than(s + t), as is the
case withay in the example above. Item 2, 3 and 4 use the concepts of m@qunvolution, min-plus
deconvolution and sub-additive closure, defined in Chaht&¥e know in particular (Theorem 3.1.10) that
the sub-additive closure of a functienis the largest “good” functio such thata < «. We also know
thata € Fif o € F.

The main result about arrival curves is tlaaty arrival curve can be replaced by its sub-additive closure,
which is a “good” arrival curve. Figure 1.6 shows for our example above.

THEOREM 1.2.1 (Reduction of Arrival Curve to a Sub-Additive On&aying that a flow is constrained by
a wide-sense increasing functianis equivalent to saying that it is constrained by the subiagds closure
a.

The proof of the theorem leads us to the heart of the conceatrivhl curve, namely, its correspondence
with a fundamental, linear relationships in min-plus algebvhich we will now derive.

LEmMMA 1.2.3. Aflow R is constrained by arrival curver ifand only if R < R ® «

PROOF: Remember that an equation such/as. R ® o means that for all times R(t) < (R ® «)(t).
The min-plus convolutiorR ® « is defined in Chapter 3, page 111; sifees) anda(s) are defined only for
s > 0, the definition ofR @ avis: (R ® «)(t) = info<s<i(R(s) + a(t — s)). ThusR < R ® « is equivalent
to R(t) < R(s) +at—s)forall0 < s <t. O

LEMMA 1.2.4. If ai; and oy are arrival curves for a flowz, then so isy; ® s

PrRoOOF: We know from Chapter 3 that; ® as is wide-sense increasingdf, andas are. The rest of the
proof follows immediately from Lemma 1.2.3 and the assadgtgitof ®. O

PROOF OF THEOREM  Since« is an arrival curve, so i& ® «, and by iteration, so ia(™ foralln > 1.
By the definition ofdy, it is also an arrival curve. Thus sods= inf,,>¢ a™,

Converselya < «; thus, if@ is an arrival curve, then so is. O

EXAMPLES We should thus restrict our choice of arrival curves to sdtiiteve functions. As we can
expect, the functions,.;, andvr , introduced in Section 1.2.1 are sub-additive and since tradue isO
for t = 0, they are “good” functions, as we now show. Indeed, we knamfChapter 1 that any concave
function a such thain(0) = 0 is sub-additive. This explains why the functions, are sub-additive.

Functionsvr - are not concave, but they still are sub-additive. This isabse, from its very definition, the
ceiling function is sub-additive, thus

s+t+T71 - s+ T t s+ T t+ T

I < T+ T < PR+ [0 = o) + vr0)

Let us return to our introductory example with = min(3vi0,0,v1,0). As we discussedy; is not sub-
additive. From Theorem 1.2.1, we should thus replageby its sub-additive closure;, which can be
computed by Equation (3.13). The computation is simplifigdhe following remark, which follows im-
mediately from Theorem 3.1.11:

(s +1) = [

LEMMA 1.2.5. Lety; and~, be two “good” functions. The sub-additive closurerofn(vy,2) IS v1 ® 2.

We can apply the lemma @, = 3vi90 A v1,0, Sincevr ; is a “good” function. Thusy; = 3vig,0 ® v1,0,
which the alert reader will enjoy computing. The result istfgd in Figure 1.6.

Finally, let us mention the following equivalence, the grobwhich is easy and left to the reader.
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ProPOSITION 1.2.5. For a given wide-sense increasing functian with «(0) = 0, consider a source
defined byR(t) = a(t) (greedy source). The source hass an arrival curve if and only ifv is a “good”
function.

VBR ARRIVAL CURVE Now let us examine the family of arrival curves obtained bynbinations of
leaky buckets or GCRAs (concave piecewise linear funclioge know from Chapter 3 that #; and~-
are concave, with; (0) = v2(0) = 0, thenvy; ® 72 = 71 A 72. Thus any concave piecewise linear function
a such thatx(0) = 0 is a “good” function. In particular, if we define the arrivalree for VBR connections
or Intserv flows by
a(t) =min(pt + M,rt +b) ift >0

{ a(0) =0

(see Figure 1.5) them is a “good” function.

We have seen in Lemma 1.2.1 that an arrival curvean always be replaced by its limit from the left
We might wonder how this combines with the sub-additive wles and in particular, whether these two
operations commute (in other words, do we h&wg¢, = @; ?). In general, ifa is left-continuous, then
we cannot guarantee thatis also left-continuous, thus we cannot guarantee thatpleeations commute.
However, it can be shown thét); is always a “good” function, thugx); = (a);. Starting from an arrival
curvea we can therefore improve by taking the sub-additive closivse then the limit from the left. The
resulting arrival curvea); is a “good” function that is also left-continuous (a “veryagti function), and

the constraint by is equivalent to the constraint i),

Lastly, let us mention that it can easily be shown, using garaent of uniform continuity, that i takes
only a finite set of values over any bounded time interval, irdis left-continuous, then so g and then
we do havea); = a;. This assumption is always true in discrete time, and in roasés in practice.

1.2.4 MINIMUM ARRIVAL CURVE

Consider now a given flowk(¢), for which we would like to determine a minimal arrival curv& his
problem arises, for example, wheéhis known from measurements. The following theorem saystheae
is indeed one minimal arrival curve.

THEOREM 1.2.2 (Minimum Arrival Curve).Consider a flowR(t);>o. Then
e functionR © R is an arrival curve for the flow

e for any arrival curvea that constrains the flow, we haveéR © R) < «
e R Ris a*“good” function

FunctionR © R is called theminimum arrival curvefor flow R.

The minimum arrival curve uses min-plus deconvolution, raefiin Chapter 3. Figure 1.2.4 shows an
example ofR @ R for a measured functioR.

PrROOF: By definition of©, we have(R @ R)(t) = sup,>o{R(t +v) — R(v)}, it follows that(R © R)
is an arrival curve.

Now assume that someis also an arrival curve foR. From Lemma 1.2.3, we have < R ® «). From
Rule 14 in Theorem 3.1.12 in Chapter 3, it follows tiiap R < «, which shows thaRR @ R is the minimal
arrival curve forR. Lastly, R @ R is a “good” function from Rule 15 in Theorem 3.1.12. O

Consider a greedy source, witt(t) = «(t), wherea is a “good” function. What is the minimum arrival
curve ? Lastly, the curious reader might wonder whettliery R is left-continuous. The answer is as

SAnswer: from the equivalence in Definition 1.2.4, the minimarrival curve is itself.
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Figure 1.7:Example of minimum arrival curve. Time is discrete, one time unit is 40 ms. The top figures
shows, for two similar traces, the number of packet arrivals at every time slot. Every packet is of constant
size (416 bytes). The bottom figure shows the minimum arrival curve for the first trace (top curve) and the
second trace (bottom curve). The large burst in the first trace comes earlier, therefore its minimum arrival
curve is slightly larger.
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follows. Assume thaR is either right or left-continuous. By lemma 1.2.1, the lifnom the left(R @ R),
is also an arrival curve, and is bounded from aboveRby R. SinceR @ R is the minimum arrival curve,
it follows that(R @ R); = R @ R, thusR @ R is left-continuous (and is thus a “very good” function).

In many cases, one is interested not in the absolute minimuivalacurve as presented here, but in a
minimum arrival curve within a family of arrival curves, f@xample, among aH,; functions. For a
development along this line, see [61].

1.3 SERVICE CURVES

1.3.1 DEFINITION OF SERVICE CURVE

We have seen that one first principle in integrated servietworks is to put arrival curve constraints on
flows. In order to provide reservations, network nodes inrreheed to offer some guarantees to flows.
This is done by packet schedulers [45]. The details of pasle¢duling are abstracted using the concept
of service curve, which we introduce and study in this secti®ince the concept of service curve is more
abstract than that of arrival curve, we introduce it on soraT®les.

A first, simple example of a scheduler is a Generalized Psacesharing (GPS) node [63]. We define now
a simple view of GPS; more details are given in Chapter 2. A 68t serves several flows in parallel, and
we can consider that every flow is allocated a given rate. Tiagamtee is that during a period of duration
for which a flow has some backlog in the node, it receives aruatnaf service at least equal o, wherer

is its allocated rate. A GPS node is a theoretical concefthwb not really implementable, because it relies
on a fluid model, while real networks use packets. We will seBeéction 2.1 on page 67 how to account
for the difference between a real implementation and GP8sider a input flonR, with output R*, that is
served in a GPS node, with allocated ratéd_et us also assume that the node buffer is large enough so tha
overflow is not possible. We will see in this section how to poie the buffer size required to satisfy this
assumption. Lossy systems are the object of Chapter 9. Unéese assumptions, for all tiniecall ¢, the
beginning of the last busy period for the flow up to timé&rom the GPS assumption, we have

R*(t) — R*(to) = r(t —to)

Assume as usual tha& is left-continuous; at timeé, the backlog for the flow i, which is expressed by
R(tg) — R*(to) = 0. Combining this with the previous equation, we obtain:

R*(t) - R(to) Z ’I“(t — t(])
We have thus shown that, for all timeR*(¢) > info<s<;[R(s) + r(t — s)], which can be written as
R*> R® (1.7)

Note that a limiting case of GPS node is the constant bit extees with rater, dedicated to serving a single
flow. We will study GPS in more details in Chapter 2.

Consider now a second example. Assume that the only infmate have about a network node is that
the maximum delay for the bits of a given floiis bounded by some fixed valdé and that the bits of
the flow are served in first in, first out order. We will see int8et1.5 that this is used with a family of
schedulers called “earliest deadline first” (EDF). We camgfate the assumption on the delay bound to
d(t) < T for all t. Now sinceR* is always wide-sense increasing, it follows from the dafinibf d(¢) that
R*(t+T) > R(t). Conversely, ifR*(t + 1) > R(t), thend(t) < T'. In other words, our condition that the
maximum delay is bounded W is equivalent taR* (¢ + 7') > R(t) for all t. This in turn can be re-written
as

R*(s) > R(s—T)
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forall s > T'. We have introduced in Chapter 3 the “impulse” functderdefined bydr (1) = 0if 0 <t < T
andér(t) = +ooif t > T'. It has the property that, for any wide-sense increasingtionz(t), defined for
t>0,(x®dp)(t)=a(t—T)if t > T and(xz ® ér)(t) = x(0) otherwise. Our condition on the maximum
delay can thus be written as

R*> R®or (1.8)

For the two examples above, there is an input-output relsiip of the same form (Equations (1.7) and
(1.8)). This suggests the definition of service curve, whahwe see in the rest of this section, is indeed
able to provide useful results.

R*
A R(t)

B()

data

time
| -

(R® B)(®)

time

Figure 1.8:Definition of service curve. The output R* must be above R ® 3, which is the lower envelope of
all curves t — R(to) + S(t — to).

DEFINITION 1.3.1 (Service Curve)Consider a systeny and a flow throughS with input and output
function R and R*. We say thatS offers to the flow aservice curves if and only if 5 is wide sense
increasing,5(0) = 0andR* > R®

Figure 1.8 illustrates the definition.

The definition means thét is a wide sense increasing function, witf0) = 0, and that for alk > 0,

R*(t) > inf (R(s) + B(t - s))
In practice, we can avoid the use of an infimumi is continuous. The following proposition is an immediate
consequence of Theorem 3.1.8 on Page 115.

PropPoOsITION1.3.1. If 8 is continuous, the service curve property means that for aié can findiy < ¢
such that

©
~

R*(t) = Ri(to) + B(t — to) 1.
whereR;(tg) = supys<4,) R(s) is the limit from the left of? at ¢,. If 12 is left-continuous, thed,(t) =
R(ty).

For a constant rate server (and also for atmict service curve), the numbeg in (1.9) can be taken as the
beginning of the busy period, for other cases, we do not kitmwever, in some cases we can pick ahat
increases with:

ProOPOSITION1.3.2. If the service curved is convex, then we can find some wide sense increasing fanctio
7(t) such that we can choogg = 7(¢) in (1.9).

Note that since a service curve is assumed to be wide-seosEading,s3, being convex, is necessarily
continuous; thus we can apply Proposition 1.3.1.
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ProOOF:  We give the proof whemR is left-continuous. The proof for the general case is eslgnthe
same but involves somecutting. Consider som& < ty and callm a value ofty as in (1.9)) at = ¢;.
Also consider any’ < 71. From the definition of-, we have

R (') + Bty —t') > R*(m1) + B(t1 — 71)

and thus
R*(t)+ Bty —t') > R*(1) + B(t1 — 1) — B(t1 = t') + B(ta — 1)

Now 3 is convex, thus for any four numbeisbh, ¢, d such thatt < ¢ < b,a < d < banda+b = c+d, we
have

Bla) + B(b) = Be) + B(d)

(the interested reader will be convinced by drawing a smallré). Applying this toa = t; — 7,0 =
to —t/,C =1 —t,,d =1y —T1 giVES

R*(t") + B(ts — t') > R*(11) + B(t2 — 1)

and the above equation holds for@lK ;. Consider now the minimum, for a fixeg, of R*(¢')+ 3(to—t')
over allt’ < t,. The above equation shows that the minimum is reached foe gom ;. O

We will see in Section 1.4 that the combination of a serviaweguarantee with an arrival curve constraint
forms the basis for deterministic bounds used in integragsglices networks. Before that, we give the
fundamental service curve examples that are used in peactic

1.3.2 Q.ASSICAL SERVICE CURVE EXAMPLES

GUARANTEED DELAY NODE The analysis of the second example in Section 1.3.1 can Ieasgd as
follows.

PrRoOPOSITION1.3.3. For a lossless bit processing system, saying that the delagrfy bit is bounded by
some fixed" is equivalent to saying that the system offers to the flow\d®ecurve equal to;.

NoN PREMPTIVE PRIORITY NODE Consider a node that serves two flows; (t) and Ry (¢). The first
flow has non-preemptive priority over the second one (Figud® This example explains the general frame-
work used when some traffic classes have priority over som&rgtsuch as with the Internet differentiated
services [7]. The rate of the server is constant, equal.t€all R}, (t) and R; () the outputs for the two
flows. Consider first the high priority flow. Fix some timand calls the beginning of the backlog period

High priority
Ry(t) —— R*(1)
R(t) —» rate ¢ R* (1)

Low priority

Figure 1.9:Two priority flows (H and L) served with a preemptive head of the line (HOL) service discipline.
The high priority flow is constrained by arrival curve «.

for high priority traffic. The service for high priority caretdelayed by a low priority packet that arrived
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shortly befores’, but as soon as this packet is served, the server is dedicelbégh priority as long as there
is some high priority traffic to serve. Over the interyalt], the output isC'(t — s)Thus
Ry (t) = Riy(s) = C(t — ) — Iy,

max

wherell _ is the maximum size of a low priority packet. Now by definitiohs: R%;(s) = Ru(s) thus

Ry (t) > Rp(s) + Ot — s) — 1%

max

Now we have also
Ry (t) — Ru(s) = Ry (t) — Ry(s) >0
from which we derive
Ry (t) > Ry(s) + [C(t — s) — IX

max]

The functionu — [Cu — 1% ]* is called the rate-latency function with raféand Iatencylfelax [75] (in

max

this book we note |13 1L, » See also Figure 3.1 on page 107). Thus the high prlorltj‘nd:r&fcewes this
function as a service curcve

Now let us examine low priority traffic. In order to assurettihdoes not starve, we assume in such situations
that the high priority flow is constrained by an arrival curvg. Consider again some arbitrary tirheCall
s’ the beginning of the server busy period (note tHak s). At time s/, the backlogs for both flows are
empty, namelyR},(s') = Ru(s’) andRj (s') = R (s"). Over the intervals’, t], the output isC'(t — s).
Thus
Ry(t) — Ri(s) = C(t — ') — [Rp (t) — Ry(s')]

Now

Ry (t) — Ry (s

') =Ry(t) - Ru(s') < Ru(t) — Ru(s') < an(t—s)
and obviouslyR3, (t) — R};(s") > 0 thus

Ri(t) — Rp(s') = Rp(t) — RL(s) = S(t — &)

with S(u) = (Cu — ax(u))". Thus, ifS is wide-sense increasing, the low-priority flow receivesmise
curve equal to functiorb. Assume further thatz; = ,.,, namely, the high priority flow is constrained
by one single leaky bucket or GCRA. In that case, the seruiceecS(t) offered to the low-priority flow is
equal to the rate-latency functigh; 7 (¢), with R = C' — r andT" =

b
C—r"
We have thus shown the following.

PrRoPOSITION 1.3.4. Consider a constant bit rate server, with ratg serving two flowsH and L, with
non-preemptive priority given to flold. Then the high priority flow is guaranteed a rate-latencyvger

curve with rateC' and Iatencylmax wherelZ _is the maximum packet size for the low priority flow.

If in addition the high priority flow isy, ,-smooth, with- < C, then the low priority flow is guaranteed a
rate-latency service curve with raté — r and Iatency%

This example justifies the importance of the rate-latencyise curve. We will also see in Chapter 2
(Theorem 2.1.2 on page 71) that all practical implementatiof GPS offer a service curve of the rate-
latency type.

STRICT SERVICE CURVE  An important class of network nodes fits in the following framork.

DEFINITION 1.3.2 (Strict Service Curve)We say that syste offers a strict service curvg to a flow if,
during any backlogged period of duratian the output of the flow is at least equalg¢u).
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A GPS node is an example of node that offers a strict servicee@f the formg(t) = rt. Using the same
busy-period analysis as with the GPS example in the predeason, we can easily prove the following.

ProrPOsITION1.3.5. If a node offerss as a strict service curve to a flow, then it also offéras a service
curve to the flow.

The strict service curve property offers a convenient wayisfializing the service curve concept: in that
case,[(u) is the minimum amount of service guaranteed during a busiypgerNote however that the
concept of service curve, as defined in Definition 1.3.1 isengmmeral. A greedy shaper (Section 1.5.2) is
an example of system that offers its shaping curve as a secuore, without satisfying the strict service
curve property. In contrast, we will find later in the book soproperties that hold only if a strict service
curve applies. The framework for a general discussion @ftstervice curves is given in Chapter 7.

VARIABLE CAPACITY NoODE Consider a network node that offers a variable service dgptaca flow.

In some cases, it is possible to model the capacity by a cuaveifanction M (¢), whereM (t) is the total
service capacity available to the flow between tii@sdt. For example, for an ATM system, think &1 (¢)

as the number of time slots between tindeendt that are available for sending cells of the flow. Let us also
assume that the node buffer is large enough so that overfloatipossible. The following proposition is
obvious but important in practice

ProPOSITION1.3.6. If the variable capacity satisfies a minimum guarantee ofdine
M(t) = M(s) > B(t — s) (1.10)
for some fixed functiof and for all0 < s < ¢, then/ is a strict service curve,

Thus S5 is also a service curve for that particular flow. The concdptaviable capacity node is also a
convenient way to establish service curve properties. Ramgplication to real time systems (rather than
communication networks) see [78].

We will show in Chapter 4 that the output of the variable céyawde is given by
(1) = inf {M(1) = M(s) + R(s)}
Lastly, coming back to the priority node, we have:
PROPOSITION1.3.7. The service curve property in Proposition 1.3.4 for the higtority flow is strict.

The proof is left to the reader. It relies on the fact that tanisrate server is a shaper.

1.4 NeETWORK CALCULUS BASICS

In this section we see the main simple network calculus t&sidlhey are all bounds for lossless systems
with service guarantees.

1.4.1 THREE BOUNDS

The first theorem says that the backlog is bounded by thecaédeviation between the arrival and service
curves:

THEOREM 1.4.1 (Backlog Bound) Assume a flow, constrained by arrival curvetraverses a system that
offers a service curvg. The backlogr(t) — R*(t) for all ¢ satisfies:

R(t) — R*(t) < ssgg{a(S) — B(s)}
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PrRoOOF:  The proof is a straightforward application of the definisaf service and arrival curves:

R(t) = R*(t) < R(t) — inf [R(t—s)+B(s)]

Thus

R(t) — R*(t) < Oiggt[R(t) —R(t—s)+B(s)] < Oiggt[a(s’) + B(t = s)]

O

We now use the concept of horizontal deviation, defined inp@ha3, Equation (3.21). The definition is a
little complex, but is supported by the following intuitio@all

0(s) =inf{r>0:a(s) < B(s+71)}

From Definition 1.1.1§(s) is the virtual delay for a hypothetical system that wouldéhavas input and3
as output, assuming that such a system exists (in other ywasdaming thato{ < ). Then,h(«, ) is the
supremum of all values d¥(s). The second theorem gives a bound on delay for the generl cas

THEOREM 1.4.2 (Delay Bound).Assume a flow, constrained by arrival curaetraverses a system that
offers a service curve gf. The virtual delayi(t) for all ¢ satisfies:d(t) < h(a, ).

PrROOF:  Consider some fixed > 0; for all = < d(t¢), we have, from the definition of virtual delay,
R(t) > R*(t + 7). Now the service curve property at time- 7 implies that there is somg such that

R(t) > R(t+ 7 — s0) + B(s0)
It follows from this latter equation that+ = — sq < ¢t. Thus
a(r — so) = [R(t) = R(t + 7 — s0)] > B(s0)
Thust < §(1 — sg) < h(a, ). This is true for allr < d(t) thusd(t) < h(a, ). O

THEOREM 1.4.3 (Output Flow).Assume a flow, constrained by arrival curue traverses a system that
offers a service curve @f. The output flow is constrained by the arrival cuve= o @ .

The theorem uses min-plus deconvolution, introduced inp@&he3, which we have already used in Theo-
rem1.2.2.

PROOF:  With the same notation as above, consi®&ft) — R*(t — s), for0 < ¢ — s < t. Consider the
definition of the service curve, applied at time- s. Assume for a second that thef in the definition of
R ® B is amin, that is to say, there is some> 0 such that <t — s —u and

(RepB)(t—s)=R({t—s—u)+ [B(u)

Thus
R*(t—s)—R(t—s—u) > f(u)

and thus
R*(t) = R*(t —s) < R*(t) — B(u) — R(t — s — u)

Now R*(t) < R(t), therefore
R*(t) = R*(t — s) < R(t) = R(t — s —u) — f(u) < a(s +u) — B(u)

and the latter term is bounded by @ 3)(s) by definition of thex operator.
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Now relax the assumption that the the in the definition of R @ /5 is amin. In this case, the proof is
essentially the same with a minor complication. ForaH 0 there is some: > 0 suchthal) <t — s —u
and

(RoB)(t—s)>R(t—s—u)+ B(u) —e

and the proof continues along the same line, leading to:
R(t) = R*(t —s) < (@@ f)(s) + ¢

This is true for alle > 0, which proves the result. O

oLk
data o
A
+17T 4
btr S\OQQ& A A
Q<
b />
d=T+b/R 2
Y _ time
0 T

Figure 1.10:Computation of buffer, delay and output bounds for an input flow constrained by one leaky
bucket, served in one node offered a rate-latency service curve. If » < R, then the buffer bound is x = b+rT,

the delay bound is d = T + % and the burstiness of the flow is increased by 7. If » > R, the bounds are
infinite.

A SIMPLE EXAMPLE AND INTERPRETATION OF LEAKY BUCKET Consider a flow constrained by
one leaky bucket, thus with an arrival curve of the fatm= ~, ;, served in a node with the service curve
guaranteeSr . The alert reader will enjoy applying the three bounds andiriigy the results shown in
Figure 1.10.

Consider in particular the cage= 0, thus a flow constrained by one leaky bucket served at a aurstiz

R. If R > r then the buffer required to serve the flowjtherwise, it is infinite. This gives us a common
interpretation of the leaky bucket paramete@ndb: r is the minimum rate required to serve the flow, and
b is the buffer required to serve the flow at any constant xate

EXAMPLE : VBR FLOW WITH RATE -LATENCY SERVICE CURVE Consider a VBR flow, defined by T-
SPEC(M, p,r,b). This means that the flow hagt) = min(M +pt, rt+b) as an arrival curve (Section 1.2).
Assume that the flow is served in one node that guaranteesiaeeseurve equal to the rate-latency function
B = Brr- This example is the standard model used in Intserv. Let pfy/afheorems 1.4.1 and 1.4.2.
Assume thal? > r, that is, the reserved rate is as large as the sustainablefrite flow.

From the convexity of the region betweenand s (Figure 1.4.1), we see that the vertical deviatior-
supg>ola(s) — B(s)] is reached for at an angular point of eitheor 3. Thus

v = max(a(T), a(6) — B(9)]

with § = =X Similarly, the horizontal distance is reached an angutémtp In the figure, it is either the

p—r’
distance marked ad A’ or BB’. Thus, the bound on dela¥is given by
a(f) M
d= — 24T —0,—+T
max < R + 'R + )

After some max-plus algebra, we can re-arrange these semufollows.
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PrRoPOSITION1.4.1 (Intserv model, buffer and delay bound8pnsider a VBR flow, with TSPEG/, p, r, b),
served in a node that guarantees to the flow a service curval éguhe rate-latency functio = g 7.
The buffer required for the flow is bounded by

b— M *
U:b+TT+<ﬁ—T> [(p—R)+_p+7’]

The maximum delay for the flow is bounded by

M+b];TAf(p—R)+

d= T
In +
data
A AMOL_—
a(0) A’ B
B B’
M _ time

0 0 T

Figure 1.11:Computation of buffer and delay bound for one VBR flow served in one Intserv node.

We can also apply Theorem 1.4.3 and find an arrival cufvéor the output flow. We have* = a © (A ®
dr) = (e« @ Ag) @ o7 from the properties op (Chapter 3). Note that

(f@or)(t) = f(t+T)
for all f (shift to the left).

The computation oft © Ay is explained in Theorem 3.1.14 on Page 126: it consists erfimg time, and
smoothing. Here, we give however a direct derivation, wiéchossible since: is concave. Indeed, for a
concaver, definety as

to =inf{t > 0:d/(t) < R}
whered’ is the left-derivative, and assume thigt< +oo. A concave function always has a left-derivative,
except maybe at the ends of the interval where it is definedn Dy studying the variations of the function
u — a(t +u) — Ruwe find that(a @ Ar)(s) = a(s) if s > to, and(a @ Ar)(s) = a(to) + (s — to)R if
s < 1p.

Putting the pieces all together we see that the output fameti is obtained fromy by
e replacinga on [0, ty] by the linear function with slop& that has the same value asfor ¢t = ¢,

keeping the same values @on [ty, +o00],
e and shifting by to the left.

Figure 1.12 illustrates the operation. Note that the twaajgens can be performed in any order sincés

commutative. Check that the operation is equivalent to tmesituction in Theorem 3.1.14 on Page 126.
If we apply this to a VBR connection, we obtain the followiregult.

ProrPosITION1.4.2 (Intserv model, output boundyVith the same assumption as in Proposition 1.4.1, the
output flow has an arrival curve™* given by:

if bp_T]\;[ < T then a*(t) =b+r(T +1)
else a*(t) = min{ t+T)pAR)+ M + bp_T]\f(p— R)*,b—i—r(T—i—t)}
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bits departure curve

arrival
curve

\/

-T to-T

Figure 1.12:Derivation of arrival curve for the output of a flow served in a node with rate-latency service
curve Br .

AN ATM E xAMPLE Consider the example illustrated in Figure 1.13. The aggeeflow has as an
arrival curve equal to the stair functidrvys 4. The figure illustrates that the required bufferlis ATM
cells and the maximum delay i88 time slots. We know from Corollary 1.2.1 that a GCRA consiras

>

rrrr T T T

cells

time slots

I T | I ) v M
T T T T T »

10 20 30 40 50

(=]

Figure 1.13:Computation of bounds for buffer 2 and delay d for an ATM example. An ATM node serves
10 ATM connections, each constrained with GCRA(25, 4) (counted in time slots). The node offers to the
aggregate flow a service curve Sr with rate R = 1 cell per time slot and latency 7' = 8 time slots.
The figure shows that approximating the stair function 10ve5 4 by an affine function ~,; results into an
overestimation of the bounds.

equivalent to a leaky bucket. Thus, each of the 10 connext®oonstrained by an affine arrival curyg,
with r = 5= = 0.04 andb = 1 + 5+ = 1.16. However, if we take as an arrival curve for the aggregate flow
the resulting affine function0+, ;, then we obtain a buffer bound ®1.6 and a delay bound df9.6. The
affine function overestimates the buffer and delay boundsmétnber that the equivalence between stair
function and affine function is only for a flow where the packiee is equal to the value of the step, which

is clearly not the case for an aggregate of several ATM cdiorec
A direct application of Theorem 1.4.3 shows that an arrivale for the output flow is given by (t) =
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Oé(t + T) = 1)25,12(15).
In Chapter 2, we give a slight improvement to the bounds if n@kthat the service curve is a strict service
curve.

1.4.2 ARE THE BOUNDS TIGHT ?

We now examine how good the three bounds are. For the backtbdelay bounds, the answer is simple:

THEOREM 1.4.4. Consider the backlog and delay bounds in Theorems 1.4.1 ah@. IAssume that

e «is a“good” function (that is, namely, is wide-sense incrie@s sub-additive and(0) = 0)
e [ is wide-sense increasing art{0) = 0

Then the bounds are tight. More precisely, there is one daystem with input flowk(¢) and output flow
R*(t), such that the input is constrained by offering to the flow a service curvg and which achieves
both bounds.

A causal system means tha(t) < R*(¢). The theorem means that the backlog bound in Theorem 1.4.1 is
equal tosup,([R2(t) — R*(t)], and the delay bound in Theorem 1.4.1 is equalie ., d(t). In the above,
d(t) is the virtual delay defined in Definition 1.1.1.

PROOF:  We build one such systerR, R* by definingR = «, R* = min(«a, #). The system is causal
because?* < a = R. Now consider some arbitrary tintelf «(t) < 3(t) then

R¥(t) = R(t) = R(t) + 5(0)

Otherwise,
R*(t) = B(t) = R(0) + B(?)
In all cases, for alt there is some < ¢ such thatR*(¢t) > R(t — s) + ((s), which shows the service curve
property. O
Of course, the bounds are as tight as the arrival and senvizeare. We have seen that a source such that

R(t) = «(t) is calledgreedy Thus, the backlog and delay bounds are worst-case bouatarthachieved
for greedy sources.

In practice, the output bound is also a worst-case boundy #haigh the detailed result is somehow less
elegant.

THEOREM 1.4.5. Assume that

1. ais a“good” function (that is, is wide-sense increasing, sadditive andx(0) = 0)
2. «ais left-continuous

3. B is wide-sense increasing am{0) = 0

4. a®« is not bounded from above.

Then the output bound in Theorem 1.4.3 is tight. More prégitieere is one causal system with input flow
R(t) and output flowR*(¢), such that the input is constrained by offering to the flow a service curyg
anda* (given by Theorem 1.4.3) is tm@inimumarrival curve for R*.

We know in particular from Section 1.2 that the first threeditbons are not restrictive. Let us first discuss
the meaning of the last condition. By definition of max-plesonvolution:

(a@a)(t) = inf{a(t + s) — a(s)}

s>0
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One interpretation ofk@« is as follows. Consider a greedy source, wWity) = «(t); then (a@a)(t) is
the minimum number of bits arriving over an interval of disatt. Given that the function is wide-sense
increasing, the last condition means that;, ;- («@a)(t) = 4+o00. For example, for a VBR source with
T-SPEC(p, M, r,b) (Figure 1.5), we havéa@«)(t) = rt and the condition is satisfied. The alert reader
will easily be convinced that the condition is also true # trrival curve is a stair function.

The proof of Theorem 1.4.5 is a little technical and is lefthet end of this chapter.

We might wonder whether the output bountlis a “good” function. The answer is no, sina&(0) is the
backlog bound and is positive in reasonable cases. Howetés, sub-additive (the proof is easy and left
to the reader) thus the modified function A o* defined asy*(¢) for ¢ > 0 and0 otherwise is a “good”
function. If « is left-continuousgy A o* is even a “very good” function since we know from the proof of
Theorem 1.4.5 that it is left-continuous.

1.4.3 CONCATENATION

So far we have considered elementary network parts. We nove ¢o the main result used in the concate-
nation of network elements.

THEOREM1.4.6 (Concatenation of Nodes)ssume a flow traverses syste$hgndS, in sequence. Assume
that S; offers a service curve gf;, i = 1,2 to the flow. Then the concatenation of the two systems offers a
service curve of; ® (3, to the flow.

ProoF: Call R, the output of node 1, which is also the input to node 2. Theisemurve property at
node 1 gives
Ry > R® B

and at node 2
R*>Ri®P2>(R®P1)®Pr=RR (L1 @ P2)

O

ExAMPLES:  Consider two nodes offering each a rate-latency serviceegty, 7., © = 1,2, as is com-
monly assumed with Intserv. A simple computation gives

ﬁR1 N ® ﬁRl,Tl = ﬁmin(R1,R2),T1+T2

Thus concatenating Intserv nodes amounts to adding theclamponents and taking the minimum of
the rates.

We are now also able to give another interpretation of the-letency service curve model. We know that
Brr = (0r ® Ar)(t); thus we can view a node offering a rate-latency serviceecasthe concatenation of
a guaranteed delay node, with delByand a constant bit rate or GPS node with rAte

PAY BURSTS ONLY ONCE The concatenation theorem allows us to understand a phemoniaown
as “Pay Bursts Only Once”. Consider the concatenation ofrteaes offering each a rate-latency service
curvefBg, 1;, 1 = 1,2, as is commonly assumed with Intserv. Assume the fresh ismanstrained by, ;.
Assume that < R; andr < R,. We are interested in the delay bound, which we know is a veaist. Let
us compare the results obtained as follows.

1. by applying the network service curve;
2. by iterative application of the individual bounds on gveode
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The delay bound), can be computed by applying Theorem 1.4.2:

b
Do = — +T,
o=px T4

with R = min;(R;) andTy = ). T; as seen above.
Now apply the second method. A bound on the delay at node hisofEm 1.4.2):

b
Dy =—+T;
1 R1+ 1

The output of the first node is constraineddsy; given by :
aFt)y=b+rx(t+Th)

A bound on the delay at the second buffer is:

b—|—’I“T1
Dy = T
2 Ry + 19
And thus ) bt rT:
iy
D Dy = — T
1+ Do R1+ R + 1o

It is easy to see thdDy < Dy + D-. In other words, the bounds obtained by considering theagleérvice
curve are better than the bounds obtained by considerirmy buéfer in isolation.
Let us continue the comparison more closely. The delay tiitrane node has the forrﬁ1 + T (for the

first node). The elemery% is interpreted as the part of the delay due to the burstinesednput flow,
whereasl is due to the delay component of the node. We seelthat D, contains twice an element of
the formRii, whereasD, contains it only once. We sometimes say that “we pay burd{sante”. Another

difference betwee®y and D, + D> is the eIemen%: it is due to the increase of burstiness imposed by
node 1. We see that this increase of burstiness does nat irgsun increase of the overall delay.

A corollary of Theorem 1.4.6 is also that the end-to-end ybtzund does not depend on the order in which
nodes are concatenated.

1.4.4 IMPROVEMENT OF BACKLOG BOUNDS

We give two cases where we can slightly improve the backlamds.

THEOREM 1.4.7. Assume that a lossless node offerstrict service curves to a flow with arrival curven.
Assume thatv(ug) < S(ug) for someuy > 0. Then the duration of the busy period<sug. Furthermore,
for any timet, the backlogR(t) — R*(t) satisfies

R(t) - R'(t) < sup [R(t) = R(t —u) = f(u)] < sup [a(u) = F(u)]

u:0<u<ug w:0<u<ug

The theorem says that, for the computation of a buffer boitris sufficient to consider time intervals less
thanug. The idea is that the busy period duration is less than
ProoF: Consider a given timeat which the buffer is not empty, and calthe last time instant before

at which the buffer was empty. Then, from the strict servigese property, we have

R*(t) > R*(s) + B(t — 5) = R(s) + B(t — 5)
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Thus the buffer sizé(t) = R(t) — R*(t) at timet satisfies
b(t) < R(t) — R(s) — B(t — ) < alt — ) — B(t — 5)

Now if t — s > ug, then there is a timé& = s+ ug, with s+ 1 < ¢/ < ¢ such thab(¢') = 0. This contradicts
the definition ofs. Thus we can assume that s < uy. O

THEOREM 1.4.8. Assume that a lossless node offers a service cdriga flow with sub-additive arrival
curvea. Assume thap is super-additiveand thata(ug) < 5(ug) for someug > 0. Then for any time,
the backlogR(t) — R*(t) satisfies

R(t) = R*(t) < sup [R(t) = R(t—u) = B(u)] < sup [a(u) = F(u)]

u:0<u<<ug w:0<u<ug

Note that the condition that is sub-additive is not a restriction. In contrast, the ctadithats is super-
additive is a restriction. It applies in particular to réégency service curves. The theorem does not say
anything about the duration of the busy period, which is itest with the fact we do not assume here that
the service curve is strict.

PrROOF: For an arbitrary time the backlog at time satisfies

b(t) < sup[R(t) — R(t — u) — B(u)]

u>0
Fors < t definek = [t;—ﬂ ands’ = kug + s. We haves < s’ < t and

t—wup < s (1.12)
Now from the super-additivity of:

R(t) — R(s) < [R(t) — R(s") = B(t = s)] + [R(s") — R(s) — B(s' — 5)]

Note that for the second part we have
R(s') = R(s) = B(s' — 5) < k [a(ug) — B(ug)] <0
thus
R(t) = R(s) < [R(t) = R(s') = B(t — &')]

which shows the theorem. O

1.5 GREEDY SHAPERS

1.5.1 DEFINITIONS

We have seen with the definition of the leaky bucket and of tB&R& two examples of devices that enforce
a general arrival curve. We calblicemwith curveo a device that counts the bits arriving on an input flow
and decides which bits conform with an arrival curvesof We call shaper with shaping curve, a bit
processing device that forces its output to havas an arrival curve. We calireedy shaper shaper that
delays the input bits in a buffer, whenever sending a bit deislate the constraint, but outputs them as
soon as possible.

With ATM and sometimes with Intserv, traffic sent over onerection, or flow, is policed at the network
boundary. Policing is performed in order to guarantee tisatsido not send more than specified by the
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contract of the connection. Traffic in excess is either dided, or marked with a low priority for loss in
the case of ATM, or passed as best effort traffic in the casateélv. In the latter case, with IPv4, there is
no marking mechanism, so it is necessary for each routegdlmpath of the flow to perform the policing
function again.

Policing devices inside the network are normally bufferéaty are thus shapers. Shaping is also often
needed because the output of a buffer normally does notordny more with the traffic contract specified
at the input.

1.5.2 INPUT-OUTPUT CHARACTERIZATION OF GREEDY SHAPERS

The main result with greedy shapers is the following.

THEOREM 1.5.1 (Input-Output Characterization of Greedy Shapets)nsider a greedy shaper with shap-
ing curves. Assume that the shaper buffer is empty at ti;mand that it is is large enough so that there is
no data loss. For an input flow, the outputR* is given by

R*=R®s (1.12)

whereg is the sub-additive closure of.

PROOF: Remember first that i is sub-additive and (0) = 0, thena = o. In general, we know that we
can replacer by & without changing the definition of the shaper. We thus asswiti®ut loss of generality
thate = o.

The proof of the theorem is an application of min-plus algeb¥irst, let us consider a virtual system that
would takeR as input and have an outpSitsatisfying the constraints:

{SSR (1.13)

S<S®ao

Such a system would behave as a buffer (the first equatiortisatythe output is derived from the input) and
its output would satisfy the arrival curve constraint However, such a system is not necessarily a greedy
shaper; we could have for example a lazy shaper #th = 0 for all ¢t > 0! For this system to be a greedy
shaper, it has to output the bits as soon as possible. Now ihiergeneral result about systems satisfying
conditions 1.13.

LEMMA 1.5.1 (A min-plus linear system)Assume that is a “good” function (that is, is sub-additive and
o(0) = 0). Among all functionsS(t) satisfying conditions 1.13 for some fixed funct®nthere is one that
is an upper bound for all. Itis equal tB ® o

PROOF OF THE LEMMA : The lemma is a special case of a general result in Chapter wevdo, it is
also possible to give a very simple proof, as follows.

DefineS* = R ® 0. Sinceo is a “good” function, it follows immediately tha®* is a solution to Sys-
tem (1.13). Now, letS’ be some other solution. By the first condition in (1.13), < R and thus
S'®o < R® o= S* By the second condition,

<S8 ®o<S*

This shows thab* is the maximal solution. O

Note that the lemma proves the existence of a maximal salutidSystem (1.13). Note also that, in the
lemma, functionk need not be wide-sense increasing.
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Now we can use the lemma by showing tiiit = S*. FunctionR is wide-sense increasing, thus sis
Obviously, R* is a solution of System (1.13), thug*(¢) < S*(¢) for all t. Now if there would be some
such thatR*(t) # S*(t), then this would contradict the condition that the greedspsh attempts to send
the bits out as early as possible. O

The following corollary derives immediately.

COROLLARY 1.5.1 (Service Curve offered by a Greedy Shap&djnsider a greedy shaper with shaping
curveo. Assume that is sub-additive and(0) = 0. This system offers to the flow a service curve equal to
o.

fresh traffic shaper

o-smooth

b : b,
R R*

Figure 1.14:Reshaping example.

EXAMPLE : BUFFER SIZING AT A RE-SHAPER Re-shaping is often introduced because the output of
a buffer normally does not conform any more with the traffiatcact specified at the input. For example,
consider a flow with the arrival curve(t) = min(pt + M, 7t + b)1) that traverses a sequence of
nodes, which offer a service curyk = Srr. A greedy shaper, with shaping curweis placed after the
sequence of nodes (Figure 1.14). The input to the shdpén the figure) has an arrival curve®, given

by Proposition 1.4.2. Corollary 1.5.1 gives a service cuonaperty for the greedy shaper; observe that we
need to make sure thatt) = 0. The bufferB required at the greedy shaper is then obtained as the Vertica
distancev(a*, o). After some algebra, we obtain:

ifbp:]\f<T then b+ T'r
B=¢{ if =% >Tandp>R then M+ 2000 4 7R (1.14)
else M+ Tp

COROLLARY 1.5.2 (Buffer Occupancy at a Greedy Shap&hpnsider a greedy shaper with shaping curve
o. Assume that is sub-additive and(0) = 0. Call R(¢) the input function. The buffer occupaneit) at
timet is given by

z(t) = sup {R(t) — R(s) — o(t — 5)}

0<s<t

PROOF:  The backlog is defined by(t) = R(t)—R*(t), whereR* is the output. We apply Theorem 1.5.1
and get:

z(t) = R(t) — inf {R(s)+o(t—s)} = R(t)+ sup {—R(s) —o(t —s)}

0<s<t 0<s<t
U
Note that Lemma 1.2.2 is a special case of this corollary.

In min-plus algebraic terms, we say that a system is linedrtiame invariant if its input-output character-
ization has the formR* = R ® g (where is not necessarily sub-additive). We can thus say from the
theorem that greedy shapers are min-plus linear and tinagiamt systems. There are min-plus linear and
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time invariant system that are not greedy shapers. For dearapnode imposing aonstantdelay T is
characterized by the input-output relationship

R*=R®dr

Compare to the guaranteed delay node (hamely, a node ingp@siariable delay bounded ), for which
the input-output relationship is a service curve property :

R*> R® o7

The rest of this Section illustrates similarly that the itiputput characterization of greedy shap&r's =
R ® o is much stronger than the service curve property describ€brollary 1.5.1.

1.5.3 PROPERTIES OF GREEDY SHAPERS

Consider again Figure 1.14. We have seen in the previoufosemw we can compute the buffer size
required at the greedy shaper. Now if greedy shapers amdinted along a path, then some bits may be
delayed at the shaper, thus the end-to-end delay mightasereHowever, this is not true, as the following
results state that, from a global viewpoint, “greedy shajgeme for free”.

THEOREM 1.5.2 (Re-Shaping does not increase delay or buffer rageinés). Assume a flow, constrained
by arrival curvea, is input to networkss; and S, in sequence. Assume a greedy shaper, with currea

is inserted betweef§; andS,. Then the backlog and delay bounds given by Theorem 1.4tRd@ystem
without shaper are also valid for the system with shaper.

The conditiono > « means that re-shaping maybe only patrtial.

PrRoOF: Call 3; the service curve af;. The backlog bound in Theorem 1.4.1 is given by
v(a, /1 ® o ® B2) =v(a, 0@ P ® F) (1.15)

Now the last expression is the backlog bound obtained if wahmishaper immediately at the entrance of
the network. Clearly, this introduces no backlog, whichvehithat the overall backlog is not influenced by
the shaper. The same reasoning applies to the delay bound. O

If you read carefully, you should not agree with the last geaph. Indeed, there is a subtlety. The bounds in
Section 1.4 are tight, but since we are using several bowgdsher, there is no guarantee that the resulting
bound is tight. All we can say at this point is that the bounthpated for the system with shaper is the
same if we put the shaper in front; we still need to show thabibund for such a system is the same bound
as if there would be no shaper. This can be proven in a numheays. We give here a computational one.
The proof relies on Lemma 1.5.2, given below. O

LEMMA 1.5.2. Leta and o be “good” functions. Assuma < o. Then for any functios, v(a, o0 ® ) =
U((X”B) andh((X,O' ® /8) = h(a,ﬁ)

PROOF:  We use the reduction to min-plus deconvolution explaine8ention 3.1.11. We have:

v(e, o ® B) = [ao (0@ B)(0)

Now from Theorem 3.1.12 on Page 123:2 (0 ® ) = (o @ o) @ . Also, sincec > «, we have
ao<a®a Nowa ® a =« becauser is a “good” function, thus

a0cp)=a0f (1.16)
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and finallyv(co, o0 ® ) = v(a, ).

Similarly h(c, 8) = inf{d such that (o« @ 8)(—d) < 0} which, combined with (1.16) proves thafo, o ®

B) = h(e, B). O
Consider again Figure 1.14. Assume that the first netwonkeht and the greedy shaper are placed in the
same node. Theorem 1.5.2 says thattttel buffer required for this combined node is the same as if there
would be no greedy shaper at the output. Thus, if you can digadignallocate buffer space from a common
pool to the first network element and the greedy shaper, tieegreedy shaper costs no memory. However,
the greedy shaper does need some buffer space, as givendtidiq(d.14). Similarly, the theorem says that
there is no penalty for the worst-case delay.

In contrast, placing a greedy shaper has an obvious benggtbiirstiness of the flow admitted in the next
network element is reduced, which also reduces the buftprired in that element. To be more concrete,
consider the example “Pay Bursts Only Once” in Section 1.A8ume that a re-shaper is introduced at
the output of the first node. Then the input to the second nedetliie same arrival curve as the fresh
input, namely;y, , instead ofy,., .7, . The buffer required for the flow at node 2 is thies 75 instead of
b+ ’I“(Tl + Tz)

The following result is another “physical” property of gdgeshapers. It says that shaping cannot be undone
by shaping.

THEOREM 1.5.3 (Shaping Conserves Arrival Constraintgyssume a flow with arrival curve is input
to a greedy shaper with shaping curge Assumes is a “good” function. Then the output flow is still
constrained by the original arrival curva.

PROOF:
RF=R®c<(RRa)®0c

since the conditiorR < R ® « expresses that is an arrival curve. Thus
RR<RRoa=R"®@«

O

The output of the greedy shaper has thiis(«, o) as an arrival curve. If is also a “good” function, we
know (Lemma 1.2.5) that the sub-additive closurendfi(a, o) isa ® o.

EXAMPLE (ATM M ULTIPLEXER ):  Consider an ATM switch that receives 3 ATM connections, each
constrained by GCRA(10, 0) (periodic connections). Thadwserves the connection in any work con-
serving manner and outputs them on a link with rate 1 cellipgz slot. What is a good arrival curve for the
aggregate output ?

The aggregate input has an arrival cutve= 3vy. Now the server is a greedy shaper with shaping curve
o = v1,0, thus it keeps arrival constraints. Thus the output is cairstd by3vi o ® v1 9, Which is a “good”
function. We have already met this example in Figure 1.6.

1.6 MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY

1.6.1 MAXIMUM SERVICE CURVES

If we modify the sense of the inequation in the definition avgee curve in Section 1.3, then we obtain a
new concept, callechaximum service curyevhich is useful to (1) account for constant delays and (2) in
some cases to establish a relationship between delay aklbdpac
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DEFINITION 1.6.1 (Maximum Service Curve)Consider a syster§ and a flow throughS with input and
output functionR and R*. We say thafS offers to the flow anaximum service curve if and only ify € F
andR* < R®~

Note that the definition is equivalent to saying thas wide-sense increasing and that
R*(t) < R(s) +~(t — s)
for all ¢t and alls < ¢, or equivalently
RE(t) — R*(s) < B(s) +7(t — )
whereB(s) is the backlog at time. A greedy shaper with shaping curweofferso both as a service curve

and a maximum service curve.

In general, the concept of maximum service curve is not agpgohas the concept of service curve. How-
ever, as we see below, it can be useful to account for maxinates and for constant propagation delays.
We also see in Chapter 6 that it allows us to find good boundadgregate multiplexing.

The following propositions give two special cases of interd heir proof is easy and left to the reader.

ProrPOsITION1.6.1 (Minimum Delay).A lossless node offers a maximum service curve equal tband
only if it imposes a minimum virtual delay equalfo

PrRoPOSITION1.6.2 (Arrival Constraint on Output)Assume the output of a lossless node is constrained by
some arrival curver. Then the node offers as a maximum service curve.

Like minimum service curves, maximum service curves candoeatenated:

THEOREM1.6.1 (Concatenation of Nodes)ssume a flow traverses syste$hgndS, in sequence. Assume
that S; offers a maximum service curvepfi = 1,2 to the flow.

PrROOF: The proof mimics the proof of Theorem 1.4.6 O

APPLICATION :  Consider a node with a maximum output rate equal &md with internal propagation
delay equal tdl'. It follows from Theorem 1.6.1 and the two previous progoss that this node offers to
any flow a maximum service curve equal to the rate-latencgtfon 5. 7(t) = [c(t — T)]*.

Maximum service curves do not allow us to derive as strongltesas (ordinary) service curves. However,
they can be used to reduce the output bound and, in some t@msésain a minimum delay bound. Indeed,
we have the following two results.

THEOREM 1.6.2 (Output Flow, generalization of Theorem 1.4.3Assume a flow, constrained by arrival
curveq, traverses a system that offers a service cyhand a maximum service curye The output flow is
constrained by the arrival curve* = (a ® v) © S.

PROOF: Instead of a computational proof as with Theorem 1.4.3, singpler at this stage to use min-
plus algebra. CalR and R* the input and output functions, and consid&r @ R*, the minimum arrival
curve forR*. We haveR* < R ® v andR* > R ® 3, thus

RoOR <(Revy)o(R®p)
From Rule 12 in Chapter 3, Theorem 3.1.12, applied te R ® v, ¢ = R andh = 3, we derive

R'OR <{(R®y)oR}0p
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Now from the commutativity oo and from Rule 13 in Theorem 3.1.12:
{(Rev)oR={(r®R)oR} <{y® (RO R)}

Thus
ROR <{y®(ROR}0B<(®@a)0p

O

THEOREM 1.6.3 (Minimum Delay Bound).Assume a flow, constrained by arrival curse traverses a
system that offers a maximum service curve ahd is FIFO for this flow. Assume tha{D) = 0. The
delay for any bit is> D.

PROOF: We haveR*(t+ D) < R(t)+~(D) thusR*(t+ D) < R(t) for anyt > 0. Assume first that the
input and output functions are left-continuous and consideit that arrives at some time, sayit follows
that for anyt; > ¢ we haveR(t) < R(t1) and thusR*(¢t + D) < R(t1). Assume further that; < ¢ + D;
the previous inequality can be re-writtenfa8(t; + (D — (t1 —t))) < R(t1) and thusi(t;) > D+ (t —t1).
Take the limit whent; — ¢ and obtaind,.(t) > D (whered,. is the limit from the right ofd). Now the delay
for a bit that arrives at timeis d,.(¢).

If the input and output functions are right-continuous éast of left-continuous (recall that we always as-
sume either case), the proof is similar, by observing f@t) < R(t) for t; < t and establishing that
d(t) > D. O

Note that the output bound is improved by the knowledge ofrib&imum service curve since in general we
expecta ® v to be less tham. In contrast, the minimum delay bound gives some new inftomanly in
the cases where there is a latency part in the maximum sexwige, which is the case for the first example
(Minimum Delay ), but not in general for the second exampleai{@l Constraint on Output).

NUMERICAL EXAMPLE:  Consider the following example, which is a variant of Figar&3; time is
discrete; a flow with arrival curvey = vo5 4 is served in a system that guarantees a service gijryel et
us apply Theorem 1.4.3 and compute an arrival cuaiyéor the output. We have

) =254 @ P18 = V254 @ (A ® 08)
Now from Rule 15 in Chapter 3, we have
ap = (v25.4 © 08) @ A\

Now (vas54 @ 08)(t) = wvosa(t + 8) = wes12(t). To compute the deconvolution with; we can use
its interpretation as a smoothing operation in Sectionl8,1lor a direct computation, and finally obtain
afy = w512 (recall that time is discrete; in continuous time, we wouldain of; = v2511 ® A1, i.e. the
jumps of the staircase function are smoothed with a slogg. of

Assume now that we have more information about the node,faidve can model is as nodg defined as
the concatenation of two schedulers and a fixed delay ele(Ranire 1.15). Each scheduler offers to the
aggregate flow a service curyl, 7, with rate Ry = 1 cell per time slot and latency, = 2 time slots.
The delay element is a link with maximum rate equal teell per time slot, and a fixed propagation and
transmission delay equal fictime slots. The delay element is thus the combination of adyrahaper with
shaping curve\;(t) = t and a fixed delay elemenf. We can verify that the concatenation of the three
elements in node 1 offers a service curve equahto® A\ ® 44 ® 512 = S1.8. Now, from the delay element
allows us to say that, in addition, the node also offers taatigregate flow amaximum service curvequal
to 31.4. We can apply Theorem 1.6.2 and derive from that the outptiistrained by the arrival curve;
given by

a)] = (a® fBi14) © P18
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The computation is similar to that of; and involves the computation @fvq5 4 ® A1, which is similar to
the example illustrated in Figure 1.6. Finally, we have:

aj(t) = (10v25.4 ® A1)(t +4)

Figure 1.15 shows that] is a better bound than the arrival cursg that we would obtain if we did not
know the maximum service curve property.

Assume next that we change the order of the delay elementda &b and place it as the last element of
the node. CallS, the resulting node. Then the conclusion of the previousgaph remains, since the
bounds are insensitive to the order, due to the commutatfitnin-plus convolution. Thus the output of
systemS; also hasy as an arrival curve. However, in that case, we can also mbdealelay element as
the combination of a shaper, with shaping cuinye(corresponding to a fixed rate ofcell per time slot),
followed by a fixed delay element, with constant delay eqodltime slots. The input to the shaper has an
arrival curve equal tex © 51 4, Wherea = 10vg5 4 is the fresh arrival curve. Thus, from the properties of
shapers, the output of the shaper is constrained by

as = (@@ P14) ® A1 = 100258 @ A\

Since the fixed delay component does not alter the flow, theubwlf systemS, hasas as an arrival curve.
Figure 1.15 shows that} is a better bound tham;.

This fact is true in general: whenever a network element eaambdeled as a shaper, then this model
provides stronger bounds than the maximum service.

1.6.2 DeELAY FROM BACKLOG

In general it is not possible to bound delay from backlog wlith framework of service curves, except in
one particular but important case.

THEOREM1.6.4. Assume a lossless node offers to a flow a minimum service gawe a maximum service
curver, such that3(t) = (¢t — v). Let f be the max-plus deconvolutiomy, that is,

f(t) = infly(s +1) —y(s)]

s>0

Then the backlod3(t) and the virtual delayi(t) satisfy

fld(t) —v) < B(t)

If in addition v is super-additive, then

pd(t)) < B(?)

PROOF:  Fix somet > 0; we havel(t) = inf E; where the sef); is defined by
E,={s>0:R"(t+s)>R(t)}
SinceR* and R are wide-sense increasing; is an interval. Thus
d(t) =sup{s > 0: R*(t +s) < R(t)}
We assume thak and R* are left-continuous. It follows that

R*(t+d(t)) < R(t)
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Figure 1.15:Use of maximum service curve to improve output bound. The figure is for the same example
as Figure 1.15. Top: nodes S; and S,, two possible implementations of a system offering the overall service
curve 1 5. Middle: arrival curve « and overall service curve /3 s. Bottom: constraint for the output. « (top
curve, thick, plain line) is obtained with the only knowledge that the service curve is g; 5. o] (middle curve,
thick, dashed line) is obtained assuming the system is S;. «; (bottom curve, thin, plain line) is obtained
assuming the system is S..
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For some arbitrary, we can find some such that
R*(t+d(t)) > R(s) + B(t —s+d(t)) — €
Now from the maximum service curve property
R¥(t) — R(s) <~(t —s)
Combining the three gives
B(t) = R(t) - R*(t) =2 B(t —s +d(t)) =y(t —s) —e=(t =5+ d(t) —v) =7(t —s) — €
and thus

B(t) > inf [y(d(t) — v+ u) — y(u)] (1.17)

u>0
From the definition off, the latter term igf (d(¢) — v). Finally, if v is super-additive, thenoy = ~ O
We can apply the theorem to a practical case:
COROLLARY 1.6.1. Assume a lossless node offers to a flow a minimum service ¢urreg, , and a
maximum service curve = 3, ,», withv’ < v. The backlogB(t) and the virtual delayi(t) satisfy
B(t)

r

d(t) < +v

PrRoOOF:  We apply the theorem and note thais super-additive, because it is convex. O

1.6.3 \ARIABLE VERSUS FIXED DELAY

Some network elements impose fixed delays (propagationrandmission), whereas some other network
elements impose variable delays (queueing). In a numbeasefs; it is important to evaluate separately the
total delay and the variable part of the delay. The totalyd@&amportant, for example, for determining
throughput and response time; the variable part is impbftandimensioning playout buffers (see Sec-
tion 1.1.3 for a simple example, and chapter 5 for a more géwkscussion). We have seen at the end of
end of Section 1.5.2 that a node imposing a constant delapeamdeled as a min-plus linear system. Be-
yond this, the concept of maximum service curve is a tooldting apart variable delay from fixed delay,
as follows.

Consider a network, made of a series of network elemgnts I, each element being the combination of a
fixed delayd; and a variable delay. Assume the variable delay compon@arsdat service curvg;. A fixed
delay component offer;, both as a service curve and as a maximum service curve. DEfing; ®...®fr;

the network offers as end-to-end service cutve 64, +4,, and as end-to-end maximum service curve
dd, +..+d,;- Assume the input flow is constrained by some arrival curyéom Theorems 1.4.2 and 1.6.3,
the end-to-delayi(¢) satisfies

di+..+dr < d(t) < h(avﬁ ® 5d1+...+d1)
By simple inspectionh(«, 8 ® 84, +. . +d,) = di + ... + dr + h(«, B), thus the end-to-end delay satisfies
0 < d(t) — [di + ... + 1] < h(a, B)

In the formula,d; + ... + d; is the fixed part of the delay, arid«, 3) is the variable part. Thus, for the
computation of the variable part of the delay, we can simghpore fixed delay components.
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Similarly, an arrival curve constraint for the output is

at = (a ® 6d1+---+d1) @ (5 ® 5d1+---+d1) =a0f

thus the fixed delay can be ignored for the computation of thput bound.

For the determination of backlog, the alert reader canyelasitonvinced that fixed delays cannot be ignored.
In summary:

ProPOSITION1.6.3. 1. For the computation of backlog and fixed delay bounds, fixeriable delay
are modeled by introducingy functions in the service curves. As a consequence of the atativity
of ®, such delays can be inserted in any order along a sequenagfef$, without altering the delay
bounds.
2. For the computation of variable delay bounds, or for anial constraint on the output, fixed delays
can be ignored.

1.7 HANDLING VARIABLE LENGTH PACKETS

All results in this chapter apply directly to ATM systemsingsdiscrete time models. In contrast, for variable
length packets (as is usually the case with IP services)ke te additional subtleties, which we now study
in detail. The main parts in this section is the definition gfaeketizer, and a study of its effect on delay,
burstiness and backlog bounds. We also revisit the noti@haer in a variable length context. For the rest
of this section, time is continuous.

Throughout the section, we will consider some wide sense@sing sequences of packet arrival times
T; > 0. We assume that for allthe set{i : 7; < ¢} is finite.

1.7.1 AN EXAMPLE OF IRREGULARITY INTRODUCED BY VARIABLE LENGTH PACKETS

The problem comes from the fact that real packet switchirsiesys normally output entire packets, rather
than a continuous data flow. Consider the example illugtrateFigure 1.16. It shows the output of a
constant bit rate trunk, with rate that receives as input a sequence of packets, of diffeised.Calll;, T;

the size (in bits) and the arrival epoch for tile packet; = 1,2, .... The input function is

R(t) =Y Lil{r,<y (1.18)

In the formula, we used the indicator functidnexpr,which is equal ta if expris true, and) otherwise.

We assume, as is usual in most systems, that we observe dingy gackets delivered by the trunk. This is
shown asR’(t) in the figure, which results from the bit-by-bit outpt by a packetization operation. The
bit-by-bit outputR* is well understood; we know from Section 1.5 ttigit = R ® A\.. However, what is the
effect of packetization ? Do the results in Sections 1.4 aBatll hold ?

Certainly, we should expect some modifications. For exantpiebit-by-bit outputR* in the figure is the
output of a greedy shaper with curye, thus it has). as an arrival curve, but this is certainly not true
for R'. Worse, we know that a greedy shaper keeps arrival contsrditus if R is o-smooth for somer,
then so isR*. However, this is not true foR’. Consider the following example (which is originally from
[34]). Assume that (t) = lax + rt With » < ¢. Assume that the input flouR(¢) sends a first packet
of sizel; = I attimeT; = 0, and a second packet of sizeat time1, = 172 Thus the flowR is
indeedo-smooth. The departure time for the first packetjs= lm% Assume that the second packets
small, specifically/y < Zlnax; then the two packets are sent back-to-back and thus thetdeptime for
the second packet B, = 7] + % Now the spacing?, — 77 is less tharff, thus the second packet is not
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I, +1,+1, R'(T)
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Figure 1.16:A real, variable length packet trunk of constant bit rate, viewed as the concatenation of a
greedy shaper and a packetizer. The input is R(t), the output of the greedy shaper is R*(t), the final output
is the output of the packetizer is R’(t).

conformant, in other wordgy’ is noto-smooth. Note that this example is not possible if all pazleee the
same size.

We will see in this section that this example is quite genepalcketizing variable length packets does
introduce some additional irregularities. However, we @k to quantify them, and we will see that the
irregularities are small (but may be larger than the order pdcket length). Most results are extracted from
[50]

1.7.2 THE PACKETIZER

We first need a few definitions.

DerINITION 1.7.1 (cumulative packet lengthsh sequencd. of cumulative packet lengths is a wide sense
increasing sequencd.(0) = 0, L(1), L(2), ...) such thalim,,_,~, L(n) = +occ and

Imax = sup{L(n+1) — L(n)}
is finite

In this chapter, we interpret(n) — L(n — 1) as the length of theth packet. We now introduce a new
building block, which was introduced in [11].

DEFINITION 1.7.2 (FunctionP” [11]). Consider a sequence of cumulative packet lengthsth L(0) = 0.
For any real number:, define

Ph(z) = SUp{L(m) Lz (<o} (1.19)

Figure 1.17 illustrates the definition. Intuitivel” () is the largest cumulative packet length that is entirely
contained inz. FunctionP” is right-continuous; if is right-continuous, then so B (R(t)). For example,
if all packets have unit length, theéi(n) = n and forz > 0: P*(x) = |x]. An equivalent characterization
of PLis

Pl(z)=L(n) < L(n) <z < L(n+1) (1.20)

DEeFINITION 1.7.3 (Packetizer [31, 67, 19, 11]Consider a sequenck of cumulative packet lengths. An
L-packetizer is the system that transforms the inR(t) into P*(R(t)).
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PL(x)

A
L(5)
L(4) L((3 )’

L(2)
L(1)

> x
L(D) L(2) L) L(4) L(5)

Figure 1.17:Definition of function P~.

For the example in Figure 1.16, we hak&t) = PZ(R*(t)) and the system can thus be interpreted as the
concatenation of a greedy shaper and a packetizer.

The following equation follows immediately:
T — lmax < PL(x) <z (1.22)
DEFINITION 1.7.4. We say that a flowR(t) is L-packetized itP*(R(t)) = R(t) for all ¢.

The following properties are easily proven and left to thesdes.

e (The packetizer is isotone) i < y thenP*(z) < P'(y) forall 2,y € R.

e (PisidempotentyP’ (Pl (z)) = PL(z) forallz € R

o (Optimality of Packetizer) We can characterize a packeiize similar way as we did for a greedy
shaper in Section 1.5. Among all flows$t) such that

{ x is L-packetized (1.22)

<R

there is one that upper-bounds all, and it is givercty) = PL(R(t)).
The proof for this last item mimics that of Lemma 1.5.1; iteslon the property that’ is idempotent.

We now study the effect of packetizers on the three boundsdfon Section 1.4. We first introduce a
definition.

DEFINITION 1.7.5 (Per-packet delay)Consider a system with- packetized input and output. Cél}, 7}
the arrival and departure time for thi¢h packet. Assume there is no packet loss. The per-paclkat el
sup; (T} — T3)

Our main result in this section is the following theoremystirated in Figure 1.18.

THEOREM 1.7.1 (Impact of packetizer)Consider a systembit-by-bit system with L-packetized input
R and bit-by-bit outputR*, which is thenL-packetized to produce a final packetized outpit We call
combined systerthe system that magg into R’. Assume both systems are first-in-first-out and lossless.

1. Theper-packet delajor the combined system is the maximum virtual delay for ifbybbit system.
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2. Call B* the maximum backlog for the bit-by-bit system @&idhe maximum backlog for the combined
system. We have
B* < B' < B" + lmax
3. Assume that the bit-by-bit system offers to the flow a mawiservice curve and a minimum service
curve 3. The combined system offers to the flow a maximum service gwand a minimum service
curve 3’ given by
B'(t) = [B(t) = lmax]"
4. If some flowS(t) hasa(t) as an arrival curve, therP®(S(t)) hasa(t) + Imax1{i~0y @s an arrival
curve.

The proof of the theorem is given later in this section. Befave discuss the implications. Item 1 says that

Combined System

R(t) | R*(*) o) R(t)

Bit-by-bit system

Figure 1.18:The scenario and notation in Theorem 1.7.1.

appending a packetizer to a node does not increase the phatkgtat this node. However, as we see later,
packetization does increase the end-to-end delay.

Consider again the example in Section 1.7.1. A simple lodkeafigure shows that the backlog (or required
buffer) is increased by the packetization, as indicateddm 2. Item 4 tells us that the final outpit has
d'(t) = o(t) + lmax1t=0 @s an arrival curve, which is consistent with our observaiibSection 1.7.1 that
R’ is noto-smooth, even thougR* is. We will see in Section 1.7.4 that there is a stronger tesutelation
with the concept of “packetized greedy shaper”.

Item 3 is the most important practical result in this sectitirshows that packetizing weakens the service
curve guarantee by one maximum packet length. For exanfiplsystem offers a rate-latency service curve
with rate R, then appending a packetizer to the system has the effenti@dsing the latency H%.
Consider also the example in Figure 1.16. The combinatidgheofrunk and the packetizer can be modeled
as a system offering

e a minimum service curvéc Imax
. . ’ c
e a maximum Service curvs,

PROOF OF THEOREM 1.7.1

1. For some such thatl; <t < T;;; we haveR(t) = L(:) and thus
sup d(t) = d(T;)
tE[Ti,Ti+1)
now
dT) =T~ T,

7
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Combining the two shows that
sup d(t) = sup(T} — Ty)
t %

N

. The proof is a direct consequence of (1.21).

3. The result on maximum service curyéollows immediately from (1.21). Consider now the minimum
service curve property.

Fix some timet and defing by 7;, < t < Tj,41. Forl <i < iy and for7;_; < s < T; we have
R(s) = R(T;-1) andg is wide-sense increasing, thus

inf _(R(s) + B(t = 5)) = R(Ti-1) + Br(t = T) = Ri(T3) + B, (¢t = T3)

T; 1 <s<T;

wheref, [resp. R;] is the limit of 5 from the right [resp. ofR from the left]. Similarly
inf (R(s)+ B(t —s)) = R(t)

s€[Ti,t]

sinceB(0) = 0. Thus (case 1) either there is soin€ 7o such thatl R® 8)(t) = R(T;) + B-(t — T})
or (case 2 R ® B)(t) = R(t).
Consider case 1. By hypothesiBi(t) > (R ® B)(t), thus

R(t) > R(t) = lmax > Ri(Ti) + Br(t — Ti) — lmax
On the other handi*(t) > R;(T;) = R(T;—1) andR is L-packetized, thus
R(t) > Ri(Ty)
Combining the two shows that

R/(t) max [Rl( ) Rl( ) + /87"( i) - lmax]

R(T;) + max [B,(t — T;) — lmax, 0]
R(T;) + Bt = Tj)

Now fix some arbitrarye > 0. By definition of the limit from the right, we can find some e
(T;—1,T;) such that3(t — s) < B,(t — T;) + €. Now R(s) = R;(T;) thus
R'(t) > R(s) + B(t —s) —e > (R® B)(t) —

This is true for alle > 0 thusR/(t) > (R® ')(t), which proves that the service curve property holds
for case 1. The proof for case 2 is immediate.
4. The proof is a direct consequence of (1.21).

v

EXAMPLE : CONCATENATION OF GPSNODES Consider the concatenation of the theoretical GPS node,
with guaranteed rat® (see Section 1.3.1 on Page 18) andlapacketizer. Assume this system receives
a flow of variable length packets. This models a theoreticalenthat would work as a GPS node but is
constrained to deliver entire packets. This is not veryiséa) and we will see in Chapter 2 more realistic
implementations of GPS, but this example is sufficient tda@rpne important effect of packetizers.

By applying Theorem 1.7.1, we find that this node offers a-katiency service curv@R,lm%. Now con-
catenatemn such identical nodes, as illustrated in Figure 1.19. Theterghd service curve is the rate
latency-function3g  with
lmax
T = m?
We see on this example that the additional latency introdibbyeone packetizer is indeed of the order of one
packet length; however, this effect is multiplied by the rnemof hops.
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Rate R, latency (m - 1) |,.../R

LfL, . T+T . T+T =i 4

Figure 1.19:The concatenation of several GPS fluid nodes with packetized outputs

For the computation of the end-to-end delay bound, we netk&ointo account Theorem 1.7.1, which tells
us that we can forget the last packetizer. Thus, a bound oticeadd delay is obtained by considering that
the end-to-end path offers a service curve equal to thedgtimction 8z 7, with

lmax
TQ - (m — 1) R

For example, if the original input flow is constrained by oealy bucket of rate and bucket pool of size
b, and ifr < R, then an end-to-end delay bound is

b+ (m — 1)lnax
R

(1.23)

The alert reader will easily show that this bound is a worsedaound. This illustrates that we should be
careful in interpreting Theorem 1.7.1. It is only at the kasp that the packetizer implies no delay increase.
The interpretation is as follows. Packetization delaysfitts¢ bits in a packet, which delays the processing
at downstream nodes. This effect is captured in (1.23). tmsary:

REMARK 1.7.1. Packetizers do not increase the maximum delay at the nodeswvithey are appended.
However, they generally increase the end-to-end delay.

We will see in Chapter 2 that many practical schedulers cambéeled as the concatenation of a node
offering a service curve guarantee and a packetizer, andilivgive a practical generalization of (1.23).

1.7.3 A RELATION BETWEEN GREEDY SHAPER AND PACKETIZER

We have seen previously that appending a packetizer to dystmper weakens the arrival curve property
of the output. There is however a case where this is not trug@s dase is important for the results in
Section 1.7.4, but also has practical applications of ita.dwigure 1.20 illustrates the theorem.

o (P) (©) ()
Ry(1) R(H) RE(1) RO (1)

Figure 1.20:Theorem 1.7.2 says that R(!) is o-smooth.
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THEOREM 1.7.2. Consider a sequenck of cumulative packet lengths and c&l}, the L-packetizer. Con-
sider a “good” functionos and assume that

{ There is a sub-additive functiar, and a numbet > [, such that (1.24)

a(t) = ao(t) + >0

Call C, the greedy shaper with shaping curveFor any input, the output of the composittd®y, o C, o Py,
is o-smooth.

In practical terms, the theorem is used as follows. Consddi-packetized flow, pass it through a greedy
shaper with shaping curve and packetize the output; then the resultismooth (assuming thatsatisfies
condition in (1.24) in the theorem).

Note that in general the output 6f o Py, is not L-packetized, even if satisfies the condition in the theorem
(finding a counter-example is simple and is left to the reddieher enjoyment). Similarly, if the input to
P, o C, is not L-packetized, then the output is notsmooth, in general.

The theorem could also be rephrased by saying that, undditiconin (1.24)
ProC,oPr=Cr0ProCso0Pr,

since the two above operators always produce the same output

DiscussioN oF CONDITION IN (1.24) Condition (1.24) is satisfied in practice df is concave and
0r(0) > lpax, Whereo,(0) = inf;~o o(t) is the limit from the right ofo at0. This occurs for example if
the shaping curve is defined by the conjunction of leaky biscledl with bucket size at least as large as the
maximum packet size.

This also sheds some light on the example in Figure 1.16:rbtdgm occurs because the shaping cuwwe
does not satisfy the condition.

The alert reader will ask herself whether a sufficient caonifor (1.24) to hold is that is sub-additive and
0,(0) > lmax. Unfortunately, the answer is no. Consider for example tag inctiono = l.cvr. We
haveo, (0) = l;,ax but if we try to rewrites into o (t) = o¢(t)+11;~0 we must havé = lmax andog(t) = 0
for t € (0,T7]; if we impose that is sub-additive, the latter implies, = 0 which is not compatible with
(1.24)

PROOF OF THEOREM 1.7.2: We use the notation in Figure 1.20. We want to show &t is o-
smooth. We havéR* = R ® o. Consider now some arbitragyand¢ with s < ¢. From the definition of
min-plus convolution, for alt > 0, there is some < s such that

(R®o)(s) > R(u) +o(s —u) —¢ (1.25)
Now consider the sef of ¢ > 0 such that we can find one < s satisfying the above equation. Two cases

are possible: either is an accumulation point faE® (case 1) , or not (case 2).
Consider case 1; there is a sequefge s, ), with s,, < s,

lim ¢€,=0
n—-+o0o

and
(R®0o)(s) > R(sp) +0(s—8n) — €n

®We use the notatio®;, o C, to denote the composition of the two operators, Withapplied first; see Section 4.1.3.
"The same conclusion unfortunately also holds if we replabessiditive by “star-shaped” (Section 3.1).
8namely, there is a sequence of element& iwhich converges t6
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Now sinces,, < t:
(R®0o)(t) < R(sn) +0(t — sn)

Combining the two:
(Reo)(t)—(R®o)(s) <o(t—s,) —o(s —sp) + €
Now¢ — s, > 0 ands — s,, > 0 thus
ot —sp) —o(s—sy) =00(t —sp) —o0(s — sp)
We have assumed tha is sub-additive. Now > s thus
oot — sn) —o0(s — sp) < oot — s)
we have thus shown that, for adl
(Reo)(t)— (R®o)(s) <oo(t—s)+ €,

and thus
(R®o)(t) — (R®o)(s) < oot —s)

Now from (1.21), it follows that
RW(t) — RV (s) < og(t — 5) + lnax < ot — 5)

which ends the proof for case 1.

Now consider case 2. There is somesuch that for0 < ¢ < ¢y, we have to take: = s in (1.25), and
therefore

(R®0o)(s) > R(s)+0(0) —e=R(s) —¢
Since this holds for everysuch thad < e < ¢, it comes that R ® o)(s) > R(s), and thu§ R @ o)(s) =
R(s).
Now R is L-packetized by hypothesis. Thus

RW(s) = PH((R®0)(s)) = P*(R(s)) = R(s) = (R® 0)(s)

thus
RMD(t) — RM(s)

now R ® o haso as an arrival curve thus
RW(#) — RV (s) < o(t — s)

which ends the proof for case 2. O

EXAMPLE : BUFFERED LEAKY BUCKET CONTROLLER BASED ON VIRTUAL FINISH TIMES The-
orem 1.7.2 gives us a practical implementation for a pacéséth shaper. Consider that we want to build a
device that ensures that a packet flow satisfies some corpgiaeeyise linear arrival curve (and is of course
L- packetized). We can realize such a device as the concateraita buffered leaky bucket controller
operating bit-by-bit and a packetizer. We compute the dutme for the last bit of a packet (= finish time)
under the bit-by-bit leaky bucket controller, and reledmedntire packet instantly at this finish time. If each
bucket pool is at least as large as the maximum packet sinelieorem 1.7.2 tells us that the final output
satisfies the leaky bucket constraints.
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Figure 1.21:A counter example for Theorem 1.7.2. A burst of 10 packets of size equal to 10 data units
arrive attime ¢ = 0, and o = 25v;. The greedy shaper emits 25 data units at times 0 and 1, which forces the
packetizer to create a burst of 3 packets at time 1, and thus R(") is not o-smooth.

COUNTER-EXAMPLE If we consider non-concave arrival curves, then we can findramal curveo
that does satisfy () > lnax for ¢ > 0 but that does not satisfy (1.24). In such a case, the cooclusi
of Theorem 1.7.2 may not hold in general. Figure 1.21 showexample where the output(!) is not
o-smooth, wherr is a stair function.

1.7.4 PRCKETIZED GREEDY SHAPER

We can come back to the questions raised by the example ime=Ilg6 and give a more fundamental
look at the issue of packetized shaping. Instead of syrdimgsthe concatenation of a greedy shaper and a
packetizer as we did earlier, we define the following, cdesiswith Section 1.5.

DEFINITION 1.7.6. [Packetized Greedy Shaper] Consider an input sequenceaiigps, represented by the
function R(t) as in (1.18). CallL the cumulative packet lengths. We qadicketized shapewith shaping
curveo, a system that forces its output to hawas an arrival curveand bel-packetized. We caflacketized
greedy shapea packetized shaper that delays the input packets in a buffemever sending a packet would
violate the constraint, but outputs them as soon as possible.

EXAMPLE : BUFFERED LEAKY BUCKET CONTROLLER BASED ON BUCKET REPLENISHMENT The
caser(t) = ming,—1,.. v (V.6 (t) CaN be implemented by a controller that observes a set fifiid buck-
ets, where thenth bucket is of sizé,,, and leaks at a constant ratg. Every bucket receiveg units of
fluid when packet is releasedif is the size of packef). A packet is released as soon as the level of fluid
in bucketm allows it, that is, has gone down beldwy, — [;, for all m. We say that now we have defined
a buffered leaky bucket controller based on “bucket replamient”. It is clear that the output hasas an
arrival curve, isL-packetized and sends the packets as early as possibleitThpiements the packetized
greedy shaper. Note that this implementation differs froeluffered leaky bucket controller based on vir-
tual finish times introduced in Section 1.7.3. In the lattiewing a period where, say, bucketonly is full,
fragments of a packet are virtually released at ratebucketm remains full, and the (virtual) fragments are
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then re-assembled in the packetizer; in the former, if a dulskcomes full, the controller waits until it emp-
ties by at least the size of the current packet. Thus we exbpatthe level of fluid in both systems is not the
same, the former being an upper bound. We will see howeveoinli@ry 1.7.1 that both implementations
are equivalent.

In this example, if a bucket size is less than the maximum gtagike, then it is never possible to output a
packet: all packets remain stuck in the packet buffer, aaathput isk(t) = 0. In general, we can say that

PROPOSITION1.7.1. If 0,.(0) < lmax then the the packetized greedy shaper blocks all packetsviar
(namely,R(t) = 0). Thus in this section, we assume thét) > I,,. for ¢ > 0.

Thus, for practical cases, we have to assume that the activado has a discontinuity at the origin at least
as large as one maximum packet size.

How does the packetized greedy shaper compare with the temratin of a greedy shaper with shap-
ing curveo and a packetizer ? We know from the example in Figure 1.16ttrabutput has'(t) =

o(t) + lmax 1t>0 @s an arrival curve, but net Now, does the concatenation implement a packetized greedy
shaper with shaping curwe ? Before giving a general answer, we study a fairly genemasequence of
Theorem 1.7.2.

THEOREM 1.7.3 (Realization of packetized Greedy Shap&dnsider a sequenck of cumulative packet
lengths and a “good” functiorv. Assume that satisfies the condition in (1.24). Consider only inputs that
are L packetized. Then the packetized greedy shapes famd I. can be realized as the concatenation of
the greedy shaper with shaping cuwveand theL-packetizer.

T I Packetized T I
Greedy Shaper
(L)and o

T*T () (PL) T*L

A
A

Figure 1.22: The packetized greedy shaper can be realized as a (bit-by-bit fluid shaper followed by a
packetizer, assuming (1.24) holds. In practice, this means that we can realize packetized greedy shaping
by computing finish times in the virtual fluid system and release packets at their finish times.

PrRoOF: Call R(t) the packetized input; the output of the bit-by-bit greedgsr followed by a packe-
tizerisRV(t) = PX(R ® o)(t)). Call R(t) the output of the packetized greedy shaper. We fave R
thusR ® 0 < R ® o and thus

PER®o) < PE(R®0)

But R is o-smooth, thusk ® o = R, and isL-packetized, thu®’(R® ¢) = R. Thus the former inequality
can be rewritten a® < R"). Conversely, from Theorem 1.7.R") is alsos-smooth andL-packetized.
The definition of the packetized greedy shaper implieskhat R() (for a formal proof, see Lemma 1.7.1)
thus finallyR = R(V. O

We have seen that the condition in the theorem is satisfiedriticplar if o is concave and,.(0) > lyax,
for example if the shaping curve is defined by the conjunatibleaky buckets, all with bucket size at least
as large as the maximum packet size. This shows the following
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COROLLARY 1.7.1. For L-packetized inputs, the implementations of buffered lbakiet controllers based
on bucket replenishment and virtual finish times are eqgeival

If we relax (1.24) then the construction of the packetizeskdgy shaper is more complex:

THEOREM 1.7.4 (I/O characterisation of packetized greedy shap&ensider a packetized greedy shaper
with shaping curver and cumulative packet lengfh Assume that is a “good” function. The outpufR(t)
of the packetized greedy shaper is given by

R = inf {R<1>, R® RO, } (1.26)
with RD () = PE((0 ® R)(t)) and R™(t) = PL((o @ RO~V (t)) fori > 2.

Figure 1.23 illustrates the theorem, and shows the iteratinstruction of the output on one example. Note
that this example is for a shaping function that does nosfyaflL.24). Indeed, otherwise, we know from
Theorem 1.7.3 that the iteration stops at the first step, yale= RV in that case. We can also check for
example that i = A, (thus the condition in Proposition 1.7.1 is satisfied) thenresult of (1.26) i9.

0 ] 2 3 4 >
R
inf| >
PL « & lr g
RG)
R = R®

Figure 1.23:Representation of the output of the packetized greedy shaper (left) and example of output
(right). The data are the same as with Figure 1.21.

PrRoOOF: The proof is a direct application of Lemma 1.7.1 (which itsglan application of the general
method in Section 4.3 on Page 144). O

LEmMMA 1.7.1. Consider a sequenck of cumulative packet lengths and a “good” functien Among all
flowsz(t) such that
<R
x is L-packetized (2.27)
x haso as an arrival curve

there is one flowR(¢) that upper-bounds all. It is given by (1.26).
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ProOF: The lemma is a direct application of Theorem 4.3.1, as empthin Section 4.3.2. However, in
order to make this chapter self-contained, we give an atmsa direct proof, which is quite short.

If 2 is a solution, then it is straightforward to show by induntiani thatz(t) < R®(t) and thusr < R.
The difficult part is now to show thak is indeed a solution. We need to show that the three condifion
(1.27) hold. Firstly,R(") < R(t) and by induction ori, R®) < R for all i; thusR < R.

Secondly, consider some fixed R(")(t) is L-packetized for alli > 1. Let L(ng) := RM(t). Since
RO (t) < RW(t), RO(t) is in the set

This set is finite, thusR(t), which is the infimum of elements in this set, has to be one efltfk) for
k < ng. This shows thak(t) is L-packetized, and this is true for any time

Thirdly, we have, for alk

R(t) < R“D(t) = P((o @ RY)(1)) < (0 @ RY)(1)
thus

R < inf(c ® RY)

7

Now convolution by a fixed function is upper-semi-continspwhich means that
inf(c@ RY) =0 ®R
7
This is a general result in Chapter 4 for any min-plus oper#o elementary proof is as follows.

inf;(c @ RV)(t) = inf e (0.4 7en [0(s) + ROt — s)]
infsepo, {infz‘eN [(U(s) + R0 (t— 3)]}
infyepo s {o(s) + infien [RO(t - 5)] }
infse[O_,t] [O’(S) + R(t — 8)]

= (c®@R)(t)
Thus
R<o®R,
which shows the third condition. Note thAtis wide-sense increasing. O

DOES A PACKETIZED GREEDY SHAPER KEEP ARRIVAL CONSTRAINTS ? Figure 1.24 shows a counter-
example, namely, a variable length packet flow that hast®stitial arrival curve constraint after traversing
a packetized greedy shaper.

However, if arrival curves are defined by leaky buckets, westspositive result.

THEOREM 1.7.5 (Conservation of concave arrival constrainssume arl.-packetized flow with arrival
curveq is input to a packetized greedy shaper with cumulative gdekgth . and shaping curve. Assume
that « and o are concave witl,. (0) > I ando,-(0) > nax. Then the output flow is still constrained by
the original arrival curveq.

PROOF:  Sinceo satisfies (1.24), it follows from Theorem 1.7.3 tiat= P*(c®R). Now R is a-smooth
thus it is not modified by a bit-by-bit greedy shaper with shgurvea, thusR = o ® R. Combining the
two and using the associativity of givesR = P'[(c ® a) ® R]. From our hypothesis; ® a = min(o, a)
(see Theorem 3.1.6 on Page 112) and thgs satisfies (1.24). Thus, by Theorem 1.7R4s o ® a-smooth,
and thusa-smooth. O
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Figure 1.24:The input flow is shown above; it consists of 3 packets of size 10 data units and one of size
5 data units, spaced by one time unit. It is a-smooth with o = 10v; . The bottom flow is the output of the
packetized greedy shaper with o = 25v3 5. The output has a burst of 15 data units packets at time 3. It is
o-smooth but not a-smooth.

SERIES DECOMPOSITION OF SHAPERS

THEOREM 1.7.6. Consider a tandem af/ packetized greedy shapers in series; assume that the ghapin
curveo™ of themth shaper is concave withi"* (0) > l,,.x. For L-packetized inputs, the tandem is equiva-
lent to the packetized greedy shaper with shaping curvemin,,, c™.

PrROOF:  We do the proof fotM = 2 as it extends without difficulty to larger values bf. Call R(t) the
packetized inputf’(¢) the output of the tandem of shapers, df() the output of the packetized greedy
shaper with input?(¢) and shaping curve.

Firstly, by Theorem 1.7.3
R = P'o* @ PL (0! ® R)]

Now o™ > ¢ for all m thus
R > P!o @ PX(6 ® R)]

Again by Theorem 1.7.3, we have@ = P*(c ® R). MoreoverR is L-packetized and-smooth, thus
R = PY(R)andR = ¢ ® R. Thus finally

R >R (1.28)

Secondly, R’ is L-packetized and by Theorem 1.7.5, itdssmooth. Thus the tandem is a packetized
(possibly non greedy) shaper. Sin@t) is the output of the packetized greedy shaper, we must have
R’ < R. Combining with (1.28) ends the proof. O

It follows that a shaper with shaping cure€t) = min,,—1,_a(rmt + b)), Whereb,, > lyax for all
m, can be implemented by a tandem/df individual leaky buckets, in any order. Furthermore, by d@or
lary 1.7.1, every individual leaky bucket may independeibié based either on virtual finish times or on

bucket replenishment.

If the condition in the theorem is not satisfied, then the agion may not hold. Indeed, for the example
in Figure 1.24, the tandem of packetized greedy shapersanittesa ando does not have an-smooth
output, therefore it cannot be equivalent to the packetigeddy shaper with curvein(c, o).

Unfortunately, the other shaper properties seen in Sedtidrdo not generally hold. For shaping curves
that satisfy (1.24), and when a packetized greedy shapetragluced, we need to compute the end-to-end
service curve by applying Theorem 1.7.1.
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1.8 LOSSLESSEFFECTIVE BANDWIDTH AND EQUIVALENT CAPACITY

1.8.1 EFECTIVE BANDWIDTH OF A FLOW

We can apply the results in this chapter to define a functioa ftdw called the effective bandwidth. This
function characterizes the bit rate required for a given .fidere precisely, consider a flow with cumulative
function R; for a fixed, but arbitrary delay, we define theffective bandwidth (R) of the flow as the bit
rate required to serve the flow in a work conserving manneh awirtual delay< D.

PropPOsSITION1.8.1. The effective bandwidth of a flow is given by

ep(R) = sup R{t) — R(s)

1.29
0<s<t t—s+ D ( )

For an arrival curvex we define the effective bandwid#y, («) as the effective bandwidth of the greedy
flow R = «. By a simple manipulation of Equation 1.29, the followingrees.

PROPOSITION1.8.2. The effective bandwidth of a “good” arrival curve is given by

ep(a) =sup o(s) (2.30)

The alert reader will check that the effective bandwidth dfoa R is also the effective bandwidth of its
minimum arrival curveR @ R. For example, for a flow with T-SPE®, M, r, b), the effective bandwidth is
the maximum of- and the slopes of lineg) Ay) and(QA;) in Figure 1.25; it is thus equal to:

M D-Y
— - 1—— P 1.31
€D max { D IRy Y ( bI;_J\f —|—D>} ( )

Assumex is sub-additive. We define the sustainable ratasm = liminf, a(j) and the peak rate by

A .
arrival curve
200
100
b
50
Ml A
0 > 20 ‘ ‘
Q 005 01 0.2 05 1 2

Figure 1.25:Computation of Effective Bandwidth for a VBR flow (left); example for » = 20 packets/second,
M = 10 packets, p = 200 packets per second and b = 26 packets (right).

P = SUp,~ O‘(j). Thenm < ep(a) < pforall D. Moreover, ifa is concave, thetimp ., | o ep(a) = m.If

« is differentiable ¢(D) is the slope of the tangent to the arrival curve, drawn froetitime axis at = —D
(Figure 1.26). It follows also directly from the definition {1.29) that

GD(Z ;) < Z ep(ai) (1.32)

In other words, the effective bandwidth for an aggregate fioless than or equal to the sum of effective
bandwidths. If the flows have alilentical arrival curves, then the aggregate effective bandwidtlmiply

I x ep(ay). Itis this latter relation that is the origin of the term ‘“edtive bandwidth”. The difference
> .ep(a;) —ep(D_; y) is a buffering gain; it tells us how much capacity is saved harig a buffer
between the flows.
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: sl ope = effective . sl ope = equi val ent
arrival arrival
curve curve
B 7
tinme

Figure 1.26:Effective Bandwidth for a delay constraint D and Equivalent Capacity for a buffer size B

1.8.2 EQUIVALENT CAPACITY

Similar results hold if we replace delay constraints by gguirement that a fixed buffer size is not exceeded.
Indeed, the queue with constant rafe guarantees a maximum backlog Bf (in bits) for a flow R if
C > fp(R), with

R(t)— R(s) — B
Fo(R) = sup I ZHE (1.33)
0<s<t - S
Similarly, for a “good” functiona, we have:
a(s) — B
fB(a) = sup (5) (1.34)
s>0 S

We call fg(«) the equivalent capacityby analogy to [48]. Similar to effective bandwidth, the aailent
capacity of a heterogeneous mix of flows is less than or equtde sum of equivalent capacities of the
flows, provided that the buffers are also added up; in othedsygz (o) < >, fB, (), Wwitha = 3" o
andB = ), B;. Figure 1.26 gives a graphical interpretation.

For example, for a flow with T-SPEG, M, r,b), using the same method as above, we find the following
equivalent capacity:

1.35
else r + 2=N-B1" _?Eb];jBﬁ ( )

if B < M then + oo
B =
An immediate computation shows th&{~,.;) = . In other words, if we allocate to a flow, constrained by
an affine functiony, ;, a capacity equal to its sustainable rat¢hen a buffer equal to its burst toleraricis
sufficient to ensure loss-free operation.

Consider now a mixture of Intserv flows (or VBR connectiongjh T-SPECs {/;, p;, 1, b;). If we allocate

to this aggregate of flows the sum of their sustainable fales;, then the buffer requirement is the sum of
the burst tolerancey ; b;, regardless of other parameters such as peak rate. Cdyyé&geation 1.35 also
illustrates that there is no point allocating more bufferthhe burst tolerance: B > b, then the equivalent
capacity is stillr.

The above has illustrated that it is possible to reduce theired buffer or delay by allocating a rate larger
than the sustainable rate. In Section 2.2, we described tiewniay be done with a protocol such as RSVP.

Note that formulas (1.29) or (1.33), or both, can be usedtimate the capacity required for a flow, based
on a measured arrival curve. We can view them as low-passfdtethe flow function?.
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1.8.3 EXAMPLE : ACCEPTANCE REGION FOR A FIFO M ULTIPLEXER

Consider a node multiplexing; flows of type 1 andw, flows of type 2, where every flow is defined by a
T-SPEC(p;, M;,r;,b;). The node has a constant output rateWe wonder how many flows the node can
accept.

If the only condition for flow acceptance is that the delaydlbflows is bounded by some valug, then the
set of acceptable values @i, n2) is defined by

BD(TllOél + TLQOZQ) S C

We can use the same convexity arguments as for the derivatiftormula (1.31), applied to the function
nioq + noan. Defined; = b‘TM and assumé; < #,. The result is:

pPi—Ti

n1 Mi+noMs
D 9
n1 Mi4+na Mo+ (n1p1+nap2)61
M

_ 01+D
eD(nlal + n2a2) = max ni1bi+no Mo+ (niri+nap2)s
O2+D ?

niry + nar

The set of feasiblén,,ny) derives directly from the previous equation; it is the conpart shown in
Figure 1.27. The alert reader will enjoy performing the catagion of the equivalent capacity for the case
where the acceptance condition bears on a bufferBize

L] P | M | on [ b | 6
1 | 20’000 packets/s 1 packet| 500 packets/s 26 packets| 1.3 ms
2 | 5’000 packets/s| 1 packet| 500 packets/s 251 packety 55.5 ms

Figure 1.27: Acceptance region for a mix of type 1 and type 2 flows. Maximum delay D = zz. The
parameters for types 1 and 2 are shown in the table, together with the resulting values of 6;.

Coming back to equation 1.32, we can state in more generabttat the effective bandwidth is a convex
function of functiona, namely:

ep(acy + (1 —a)ag) < aep(ay) + (1 —a)ep(asg)

for all a € [0,1]. The same is true for the equivalent capacity function.

Consider now a call acceptance criterion based solely orflay d®und, or based on a maximum buffer
constraint, or both. Consider further that there Atgpes of connections, and define the acceptance region
A as the set of valueény,...,ny) that satisfy the call acceptance criterion, whefes the number of
connections of class From the convexity of the effective bandwidth and equintleapacity functions,

it follows that the acceptance regiohis convex In chapter 9 we compare this to acceptance regions for
systems with some positive loss probability.

SUSTAINABLE RATE ALLOCATION If we are interested only in course results, then we can den
the previous solution and take into account only the susitdénrate of the connection mix. The aggregate
flow is constrained (among others) bys) = b+ rs, with b = . n;b; andr = ), n;r;. Theorem 1.4.1
shows that the maximum aggregate buffer occupancy is boubgé as long ag” > r. In other words,
allocating the sustainable rate guarantees a loss-fremtape as long as the total buffer is equal to the
burstiness.
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In a more general setting, assume an aggregate flow basminimum arrival curve, and assume that some
parameters andb are such that

lim a(s) —rs—b=0
S—+00

so that the sustainable ratewvith burstiness is a tight bound. It can easily be shown that if we allocate a
rateC' = r, then the maximum buffer occupancybis

Consider now multiplexing a number of VBR connections. Ifmdfer is available, then it is necessary
for a loss-free operation to allocate the sum of the pealsrdtecontrast, using a buffer of sizanakes it
possible to allocate only the sustainable rate. This is wigatall thebuffering gain namely, the gain on
the peak rate obtained by adding some buffer. The bufferéig gpmes at the expense of increased delay,
as can easily be seen from Theorem 1.4.2.

1.9 PrROOF OF THEOREM 1.4.5

STep 1: Consider a fixed time, and assume, in this step, that there is some timéhat achieves the
supremum in the definition of © 5. We construct some input and output functidRend R* such that
R is constrained bw, the systen(R, R*) is causal, and*(tg) = (R* @ R*)(t9). R andR* are given by

(Figure 1.28)
data o
R /b

R*

—> time
0 Uy u, +1t,

Figure 1.28:Step 1 of the proof of Theorem 1.4.5: a system that attains the output bound at one value t.

R(t) Oé(t) if t <wug+to

R(t) = a(uo + t()) if t > wug+tg

R (t) = infla(t), B(1)] if £ < uo + to
R*(t) = R(t) if t > wug+to

It is easy to see, as in the proof of Theorem 1.4.4 hanhd R* are wide-sense increasing, thit < R and
that3 is a service curve for the flow. Now

R*(up + tg) — R*(ug) = a(up + to) — R*(up) > alug + to) — B(up) = o™ (to)

STeEP 2: Consider now a sequence of timgst, ..., t,, ... (not necessarily increasing). Assume, in this
step, that for alk there is a value,, that achieves the supremum in the definitiori@f» 5)(t,,). We prove
that there are some functiofisand R* such thatR is constrained by, the systen{ R, R*) is causal, hag

as a service curve, and (t,,) = (R* @ R*)(t,,) foralln > 0.

We build R and R* by induction on a set of increasing intervélls so|, [0, s1],..., [0, sy,].... The induction
property is that the system restricted to time intef@ak,, ] is causal, haa as an arrival curve for the input,
hasg as a service curve, and satisfiegt;) = (R* @ R*)(t;) for i < n.

The first interval is defined by, = ug + to; R and R* are built on[0, sg] as in step 1 above. Clearly,
the induction property is true for = 0. Assume we have built the system on interjals, |. Define now
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Sn+1 = Sn + Un + ty + 0ny1. We chose),, 1 such that
a(s 4+ Ony1) — a(s) > R(sy) for all s > 0 (1.36)
This is possible from the last condition in the Theorem. Tygtem is defined ofs,,, s,+1] by (Figure 1.29)

R(t) = R*(t) = R(sy) for s, <t < s, + dpt1

R(t) = R(sp) + a(t — sy — Opy1) for s, + dpg1 <t < Spy1

R*(t) = R(sp) + (@A B)(t — sy, — Opg1) for 8y + 01 <t < Spy1
R*(sp+1) = R(sn+1)

We show now that the arrival curve constraint is satisfiedtlier system defined ojf), s,,11]. Consider

o

A

data R i

2
a /
B
o /
p
/ w8 w
0 Uy Se=Uugtty S S2 time

Figure 1.29:Step 2 of the proof of Theorem 1.4.5: a system that attains the output bound for all values t,,,
n € N.

R(t)— R(v) for tandv in [0, s,,+1]. If botht < s, andv < s,,, orif botht > s, andv > s,, then the arrival
curve property holds from our construction and the inducpooperty. We can thus assume that s,, and

v < s,. Clearly, we can even assume that s, + d,,1, otherwise the property is trivially true. Let us
rewritet = s, + d,11 + s. We have, from our construction:

R(t) — R(v) = R(sp + dn+1 +5) — R(v) = R(sp) + a(s) — R(v) < R(sp) + a(s)
Now from Equation (1.36), we have:
R(sp) + a(s) < a(s+ dpt1) < a(s+ 0pg1 + sp —v) = at —v)

which shows the arrival curve property.

Using the same arguments as in step 1, it is simple to showthbatystem is causal, ha@sas a service
curve, and that
R*(upt1 +tny1) — R (uny1) = " (tni1)

which ends the proof that the induction property is also foue: + 1.

STep 3: Consider, as in step 2, a sequence of times, ..., t,, ... (Not necessarily increasing). We now
extend the result in step 2 to the case where the supremune idefinition ofa* = (o @ §)(t,) is not
necessarily attained. Assume first thétt,,) is finite for alln. For alln and allm € N* there is somex,,, ,,
such that

(1.37)

a(tn + um,n) - ﬁ(umm) > a*(tn) _ %
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Now the set of all coupleém,n) is enumerable. Consider some numbering(i), N(i)), i € N for that
set. Using the same construction as in step 2, we can builehdyction oni a sequence of increasing
intervals|0, s;] and a systeniR, R*) that is causal, has as an arrival curve for the input, h&sas a service
curve, and such that

1

R*(si) — R*(si —tng)) = o (tvgy) — 0]
Now consider an arbitrary, but fixed By applying the previous equations to abuch thatV (i) = n, we
obtain

(R* @ R*)(tn) 2> SUDP; guch that N(i)=n {Oé* (tN(z)) - ML(Z)}

= o (tn) - 1nfz such that N(i)=n 1\/11(7;)

Now the set of allﬁ(i) for i such thatV (i) = n is N*, thus

1
‘uf -0
i such tlllgt N(i)=n { M(Z) }

and thus(R* @ R*)(t,,) = a*(t,), which ends the proof of step 3 in the case whet€,,) is finite for all
n.

A similar reasoning can be useddf (¢, ) is infinite for somet,,. In that case replace Equation (1.37) by
a(tn + um,n) - /B(um,n) > m.

STEP 4: Now we conclude the proof. If time is discrete, then step Jgsahe theorem. Otherwise we
use a density argument. The set of nonnegative rational etgfib” is enumerable; we can thus apply step
3 to the sequence of all elements@f, and obtain systeroR, R*), with

(R* @ R*)(q) = a*(q) for all g € Q"

Function R* is right-continuous, thus, from the discussion at the endtedorem 1.2.2, it follows that
R* @ R* is left-continuous. We now show that is also left-continuous. For all> 0 we have:

supa*(s) = sup {als +v) — A(v)} = sup{supla(s +v) - A(V)]}
s<t (s,v) such that s<t and v>0 v>0 s<t
Now

sup (s +v) = a(t +v)
s<t

becausev is left-continuous. Thus

sup a’(s) = iglg{oc(t +v) = B)]} =a*(t)

which shows thatv is left-continuous.

Back to the main argument of step 4, consider some arbitrary0. The setQ* is dense in the set of
nonnegative real numbers, thus there is a sequence ofahtiombersy, € QT, with n € N, such that
qn < t andlim,,_, . ¢, = t. From the left-continuity oRR* © R* anda* we have:

(R"©R*)(t) = lim (R*©R")(¢,) = lim a*(g,) = a*(t)

n—-+00 n—-+00
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1.10 BIBLIOGRAPHIC NOTES

Network calculus as has been applied to dimensioning ATMches in [60]. A practical algorithm for
the determination of the minimum arrival curve for ATM systés described in [61]. It uses the burstiness
function of a flow, defined in [57] as follows. For amy B(r) is the minimumb such that the flow is
7rp-sSmooth, and is thus the required buffer if the flow is serveal eonstant rate. Note thatB(r) is the
Legendre transform of the minimum arrival curweof the flow, namely,B(r) = sup,~q(o(t) — rt) [61]
gives a fast algorithm for computing(r). Interestingly, the concept is applied also to the distiisuof
symbols in a text.

In [78], the concepts of arrival and service curve are useanglyze real time processing systems. It is

shown that the service curve for a variable capacity node brisuper-additive, and conversely, any super-
additive function is a service curve for a variable capanitge. Compare to greedy shapers, which have a
sub-additive service curve. This shows that, except fostant bit rate trunks, a greedy shaper cannot be
modeled as a variable capacity node, and conversely.

In [9], the authors consider a crossbar switch, andsgglithe rate assigned to the traffic from input port
to output portj. Assume thad _, r; ; < 1 for all j andzj r;; < 1forall i. Using properties of doubly-
stochastic matrices (such @s ;) is), they give a simple scheduling algorithm that guaranteat the flow
from porti to port is allocated a variable capacify satisfyingC; ;(t) — C; j(s) > r; ;(t — s) — s; ; for
somes; ; defined by the algorithm. Thus, the node offers a serviceecaqual to the rate-latency function
/87"1"]'781'7j'

A dual approach to account for variable length packets ®dhiced in [11]. It consists in replacing the
definition of arrival curve (ow-smoothness) by the concept gfegularity. Consider a flow of variable
length packets, with cumulative packet lendtland call7; the arrival epoch for théth packet. The flow
is said to beg-regular if T'(j) — T'(¢) > g(L(j) — L(z)) for all packet numbers < j. A theory is then
developed with concepts similar to the greedy shaper. Tdmyhuses max-plus convolution instead of min-

plus convolution. Théb, ) regulator originally introduced by Cruz [21] is a shaperhisttheory, whose
output isg-regular, withg(x) = M+. This theory does not exactly correspond to the usual carafep
leaky bucket controllers. More specifically, there is noteaact correspondence between the set of flows
that areg-regular on one hand, and that aresmooth on the other. We explain why with an example.
Consider the set of flows that ageregular, withg(z) = *. The minimum arrival curve we can put on this
set of flows iso(t) = rt + lnmax [11]. But conversely, if a flow igr-smooth, we cannot guarantee that it is
g-regular. Indeed, the following sequence of packets is a flaviso-smooth but noy-regular: the flow

has a short packet (length < I,,.x) at timeT; = 0, followed by a packet of maximum siZg.. at time

: : L : ) T
T, = 1. Infact, if a flow iso-smooth, then it ig/-regular, withg'(z) = (o tmax) lr’“a") :

The strict service curve in Definition 1.3.2 is called “stgdservice curve in [47].

1.11 EXERCISES

ExerciIsel.1l. Compute the maximum buffer siXefor a system that is initially empty, and where the input
function isR(t) = fg r(s)ds, for the following cases.

1. if r(¢t) = a (constant)

2. one on-off connection with peak rate 1 Mb/s, on period 1 aperiodr seconds, and trunk bit rate
c = 0.5 Mb/s.

3. ifr(t) = ¢+ esinwt, with trunk bit ratec > 0.

EXERCISE1.2. You have a fixed buffer of si2&, that receives a data input(t). Determine the output rate
c that is required to avoid buffer overflow given that the buianitially empty.
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ExXercisel.3. 1. For a flow with constant bit rate, give some possible arrival curves.

2. Consider a flow with an arrival curve given by(t) = B, whereB is constant. What does this mean
for the flow ?

EXERCISE 1.4. We say that a flow i§P, B) constrained if it hasyp 5 as an arrival curve.

1. Atrunk system has a buffer sizei®fand a trunk bitrate ofP. Fill in the dots: (1) there is no loss if
the input is(., .) constrained (2) the output is, .) constrained.

2. A(P, B) constrained flow is fed into an infinite buffer served at a rafte. What is the maximum
delay ?

ExXERCISE 1.5 (On-Off flows). 1. Assume a data flow is periodical, with peri@d and satisfies the
following: r(t) = pfor0 <t < Ty, andr(t) =0for Tp <t < T.
(@) Draw R(t) = fg r(s)ds
(b) Find an arrival curve for the flow. Find the minimum arrh@urve for the flow.
(c) Find the minimunir, b) such that the flow i$r, b) constrained.

2. A traffic flow uses a link with bitrat® (bits/s). Data is sent as packets of variable length. The flow
is controlled by a leaky buckét, b). What is the maximum packet size ? What is the minimum time
interval between packets of maximum size ?

Application: P =2 Mb/s, r = 0.2 Mb/s; what is the required btiteleranceb if the packet length is 2
Kbytes ? What is then the minimum spacing between packets ?

ExXERCISE 1.6. Consider the following alternative definition of the GCRA:

DerFINITION 1.11.1. The GCRAT, 7) is a controller that takes as input a cell arrival timteand returns
resul t. It has internal (static) variableX (bucket level) and. CT (last conformance time).

e initially, X = 0andLCT = 0
e when a cell arrives at time, then
if (X-t + LCT > tau)
result = NON- CONFORMANT;

el se {
X=mx (X-t + LCT, 0) + T,
LCT = t;
result = CONFORMANT;
}

Show that the two definitions of GCRA are equivalent.

EXeErRcISEL.7. 1. Forthe following flows and a GCRA(10, 2), give the confarh@nd non-conformant
cells. Times are in cell slots at the link rate. Draw the lealkgket behaviour assuming instantaneous
cell arrivals.

(a) 0, 10, 18, 28, 38
(b) 0, 10, 15, 25, 35
() 0, 10, 18, 26, 36
(d) 0,10, 11, 18, 28

2. What is the maximum number of cells that can flow back to béttk GCRA(T, CDVT) (maximum
“clump” size) ?

ExXeErcISEL1.8. 1. Forthe following flows and a GCRA(100, 500), give the confmt and non-conformant
cells. Times are in cell slots at the link rate.
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(@) 0,100, 110, 12, 130, 140, 150, 160, 170, 180, 1000, 1010

(b) 0,100, 130, 160, 190, 220, 250, 280, 310, 1000, 1030

(c) 0, 10, 20, 300, 310, 320, 600, 610, 620, 800, 810, 820,,10000, 1020, 1200, 1210, 1220,
1400, 1410, 1420, 1600, 1610, 1620

2. Assume that a cell flow has a minimum spacing e units between cell emission timesg the
minimum time between the beginnings of two cell transnmis¥id/Vhat is the maximum burst size for
GCRA(, 7) ? What is the minimum time between bursts of maximum size ?

3. Assume that a cell flow has a minimum spacing between €ellsrae units, and a minimum spacing
between bursts af;. What is the maximum burst size ?

EXERCISE1.9. For a CBR connection, here are some values from an ATM operato

peak cell rate (cells/s) 100 1000 10000 100000
CDVT (m croseconds) 2900 1200 400 135

1. What are thé P, B) parameters in b/s and bits for each case ? How dbe®mpare tor ?

2. If a connection requires a peak cell rate of 1000 cells merosd and a cell delay variation of 1400
microseconds, what can be done ?

3. Assume the operator allocates the peak rate to every ctioneat one buffer. What is the amount
of buffer required to assure absence of loss ? Numericaliégibn for each of the following cases,
where a numbeN of identical connections with peak cell raieis multiplexed.

case 1 2 3 4
nb of connnecti ons 3000 300 30 3
peak cell rate (c/s) 100 1000 10000 100000

ExXERCISE1.10. The two questions in this problem are independent.

1. An ATM source is constrained by GCRAE 30 slots,7 = 60 slots), where time is counted in slots.
One slot is the time it takes to transmit one cell on the linke $ource sends cells according to the
following algorithm.

¢ In a first phase, cells are sent at timgg) = 0, ¢(2) = 15, t(3) = 30,...,t(n) = 15(n — 1)
as long as all cells are conformant. In other words, the numbis the largest integer such that
all cells sent at times(:) = 15(i — 1), i < n are conformant. The sending of celat timet(n)
ends the first phase.

e Then the source enters the second phase. The subsequentictlls sent at the earliest time
after ¢(n) at which a conformant cell can be sent, and the same is regdateever. In other
words, callt(k) the sending time for celt, with £ > n; we have thenz(k) is the earliest time
after¢(k — 1) at which a conformant cell can be sent.

How many cells were sent by the source in time intejal51] ?

2. A network node can be modeled as a single buffer with a @onhsttput rate (in cells per second).
It receives! ATM connections labeled . .., I. Each ATM connection has a peak cell rat€in cells
per second) and a cell delay variation tolerange(in seconds) foil < ¢ < I. The total input rate
into the buffer is at least as large @le p; (which is equivalent to saying that it is unlimited). What
is the buffer size (in cells) required for a loss-free opienat?

EXERCISE1.11. In this problem, time is counted in slots. One slot is the tdarato transmit one ATM cell
on the link.
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1. An ATM sourced; is constrained by GCRA( = 50 slots, 7 = 500 slots), The source sends cells
according to the following algorithm.

e In afirst phase, cells are sent at timgg) = 0, ¢(2) = 10, ¢(3) = 20,...,t(n) = 10(n — 1)
as long as all cells are conformant. In other words, the numbis the largest integer such that
all cells sent at times(:) = 10(i — 1), i < n are conformant. The sending of celkt timet(n)
ends the first phase.

e Then the source enters the second phase. The subsequentictlls sent at the earliest time
after ¢(n) at which a conformant cell can be sent, and the same is regdateever. In other
words, callt(k) the sending time for celt, with £ > n; we have thent(k) is the earliest time
after¢(k — 1) at which a conformant cell can be sent.

How many cells were sent by the source in time intej¥al01] ?

2. An ATM sources is constrained bypothGCRA([" = 10 slots,7 = 2 slots) and GCRAI = 50 slots,
7 = 500 slots). The source starts at tinie and has an infinite supply of cells to send. The source
sends its cells as soon as it is permitted by the combinatitheorGCRAs. We cali(n) the time at
which the source sends theh cell, with#(1) = 0. What is the value af(15) ?

ExXERCISE1.12. Consider a flowR(t) receiving a minimum service curve guaranteeAssume that

e [ is concave and wide-sense increasing
e theinf in R ® §is amin

For all ¢, call 7(¢) a number such that
(R B)(t) = R(7(t)) + Bt — 7(t))
Show that it is possible to choosesuch that ift; < t5 thent(t1) < 7(t2).

EXErRcCISEL.13. 1. Find the maximum backlog and maximum delay for an ATM CBRestion with
peak rateP and cell delay variation-, assuming the service curved&) = r(t — Ty) ™+
2. Find the maximum backlog and maximum delay for an ATM VBRezxdion with peak raté>, cell
delay variationr, sustainable cell raté/ and burst tolerancep (in seconds), assuming the service
curve isc(t) = r(t — Tp) ™

EXERCISE1.14. Show the following statements:

1. Consider g P, B) constrained flow, served at a rate> P. The output is als¢P, B) constrained.
2. Assume() has a bounded right-handside derivative. Then the outpua ftow constrained byi(),
served in a buffer at a constant rate> sup,- a’(t), is also constrained by().

ExeErcISEL1.15. 1. Find the the arrival curve constraining the output for aM\ CBR connection with
peak rateP and cell delay variationr, assuming the service curvedg&) = r(t — Tp)*
2. Find the arrival curve constraining the output for an ATNBR connection with peak rat2, cell
delay variationr, sustainable cell raté/ and burst tolerancep (in seconds), assuming the service
curve isc(t) = r(t — Tp) ™

EXERCISE1.16. Consider the figure “Derivation of arrival curve for the outpof a flow served in a node
with rate-latency service curvér r”. What can be said if, in the Figure is infinite, namely, if’(¢t) > r
forall ¢ ?

EXERCISE 1.17. Consider a series of guaranteed service nodes with servioeesc; (t) = r;(t — T;) ™.
What is the maximum delay through this system for a flow cainsdl by(m, b) ?

ExeErRcCISE 1.18. A flow with T-SPEGp, M, r, b) traverses nodes 1 and 2. Nodeffers a service curve
ci(t) = R;(t — T;)™. What buffer size is required for the flow at node 2 ?
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ExXerRcISE 1.19. A flow with T-SPEGp, M, r, b) traverses nodes 1 and 2. Nodeffers a service curve
¢i(t) = R;(t — T;)". A shaper is placed between nodes 1 and 2. The shaper foed®thto the arrival
curvez(t) = min(Rat, bt + m).

1. What buffer size is required for the flow at the shaper ?

2. What buffer size is required at node 2 ? What value do youffifid= 15 ?

3. Compare the sum of the preceding buffer sizes to the sarevtiuld be required if no re-shaping is
performed.

4. Give an arrival curve for the output of node 2.

EXERCISE 1.20. Prove the formula giving of paragraph “Buffer Sizing at a Beaper”

EXERcCISE 1.21. Is Theorem “Input-Output Characterization of Greedy Shapea stronger result than
Corollary “Service Curve offered by a Greedy Shaper” ?

EXERCISEL1.22. 1. Explain what is meant by “we pay bursts only once”.
2. Give a summary in at most 15 lines of the main propertiebapers
3. Define the following concepts by using theperator: Service Curve, Arrival Curve, Shaper
4. What is a greedy source ?

EXercCISEL1.23. 1. Show that for a constant bit rate trunk with ratethe backlog at time is given by

W (t) = sup {R(t) — R*(s) — c(t — 5)}
s<t
2. What does the formula become if we assume only that, thateanstant bit rate trunk, the node is a
scheduler offerings as a service curve ?

EXERCISE 1.24. Is it true that offering a service curvg@ implies that, during any busy period of length
the amount of service received rate is at leggt) ?

EXERCISE 1.25. A flow S(t) is constrained by an arrival curve.. The flow is fed into a shaper, with
shaping curver. We assume that
a(s) = min(m + ps, b+ rs)

and
o(s) = min(Ps, B + Rs)

We assume that > r, m < bandP > R.
The shaper has a fixed buffer size equakto> m. We require that the buffer never overflows.

1. Assume thaB = +o0. Find the smallest o which guarantees that there is no buffer overflow. Let
P, be this value.

2. We do not assume th&t = +oco any more, but we assume thatis set to the valug? computed
in the previous question. Find the val(B, Ry) of (B, R) which guarantees that there is no buffer
overflow and minimizes the cost functidiB, R) = aB + R, whereq is a positive constant.
What is the maximum virtual delay(iP, B, R) = (Py, By, Ro) ?

EXERCISE 1.26. We consider a buffer of siz€ cells, served at a constant rate otells per second. We
put /V identical connections into the buffer; each of tNeconnections is constrained both by GCRA()
and GCRAT, 7). What is the maximum value 8f which is possible if we want to guarantee that there is
no cell loss at all ?

Give the numerical application faF; = 0.5 ms,r; = 4.5ms, T, = 5ms,m» = 495 ms,c = 10° cells/second,
X = 10% cells
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EXERCISE 1.27. We consider a flow defined by its functi@it), with R(¢) = the number of bits observed
since time = 0.

1. The flow is fed into a buffer, served at a rateCall ¢(¢) the buffer content at time We do the same
assumptions as in the lecture, namely, the buffer is largrigh, and is initially empty. What is the
expression of(t) assuming we know(t) ?

We assume now that, unlike what we saw in the lecture, thalibitffer content (at time = 0) is not
0, but some valug, > 0. What is now the expression foft) ?

2. The flow is put into a leaky bucket policer, with ratend bucket siz&. This is a policer, not a shaper,
so nonconformant bits are discarded. We assume that theebigchkarge enough, and is initially
empty. What is the condition aR which ensures that no bit is discarded by the policer (in pthe
words, that the flow is conformant) ?

We assume now that, unlike what we saw in the lecture, thelibitcketcontent (at timg = 0) is
not 0, but some valué, > 0. What is now the condition oR which ensures that no bit is discarded
by the policer (in other words, that the flow is conformant) ?

EXERCISE 1.28. Consider a variable capacity network node, with capacitweul/ (¢). Show that there is
one maximum functiof*(¢) such that for all0 < s < ¢, we have

M(t) — M(s) > S*(t —s)

Show thatS* is super-additive.

Conversely, if a functiort is super-additive, show that there is a variable capacitywoek node, with
capacity curvelM (t), such that for all0 < s < ¢, we haveM (t) — M(s) > S*(t — s).

Show that, with a notable exception, a shaper cannot be radde a variable capacity node.

ExXERCISEL.29. 1. Consider a packetized greedy shaper with shaping cufwe = rt for ¢ > 0.
Assume thaf(k) = kM where M is fixed. Assume that the input is given Byt) = 10M for
t > 0 and R(0) = 0. Compute the sequend®?(t) used in the representation of the output of the
packetized greedy shaper, foe= 1,2, 3, ....
2. Same question if(t) = (rt +2M )1t > 0}.

EXeRcCISE 1.30. Consider a source given by the function

R(t)=Bfort >0
R(t)y=0fort <0

Thus the flow consists of an instantaneous burg? bfts.

1. What is the minimum arrival curve for the flow ?

2. Assume that the flow is served in one node that offers a mniniservice curve of the rate latency
type, with rater and latencyA. What is the maximum delay for the last bit of the flow ?

3. We assume now that the flow goes through a series of two,nbégesd N>, whereN; offers to the
flow a minimum service curve of the rate latency type, wita raand latencyA;, for i = 1,2. What
is the the maximum delay for the last bit of the flow throughstitées of two nodes ?

4. With the same assumption as in the previous item,Rglt) the function describing the flow at the
output of nodeV; (thus at the input of nodd/). What is the worst case minimum arrival curve for
Ry ?

5. We assume that we insert betwgénand N> a “reformatter” S. The input taS is Ry (t). We call
R (t) the output ofS. ThusR/(t) is now the input toV,. The function of the “reformattetS is to
delay the flowR?; in order to output a flowr] that is a delayed version @t. In other words, we must
haveR/ (t) = R(t — d) for somed. We assume that the reformatt8ris optimal in the sense that it
chooses the smallest possibleln the worst case, what is this optimal valuedd?
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6. With the same assumptions as in the previous item, whiat imorst case end-to-end delay through
the series of node&/1, S, N5 ? Is the reformatter transparent ?

EXERCISE 1.31. Let o be a good function. Consider the concatenation of a bitdibgHeedy shaper, with
curves, and anL-packetizer. Assume that0™) = 0. Consider only inputs that arg-packetized

1. Is this system a packetized shaperd&?
2. Is it a packetized shaper for+ . ?
3. Is it a packetized greedy shaper tor- [ ?

EXERCISE 1.32. Assume that is a good function and = og + lug wWhereuy is the step function with a
step att = 0. Can we conclude that, is sub-additive ?

EXERCISE 1.33. Is the operator( P*) upper-semi-continuous ?

EXercCISEL.34. 1. Consider the concatenation of drpacketizer and a network element with mini-
mum service curvg and maximum service curve Can we say that the combined system offer a
minimum service curves(t) — lmax)™ and a maximum service curvg as in the case where the
concatenation would be in the reverse order ? .

2. Consider the concatenation of a GPS node offering a guaeak., , an L-packetizer, and a second
GPS node offering a guarantéeg,. Show that the combined system offers a rate-latency secuive
with rate R = min(r;, o) and latencyy = —lmax__

max(ri,ra) "

EXERCISE1.35. Consider a node that offers to a flof(¢) a rate-latency service curvé = Sg . Assume
that R(t) is L-packetized, with packet arrival times calléy, 75, ... (and is left-continuous, as usual)

Show that R ® 8)(t) = ming,¢(o 4[R(T;) + B(t — T;)] (and thus, thénf is attained).

EXErRCISEL.36. 1. Assumé¥ connections, each with peak rgtesustainable raten and burst toler-
anceb, are offered to a trunk with constant service rdteand FIFO buffer of capacityX. Find the
conditions onk for the system to be loss-free.

2. If Km = P, what is the condition oX for K connections to be accepted ?

3. What is the maximum number of connectignif2 Mb/s,m = 0.2 Mb/s,X = 10MBytes = 1Mbyte
andP =0.1, 1,2 or 10 Mb/s ?

4. For a fixed buffer siz&’, draw the acceptance region whé&hand P are the variables.

ExXERCISE1.37. Show the formulas giving the expressions fgf R) and fp(«).

EXERCISEL1.38. 1. What is the effective bandwith for a connection with2 Mb/s, m = 0.2 Mb/s,b =
100 Kbytes whe» = 1msec, 10 msec, 100 msec, 1s ?
2. Plot the effective bandwidthas a function of the delay constraint in the general case afraection
with parameterg, m, b.

EXeErcCISEL.39. 1. Compute the effective bandwidth for a mix of VBR connestio. . . , I.

2. Show how the homogeneous case can be derived from yourléorm

3. AssuméX connections, each with peak rgtesustainable raten and burst tolerancé, are offered
to a trunk with constant service rate and FIFO buffer of capacity. Find the conditions ot for
the system to be loss-free.

4. Assume that there are two classes of connections, Aitbonnections in class, i = 1, 2, offered
to a trunk with constant service rate and FIFO buffer of infinite capacitX'. The connections are
accepted as long as their queuing delay does not exceed snelY. Draw the acceptance region,
that is, the set of K1, K) that are accepted by CAC2. Is the acceptance region convex thel
complementary of the acceptance region in the positiveaottbonvex ? Does this generalize to more
than two classes ?
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CHAPTER 2

APPLICATION OFNETWORK CALCULUS TO
THE INTERNET

In this chapter we apply the concepts of Chapter 1 and exgiainheoretical underpinnings of integrated
and differentiated services. Integrated services defimerkservations can be made for flows. We explain
in detail how this framework was deeply influenced by GPS .driipular, we will see that it assumes that
every router can be modeled as a node offering a minimumcsecuirve that is a rate-latency function. We
explain how this is used in a protocol such as RSVP. We alslyzstéhe more efficient framework based
on service curve scheduling. This allows us to address implsiway the complex issue of schedulability.

We explain the concept of Guaranteed Rate node, which gameéls to a service curve element, but with
some differences, because it uses a max-plus approachdradtenin-plus. We analyze the relation between
the two approaches.

Differentiated services differ radically, in that resdiwas are made per class of service, rather than per
flow. We show how the bounding results in Chapter 1 can be eghpdi find delay and backlog bounds. We
also introduce the “damper”, which is a way of enforcing a mmam service curve, and show how it can
radically reduce the delay bounds.

2.1 GPSAND GUARANTEED RATE NODES

In this section we describe GPS and its derivatives; themftire basis on which the Internet guaranteed
model was defined.

2.1.1 RCKET SCHEDULING

A guaranteed service network offers delay and throughpatajiees to flows, provided that the flows
satisfy some arrival curve constraints (Section 2.2). Téugliires that network nodes implement some form
of packet scheduling, also called service discipline. Bes&heduling is defined as the function that decides,
at every buffer inside a network node, the service order iféerént packets.

A simple form of packet scheduling is FIFO: packets are seimvéhe order of arrival. The delay bound, and
the required buffer, depend on the minimum arrival curvehefaggregate flow (Section 1.8 on page 53). If
one flow sends a large amount of traffic, then the delay inesets all flows, and packet loss may occur.
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Thus FIFO scheduling requires that arrival curve constsaam all flows be strictly enforced at all points
in the network. Also, with FIFO scheduling, the delay bousdhe same for all flows. We study FIFO
scheduling in more detail in Section 6.

An alternative [25, 45] is to use per flow queuing, in order1p fgrovide isolation to flows and (2) offer
different guarantees. We consider first the ideal form offlmv queuing called “Generalized Processor
Sharing” (GPS) [63], which was already mentioned in Chajpter

2.1.2 GPSAND A PRACTICAL IMPLEMENTATION (PGPS)
A GPS node serves several flows in parallel, and has a totalibtate equal te b/s. A flow: is allocated
a given weight, say,. Call R;(t), R} (t) the input and output functions for flow The guarantee is that at

any timet, the service rate offered to floiis 0 is flowi has no backlog (namely, ®;(t) = R;(t)), and
otherwise is equal tmc, whereB(t) is the set of backlogged flows at timeThus

t
o
Rt :/ O i pands
® 0 2 jeB(s) O tepe)

In the formula, we used the indicator functiofexpry, Which is equal td if expris true, and) otherwise.

It follows immediately that the GPS node offers to flow service curve equal to,,., with r; = ‘bi It
s
is shown in [64] that a better service curve can be obtaine@very flow if we know some arrival curve

properties for all flows; however the simple property is sidfit to understand the integrated service model.

GPS satisfies the requirement of isolating flows and progidiifferentiated guarantees. We can compute
the delay bound and buffer requirements for every flow if wevkiits arrival curve, using the results of
Chapter 1. However, a GPS node is a theoretical concepthvidinot really implementable, because it
relies on a fluid model, and assumes that packets are infirdteisible. How can we make a practical
implementation of GPS ? One simple solution would be to usevitiual finish times as we did for the
buffered leaky bucket controller in Section 1.7.3: for gveacket we would compute its finish tildeunder
GPS, then at timé present the packet to a multiplexer that serves packetsat¢a Figure 2.1 (left) shows
the finish times on an example. It also illustrates the mainwvback that this method would have: at times
3 and 5, the multiplexer would be idle, whereas at time 6 it kdwave a burst of 5 packets to serve. In
particular, such a scheduler would not be work conserving.

This is what motivated researchers to find other practicgdléementations of GPS. We study here one
such implementation of GPS, called packet by packet ganedaprocessor sharing (PGPS) [63]. Other
implementations of GPS are discussed in Section 2.1.3.

PGPS emulates GPS as follows. There is one FIFO queue per Tloav.scheduler handles packets one
at a time, until it is fully transmitted, at the system rateFor every packet, we compute the finish time
that it would have under GPS (we call this the “GPS-finishetim Then, whenever a packet is finished
transmitting, the next packet selected for transmissidghésone with the earliest GPS-finish-time, among
all packets present. Figure 2.1 shows one example. We deenlike the simple solution discussed earlier,
PGPS is work conserving, but does so at the expense of makibdiding a packebeforeits finish time
under GPS.

We can quantify the difference between PGPS and GPS in tlesvfol proposition. In Section 2.1.3, we
will see how to derive a service curve property.

ProrPoOsITION2.1.1 ([63]). The finish time for PGPS is at most the finish time of GPS @luﬂherec is
the total rate and.. is the maximum packet size.
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Figure 2.1:Scheduling with GPS (left) and PGPS (right). Flow 0 has weight 0.5, flows 1 to 5 have weight
0.1. All packets have the same transmission time equal to 1 time unit.

PrRoOOF:  Call D(n) the finish time of thenth packet for the aggregate input flow under PGPS, in the
order of departure, anéin) under GPS. Calh, the number of the packet that started the busy period in
which packetn departs. Note that PGPS and GPS have the same busy penmdsif sie observe only the
aggregate flows, there is no difference between PGPS and GPS.

There may be some packets that depart before packePGPS, but that nonetheless have a later departure
time under GPS. Caling > ng the largest packet number for which this occurs, if any; otise let

mo = no—1. Inthis proposition, we call(m) the length in bits of packet.. Under PGPS, packet started
service atD(mg) — @ which must be earlier than the arrival times of packets- m+1, ..., n. Indeed,
otherwise, by definition of PGPS, the PGPS scheduler would Beheduled packets = mg + 1,...,n
before packeiny. Now let us observe the GPS system. Packetss my + 1,...,n depart no later than
packetn, by definition ofm; they have arrived afteb (mg) — @ By expressing the amount of service

in the interval[ D (mg) — ™) 9(n)] we find thus

C

n

> lm)<e <H(n) — D(mo) + lUZo))

m=mgo+1

Now since packetsy, ..., n are in the same busy period, we have

ZZL:mOJrl l(m)

D(n) = D(mo) + p

l(mo)

c ’

By combining the two equations above we fibdn) < 6(n) +
case whereng > ny.

which shows the proposition in the

If mog = ng — 1, then all packets, ..., n depart before packet under GPS and thus the same reasoning
shows that

> i(m) < c(8(n) — to)

m=ng

wherety is the beginning of the busy period, and that

D(n) =to+ Lj”;“ {m)

ThusD(n) < 6(n) in that case. O
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2.1.3 QUARANTEED RATE (GR) NODES AND THE MAX-PLUS APPROACH

The service curve concept defined earlier can be approachedtiie dual point of view, which consists in
studying the packet arrival and departure times insteatiefunctionsR(t) (which count the bits arrived

up to timet). This latter approach leads to max-plus algebra (whichth@same properties as min-plus),
is often more appropriate to account for details due to b&ipacket sizes, but works well only when the
service curves are of the rate-latency type. It also useh@nwnodes cannot be assumed to be FIFO per
flow, as may be the case with DiffServ (Section 2.4).

GR also allows to show that many schedulers have the ragaetservice curve property. Indeed, a large
number of practical implementations of GPS, other than RG&R been proposed in the literature; let
us mention: virtual clock scheduling [49], packet by pacheheralized processor sharing [63] and self-
clocked fair queuing [40](see also [30]). For a thorouglcdsion of practical implementations of GPS,
see [81, 30]). These implementations differ in their impbeation complexity and in the bounds that can
be obtained. It is shown in [32] that all of these implemeotet fit in the following framework, called
“Guaranteed Rate”, which we define now. We will also analyaw i relates to the min-plus approach.

DEFINITION 2.1.1 (GR Node[32]).Consider a node that serves a flow. Packets are numbered ér ofd
arrival. Leta,, > 0,d,, > 0 be the arrival and departure times. We say that a node is theasanteed rate
(GR) node for this flow, with rate and delaye, if it guarantees thatl,, < f, + e, wheref, is defined by

(2.1).
{ Jfo=0 (2.1)

fn =max{an, fn1} + lﬁ foralln >1

The variablesf,, (“Guaranteed Rate Clocks”) can be interpreted as the departimes from a FIFO con-
stant rate server, with rate The parameter expresses how much the node deviates from it. Note however
thata GR node need not be FIF@ GR node is also called “Rate-Latency server”.

Example: GPS.Consider an ideal GPS scheduler, which allocates aRate f‘b; to some flowi. Itis a
3 Pi

GR node for flowi, with rate R; and latency= 0 (the proof is left to the reader)

DEFINITION 2.1.2 (One Way Deviation of a scheduler from GPBJe say thatS deviates from GPS hyif
for all packetn the departure time satisfies

dp, < gn T € (22)

C

whereg,, is the departure time from a hypothetical GPS node that aties a rater = Z%; to this flow
(assumed to be flow 1). T

We interpret this definition as a comparison to a hypothe@d2S reference scheduler that would serve the
same flows.

THEOREM 2.1.1. If a scheduler satisfies (2.2), then it is GR with ratand latencye.

PrROOF: g, < f, and the rest is immediate.
U

Example: PGPS.Consider a PGPS scheduler, which allocates aRate f‘b(b to some flow:. Itis a GR
j Pi

node for flow:, with rate R; and Iatency%, wherelL is the maximum packét size (among all flows present
at the scheduler) (this follows from Proposition 2.1.1).
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THEOREM 2.1.2 (Max-Plus Representation of GRJonsider a system where packets are numbgred...
in order of arrival. Calla,, d, the arrival and departure times for packet and/,, the size of packet.
Define by conventiody = 0. The system is a GR node with ratand latencye if and only if for all n there
is somek € {1, ...,n} such that

L+ .+ 1,
dnge—i-ak—k% (2.3)

PrRoOF: The recursion (2.1) can be solved iteratively, using theesarax-plus method as in the proof of
Proposition 1.2.4. Define

lj—i-...—i-l

n .
A;L:a—i— for1 <j<n

J T
Then we obtain
fn=max(A, Ay, ..., AT)

The rest follows immediately. O

(2.3) is the dual of the service curve definition ((1.9) oné@t), with3(t) = r(t — e)™. We now elucidate
this relationship.

THEOREM 2.1.3 (Equivalence with service curvelonsider a node witti-packetized input.

1. If the node guarantees a minimum service curve equal toatiedatency functiorg = 3,.,,, and if it
is FIFO, then it is a GR node with rateand latencyv.

2. Conversely, a GR node with rateand latencye is the concatenation of a service curve element, with
service curve equal to the rate-latency functign,, and anL-packetizer. If the GR node is FIFO,
then so is the service curve element.

The proof is long and is given at the end of this section.
By applying Theorem 1.7.1, we obtain

COROLLARY 2.1.1. A GR node offers a minimum service cu@%+l,,,ax
b r

The service curve can be used to obtain backlog bounds.

THEOREM 2.1.4 (Delay Bound) For an a-smooth flow served in a (possibly non FIFO) GR node with rate
r and latencye, the delay for any packet is bounded by

sup[@ —tl+e (2.4)
t>0 T

ProOF: By Theorem 2.1.2, for any fixed, we can find d < j < n such that

lj—i-...-l-ln

fn:aj+
r

The delay for packet is
dp —an < frnt+e—ap
Definet = a,, — a;. By hypothesis
lj + o+, < Oér(t)
whereaq,(t) is the limit from the right ofx at¢. Thus

t t
dn—ang—t—i—ar—()—i—egsup[ar—()—t]—i—e
T t>0 T

Now supt>0[@ —t] = suptzo[aTT(t) —t]. O
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CoMMENT: Note that (2.4) is the horizontal deviation between thevalcurvea and the rate-latency
service curve with rate and latencye. Thus, for FIFO GR nodes, Theorem 2.1.4 follows from The-
orem 2.1.2 and the fact that the packetizer can be ignoreddiay computations. The information in
Theorem 2.1.4 is that it also holds for non-FIFO nodes.

2.1.4 (CONCATENATION OF GR NODES

FIFO NobeEs For GR nodes that are FIFO per flow, the concatenation rebtdireed with the service
curve approach applies.

THEOREM 2.1.5. Specifically, the concatenation 8f GR nodes (that are FIFO per flow) with rates,
and latencies,, is GR with rater = min,, 7, and latencye = >_,_, ei+> 5, Lr;‘j“, where
Ly is the maximum packet size for the flow.

If ,,, = r for all m then the extra term i&M — 1)%; it is due to packetizers.

PrRooOF: By Theorem 2.1.3—(2), we can decompose systérto a concatenatiosy;, P;, whereS; offers
the service curve,, ., and’P; is a packetizer.
Call S the concatenation

517 P1>S27 P27 ey 811717 Pnfla Sn

By Theorem 2.1.3—(2)$ is FIFO and provides the service curg.. By Theorem 2.1.3—(1), it is GR with
rater and latencye. Now P,, does not affect the finish time of the last bit of every packet.

O

Note that a slight change if the proof of the theorem shows tthe theorem is also valid if we replace
€= i1 nC T2l a1 L?—fx bye=>1 n€i+2ia n L?—fx

End-to-end Delay Bound.

A bound on the end-to-end delay through a concatenation oh@ies is thus

T ming, 7m,

M M-—1 1 o
Dzzvm‘{'lmaxz_‘i'i (2.5)
m=1 m=1

which is the formula in [32]. It is a generalization of (1.28) Page 45.

A Composite NodeWe analyze in detail one specific example, which often aiisgsactice when mod-
elling a router. We consider a composite node, made of twopoments. The former (“variable delay
component”) imposes to packets a delay in the rdage. — 0, dmax]. The latter is FIFO and offers to its
input the packet scale rate guarantee, with rad@d latencye. We show that, if the variable delay compo-
nent is known to be FIFO, then we have a simple result. We fivstthe following lemma, which has some
interest of its own.

LEmMMA 2.1.1 (Variable Delay as GR)Consider a node which is known to guarantee a defa,... The
node need not be FIFO. Call,;, the minimum packet size. For any> 0, the node is GR with latency
e = [0max — =in]* and rater.

ProoOF:  With the standard notation in this section, the hypothesiglies thatd,, < a,, + dax for all
n > 1. Definef, by (2.1). We havef,, > a,+% > a, +min, thusd,, — f,, < Smax — 555 < [ — min] T

-
O
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THEOREMZ2.1.6. (Composite GR Node with FIFO Variable Delay Compone@ibnsider the concatenation
of two nodes. The former imposes to packets a d€ldy.... The latter is a GR node with rateand latency
e. Both nodes are FIFO. The concatenation of the two nodesnynoader, is GR with rate: and latency
e’ = e+ dmax.

PROOF:  The former node is GR(, ¢’ = [dmax — l“;#]*) for anyr’ > r. By Theorem 2.1.5 (and the note
after it), the concatenation is GR¢€ + ¢’ + ln;#). Letr’ go tooco.

O

GR NODES THAT ARE NOT FIFO PER FLOW The concatenation result is no longer true. We study in
detail the composite node.

THEOREMZ2.1.7. Consider the concatenation of two nodes. The first impogesdets a delay in the range
[Omax — 0, 0max). The second is FIFO and offers the guaranteed rate clockietwo its input, with rate-
and latencye. The first node is not assumed to be FIFO, so the order of packetls at the second node
is not the order of packet arrivals at the first one. Assumettiafresh input is constrained by a continuous
arrival curvea(-). The concatenation of the two nodes, in this order, offetheédresh input the guaranteed
rate clock service with rate and latency

¢ — e +45 + Oz(5) — lmin

The proof is given in the next section.
Application: For«(t) = pt + o, we find

po + 0 — lyin
r

6// =e+ 5max +

2.1.5 RROOFS

Proof of Theorem 2.1.3

Part1: Consider a service curve elemehtAssume to simplify the demonstration that the input angwiut
functionsR and R* are right-continuous. Consider the virtual syst§frmade of a bit-by-bit greedy shaper
with shaping curve\,, followed by a constant bit-by-bit delay element. The hitHit greedy shaper is a
constant bit rate server, with rate Thus the last bit of packet departs from it exactly at timg,, defined
by (2.1), thus the last bit of packetleavesS® atd’, = f,, + e. The output function 08%is R® = R® 8,..
By hypothesis,R* > R, and by the FIFO assumption, this shows that the delayimupper bounded by
the delay inS’. Thusd,, < f,, +e.

Part 2: Consider the virtual systei whose outputS(¢) is defined by

ifd;i_1 <t<d;

then S() = min{ R(t), max|L(i — 1), L) — r(d; — £)]} (2.6)

See Figure 2.2 for an illustration. It follows immediateat R’ (t) = PX(S(t)).
Also consider the virtual systes” whose output is
S°(t) = (Bro ® R)(2)

SY is the constant rate server, delayedubyDur goal is now to show that > S°.
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Call d? the departure time of the last bit of packéh S, (see Figure 2.2 for an example with= 2). Let
u = d? — d;. The definition of GR node means that> 0. Now sinceS) is a shifted constant rate server,
we have:

if df — l; < 5 < d? then S%(s) = L(i) — r(dY — s)
Alsod? | < df — % thusSO(d) — 1) = L(i — 1) and
if s <d? — l;l then S%(s) < L(i — 1)
It follows that
if di_1 +u<s<d then S°(s) < max[L(i — 1), L(i) — r(d? — s)] (2.7)

Consider now somee (d;_1,d;] and lets = ¢ +u. If S(t) = R(t), sinceR > S, we then obviously have
S(t) > S°(t). Else, from (2.1)S(¢) = max[L(i — 1), L(i) — r(d; — t)]. We haved) — s = d; — t and thus,
combining with (2.7), we derive thaf’(s) < S(¢). Now s > ¢, thus finally S°(¢) < S(t). One can also

readily see thaf is FIFO ifd;_; < d; for all 4. O
A bits R(?) R’(t)

7y L(3)
L S(t) \

v

L(2) SO(t)

by T — L(1)
11 / /

v / >

a I d d, d’,

Figure 2.2:Arrival and departure functions for GR node. The virtual system output is S(t).

Proof of Theorem 2.1.7.

We use the same notation and convention as in the proof ofréhe@.5.3. We can also assume that all
packet arrivals are distinct, using the same type of redncti

Fix somen > 1; due to Theorem 2.1.2, it is sufficient to show that there mesk € {1, ..., n} such that

e + oo+
d < eyt+apt KT 2.8)
T

By hypothesis, there exists someuch thab; < b,, and
Blbj, bn]

r

dy <bj+e+ (2.9)

We cannot assume that< n; thus, define: as the oldest packet arrived in the inter&gl, b,,], in other
words: k = inf{i > 1:b; < b; < b,}. Necessarily, we have now< n.

Any packet that arrives at the second nodéjnb,,| must have arrived at nodeafter or with packet;, and
beforeb,,. ThusB(b;, b,] < Alak, b,]. Nowb,, < a,, + 6. Thus by Lemma 7.7.1 in this appendix:

Blbj, b,] < Alag, an] + A(an, by
< A[aka an] + 04(6) - lmin
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Also, b; < b, < ay, + ¢ and by (2.9):
dp <ap+e+ 0+ ad) + Alak, an] — lnin

which shows (2.8).

2.2 THE INTEGRATED SERVICES MODEL OF THE IETF

2.2.1 THE GUARANTEED SERVICE

The Internet supports different reservation principlesio Bervices are defined: the “guaranteed” service,
and the “ controlled load” service. They differ in that therfeer provides real guarantees, while the latter
provides only approximate guarantees. We outline theréifiees in the rest of this section. In both cases,
the principle is based on “admission control”, which opesais follows.

e In order to receive the guaranteed or controlled load sepradlow must first perform a reservation
during a flow setup phase.

e A flow must confirm to an arrival curve of the foraat) = min(M + pt,rt + b), which is called the
T-SPEC (see Section 1.2.2 on pagel3). The T-SPEC is dedlarit) the reservation phase.

e All routers along the path accept or reject the reservatilith the guaranteed service, routers accept
the reservation only if they are able to provide a serviceeguarantee and enough buffer for loss-
free operation. The service curve is expressed during gervation phase, as explained below.

For the controlled load service, there is no strict definitad what accepting a reservation means.
Most likely, it means that the router has an estimation meduht says that, with good probability,
the reservation can be accepted and little loss will octwret is no service curve or delay guarantee.

In the rest of this chapter we focus on the guaranteed semiowision of the controlled load service relies
on models with loss, which are discussed in Chapter 9.

2.2.2 THE INTEGRATED SERVICES MODEL FOR INTERNET ROUTERS

The reservation phase assumes that all routers can expartcharacteristics using a very simple model.
The model is based on the view that an integrated servicasrrouplements a practical approximation
of GPS, such as PGPS, or more generally, a GR node. We haven shd®ection 2.1.3 that the service
curve offered to a flow by a router implementing GR is a rateday function, with rate? and latencyl’

connected by the relationship

C
' = —+D 2.10
R ( )

with C' = the maximum packet size for the flow and = % whereL is the maximum packet size in the
router across all flows, andthe total rate of the scheduler. This is the model definedridngernet node
[75].

FACT 2.2.1. The Integrated Services model for a router is that the sergigve offered to a flow is always
a rate-latency function, with parameters related by a rielatof the form (2.10).

The values of” and D depend on the specific implementation of a router, see Goyall.1.1 in the case of
GR nodes. Note that a router does not necessarily implemsaiteaduling method that approximates GPS.
In fact, we discuss in Section 2.3 a family of schedulers k@&t many advantages above GPS. If a router
implements a method that largely differs from GPS, then wstrfind a service curve that lower-bounds
the best service curve guarantee offered by the router. iresmases, this may mean loosing important
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information about the router. For example, inist possible to implement a network offering constant delay
to flows by means of a system like SCED+, discussed in SectiB,2vith the Integrated Services router
model.

2.2.3 RESERVATION SETUP WITH RSVP

Consider a flow defined by TSPEG®/, p, r,b), that traverses nodés. .., N. Usually, nodes 1 and/ are
end-systems while nodesfor 1 < n < N are routers. The Integrated Services model assumes thatnod
on the path of the flow offers a rate latency service cutyer,, and further assumes that has the form

Ch
T, =—+D,
7t

whereC,, and D,, are constants that depend on the characteristics ofmode

The reservation is actually put in place by means of a flowsptacedure such as the resource reservation
protocol (RSVP). At the end of the procedure, naden the path has allocated to the flow a vaRige> r.
This is equivalent to allocating a service curg, 7,,. From Theorem 1.4.6 on page 28, the end-to-end
service curve offered to the flow is the rate-latency functidth rate R and latencyl” given by

R = min,—1 xR,
7=y, (%Z + Dn)

Let Ciot = Y20, G, and Dyt = 32| D,,. We can re-write the last equation as
Qm
T = +mt—2ﬁ (2.11)

with

1 1
- - 2.12
Sn = Ca (R Rn> ( )

The termS,, is called the “local slack” term at node
From Proposition 1.4.1 we deduce immediately:

PropPOSITION2.2.1. If R > r, the bound on the end-to-end delay, under the conditionsritbes above is

b—M (p—R\" M+ Cuy
i + Dy, 2.13
R <p—r> + — R tot — ZS ( )

We can now describe the reservation setup with RSVP. Soradget flow setup with RSVP are illustrated
on Figure 2.3. It shows that two RSVP flows are involved: aredisement PATH) flow and a reservation
(RESV) flow. We describe first the point-to-point case.

e A PATHmessage is sent by the source; it contains the T-SPEC of thddtmurce T-SPEC), which
is not modified in transit, and another field, the ADSPEC, Whi&caccumulated along the path. At
a destination, the ADSPEC field contains, among others, ghees ofCiqt, Diot Used in Equation
2.13.PATHmessages do not cause any reservation to be made.

o RESV messages are sent by the destination and cause the actraghtiesis to be made. They follow
the reverse path marked by PATH messages. REE8V message contains a valug,, (as part of
the so-called R-SPEC), which is a lower bound on the ratenpetexrs R,, that routers along the
path will have to reserve. The value &f is determined by the destination based on the end-to-end
delay objectivedobj, following the procedure described below. It is normallyt changed by the
intermediate nodes.
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[ Sender A O O Receiver %
== R1 R2 B

1. path message
b 9 » 2. path message

;?(P,Egillb/s,512kb/s,: angl(/lg/SZESCl:Zkb/s 33Eﬁaé? UShL A
AdSpec=() ! ' 'P2K,10Mb/s,512kb/s,32K

= [
AdSpec=(10.2kb, 0.0% dSpec=(51.2, 0.1)

4. Brequests guaranteed QoS
reservation with delay variation
0.6s; Breserves 622 kb/s

5. resv message

6. resv message eceiver =

7.resv message —
ecelver TSPEC= K,10Mb/s,512kb/s,24K

Recelver TSPEC=
12K, 10Mb/s,512kb/s,p4K —
2K,10Mb/s,512kb/ s, 24K epec Z (622 Kb/ s) SPEC =(622 kb/s)

R- SPEC =(622 kb/s)

Figure 2.3:Setup of Reservations, showing the PATH and RESV flows

Define functionf by

b—M [(p—R\" M Y
f(R) = (p R) +¢

R p—r R + Diot

In other words,f is the function that defines the end-to-end delay boundnaisguall nodes along the path
would reserveR,, = R’. The destination computd® as the smallest valuge r for which f(R') < dobj-
Such a value exists only D;,; < dobj-

In the figure, the destination requires a delay variatiorectbje of 600 ms, which imposes a minimum
value of R =622 kb/s. The value oR’ is sent to the next upstream node in the R-SPEC field oP&EH
message. The intermediate nodes do not know the completeséglt and Diot, nor do they know the total
delay variation objective. Consider the simple case whitistarmediate nodes are true PGPS schedulers.
Noden simply checks whether it is able to reserkly = R’ to the flow; this involves verifying that the
sum of reserved rates is less than the scheduler total nadethat there is enough buffer available (see
below). If so, it passes the RESV message upstream, up teettmaltion if all intermediate nodes accept
the reservation. If the reservation is rejected, then tldertiscards it and normally informs the source. In
this simple case, all nodes should set their rat®to= R’ thus R = R/, and Equation (2.13) guarantees
that the end-to-end delay bound is guaranteed.

In practice, there is a small additional element (use of theksterm), due to the fact that the designers of
RSVP also wanted to support other schedulers. It works el

There is another term in the R-SPEC, called sfexck term. Its use is illustrated on Figure 2.4. In the
figure, we see that the end-to-end delay variation requingnset by the destination, is 1000 ms. In that
case, the destination reserves the minimum rate, namelykds. Even so, the delay variation objective
D is larger than the bound,,., given by Formula (2.13). The differend@,,; — D4, is Written in

the slack termS and passed to the upstream node in the RESV message. Theanpstode is not able to
compute Formula (2.13) because it does not have the valueatd-to-end parameters. However, it can
use the slack term to increase its internal delay objectinetop of what it had advertised. For example,
a guaranteed rate node may increase its value(@heorem 2.1.2) and thus reduce the internal resources
required to perform the reservation. The figure shows thateRllices the slack term by 100 ms. This is
equivalent to increasing the;,; parameter byt00ms, but without modifying the advertiseB;,;.
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SenderA O O Receiver [
— R1 R2| B =A

1. path message I
TSPEC= » 2. path message

— 3. path message
2K,10Mb/s,512kb/s,32R"der TSPEC= ender TSPEC= -
AdSpec=()

K,10Mb/s,512kb/s,32K
AdSpec=(51.2, 0.1)

10M b/s,512kb/s,3§
AdSpec=(10.2s/ kb/s,
0.05s)

4. Brequests guaranteed QoS
reservation with delay variation
1.0s; Breserves 512kb/s

5. resv message
"Receiver TSPEC=
, 10Mb/s,512kb/s,24K
SPEC =(512kb/s , St
~0.288s)

6 6. resv message
- resv message eceiver TSPEC=

ey e TS PEC 1 2K.10Mb/s,512kb/ s, REK
' > S:9ROSPEC =(512kb/s , §=

R- SPEC =(512 kb/s,
S0 188¢) 0.288s)

Figure 2.4:Use of the slack term

The delays considered here are the total (fixed plus vajiaelays. RSVP also contains a field used for
advertising the fixed delay part, which can be used to comipetend-to-end fixed delay. The variable part
of the delay (called delay jitter) is then obtained by sutitom.

2.2.4 A HROow SETUP ALGORITHM

There are many different ways for nodes to decide which patanthey should allocate. We present here
one possible algorithm. A destination computes the woist delay variation, obtained if all nodes reserve
the sustainable rate If the resulting delay variation is acceptable, then thstidation sets? = r and
the resulting slack may be used by intermediate nodes to satzhbdelay on top of their advertised delay
variation defined by’ and D. Otherwise, the destination setsto the minimum value,,;,, that supports
the end-to-end delay variation objective and sets the $taok As a result, all nodes along the path have
to reserveRR,,,;,. As in the previous cases, nodes may allocate a rate largertiie value ofR they pass
upstream, as a means to reduce their buffer requirement.

DeFINITION 2.2.1 (A Flow Setup Algorithm). e At a destination systeth compute

Dmax - fT(T) +

If Doy; > D then assign to the flow a rat8; = r and an additional delay variation; <
Dopj — Dinaas S€1S1 = Doyj — Dinar — dr and send reservation requeRf, Sy to station/ — 1.
Else Dopj < Dingz) find the minimun®,,,;,, such thatf7(Rnin) + 1%;; < Dopj — Dy, if it exists.
Send reservation reque#l; = R, S; = 0 to stationl — 1. If R,,;, does not exist, reject the
reservation or increase the delay variation objectivg,;.

e At an intermediate systefnreceive fromi 4 1 a reservation requesR; 1, S;+1.
If S; = 0, then perform reservation for rat®; . ; and if successful, send reservation requRst=
R;11,S; = 0to stationi — 1.
Else (S; > 0), perform a reservation for raté; . ; with some additional delay variatiod; < S; 1.
if successful, send reservation requst= R;11,S; = S;+1 — d; to station; — 1.
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The algorithm ensures a constant reservation rate. It isteasheck that the end to end delay variation is
bounded byD ;.

2.2.5 MULTICAST FLOWS

Consider now a multicast situation. A sourgesends to a number of destinations, along a multicast tree.
PATH messages are forwarded along the tree, they are duplicatgaitting points; at the same points,
RESV messages are merged. Consider such a point, call ithade assume it receives reservation requests
for the same T-SPEC but with respective paramel&ys S’ andR! , S’ . The node performs reservations

internally, using the algorithm in Definition 2.2.1. Therids to merge the reservation requests it will send
to nodei — 1. Merging uses the following rules:

R-SPEC MERGING RULES The merged reservatioR, S is given by
R = max(R', R")
S = min(5’, 5")
Let us consider now a tree where the algorithm in Definitich Ris applied. We want to show that the

end-to-end delay bounds at all destinations are respected.

The rate along the path from a destination to a source cammoedse with this algorithm. Thus the mini-
mum rate along the tree towards the destination is the ratg #ge destination, which proves the result.

A few more features of RSVP are:

o states in nodes need to be refreshed; if they are not refiggteereservation is released (“soft states”).
e routing is not coordinated with the reservation of the flow

We have so far looked only at the delay constraints. Buffguirements can be computed using the values
in Proposition 1.4.1.

2.2.6 HOW SETUP WITH ATM

With ATM, there are the following differences:

e The path is determined at the flow setup time only. Differemnections may follow different routes
depending on their requirements, and once setup, a coonedtvays uses the same path.

e With standard ATM signaling, connection setup is initiatgdthe source and is confirmed by the
destination and all intermediate systems.

2.3 SCHEDULABILITY

So far, we have considered one flow in isolation and assunadthode is able to offer some scheduling,
or service curve guarantee. In this section we address dialgbroblem of resource allocation.

When a node performs a reservation, it is necessary to chaelther local resources are sufficient. In
general, the method for this consists in breaking the nodendoto a network of building blocks such as
schedulers, shapers, and delay elements. There are mamlsesources to account for: bit rate (called
“bandwidth”) and buffer. The main difficulty is the allocati of bit rate. Following [36], we will see in this



80 CHAPTER 2. APPLICATION TO THE INTERNET

section that allocating a rate amounts to allocating a sereurve. It is also equivalent to the concept of
schedulability.

Consider the simple case of a PGPS scheduler, with outgated@’t If we want to allocate rate; to flow
i, for everyi, then we can allocate to flomthe GPS weight); = 7. Assume that

Y m<c (2.14)

Then we know from Proposition 2.1.1 and Corollary 2.1.1 thadry flow: is guaranteed the rate-latency
service curve with rate; and Iatency%. In other words, the schedulability condition for PGPS sy
(2.14). However, we will see now that a schedulability ctiods are not always as simple. Note also that
the end-to-end delay depends not only on the service cunaattd to the flow, but also on its arrival curve
constraints.

Many schedulers have been proposed, and some of them do mothfé GR framework. The most gen-
eral framework in the context of guaranteed service is giweISCED (Service Curve Earliest Deadline
first) [36],which we describe now. We give the theory for dans size packets and slotted time; some as-
pects of the general theory for variable length packets aogvk [11], some others remain to be done. We
assume without loss of generality that every packet is @& $idata unit.

2.3.1 EDF SHEDULERS

As the name indicates, SCED is based on the concept of Hallesdline First (EDF) scheduler. An
EDF scheduler assigns a deadlib¢ to thenth packet of flowi, according to some method. We assume
that deadlines are wide-sense increasing within a flow. Atyetime slot, the scheduler picks at one of
the packets with the smallest deadline among all packetepte There is a wide variety of methods for
computing deadlines. The “delay based” schedulers [55PSet= A™ + d; whereA™ is the arrival time for
the nth packet for flowi, andd; is the delay budget allocated to flawf d; is independent of, then we
have a FIFO scheduler. We will see that those are speciad chiSCED, which we view as a very general
method for computing deadlines.

An EDF scheduler is work conserving, that is, it cannot be ifithere is at least one packet present in the
system. A consequence of this is that packets from diffeffenis are not necessarily served in the order
of their deadlines. Consider for example a delay based stdrednd assume that flowhas a Irage delay
budgetd;, while flow 2 has a small delay budgét. It may be that a packet of flovarriving att; is served
before a packet of flo® arriving att,, even though the deadline of packett; + d; is larger than the
deadline of packe.

We will now derive a general schedulability criterion for EBchedulers. CalR;(t), t € N, the arrival
function for flow:. Call Z;(t) the number of packets of flowthat have deadlines ¢. For example, for a
delay based schedule?;(t) = R;(t — d;). The following is a modified version of [11].

PropPosITION2.3.1. Consider an EDF scheduler withflows and outgoing rat€’. A necessary condition
for all packets to be served within their deadlines is

I
forall s <t: Z Zi(t) — Ri(s) < C(t—s) (2.15)
i=1
A sufficient condition is

[Zi(t) = Ri(s)]" < CO(t — s) (2.16)

]~

foralls <t:
i=1
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PROOF:  We first prove the necessary condition. CAJlthe output for flowi. Since the scheduler is
work conserving, we hav®;_, R, = \c @ (YI_, R;). Now R} > Z; by hypothesis. Thus

1 1

Y Zi(t) < inf Ct—s)+ Y Rils)

— s€[0,t] 1

which is equivalent to (2.15)

Now we prove the sufficient condition, by contradiction. Ase that at somea packet with deadlingis
not yet served. In time sldt the packet served has a deadling, otherwise our packet would have been
chosen instead. Defing such that the time interva, + 1, ¢] is the maximum time interval ending @athat

is within a busy period and for which all packets served haedtines< t.

Now call S the set of flows that have a packet with deadline present in the system at some point in the
interval [sg + 1, ¢]. We show that if

if i € S then R.(so) = Ri(s0) (2.17)

that is, flow: is not backlogged at the end of time skt Indeed, ifsy + 1 is the beginning of the busy
period, then the property is true for any flow. Otherwise, wacped by contradiction. Assume that S
and thati would have some backlog at the end of time s{ot At time s, some packet with deadline ¢
was served; thus the deadline of all packets remaining irgtieeie at the end of time sleg must have
a deadline> t. Since deadlines are assumed wide-sense increasing \aifitov, all deadlines of flow
packets that are in the queue at tisgeor will arrive later, have deadlinge ¢, which contradicts thate S.

Further, it follows from the last argument thatiife S, then all packets served before ortahust have a
deadline< t. Thus
if i € S then R}(t) < Z;(t)

Now since there is at least one packet with deadfinenot served at, the previous inequality is strict for
at least oné in S. Thus
S ORit) <> Zi(t) (2.18)
i€S i€S
Observe that all packets servedig + 1, ¢] must be from flows ir§. Thus

1

> (Ri(t) — Ri(s0)) = Y _(Ri(t) — Ri(s0))

=1 €S
Combining with (2.17) and (2.18) gives

1

> (Ri(t) = Ri(s0)) < Y _(Zi(t) — Ri(s0))

i=1 1€S

Now [so + 1, is entirely in a busy period thus._, (R}(t) — R!(so)) = C(t — s0); thus

I

C(t—s0) < Y (Zi(t) = Ri(s0)) = Y _(Zi(t) = Ri(s0)" < Y (Zi(t) — Ri(s0))"
i€S 1€S i=1

which contradicts (2.16). O

A consequence of the proposition that if a set of flows is sgladxde for some deadline allocation algorithm,
then it is also schedulable for any other deadline allooati®thod that produces later or equal deadlines.
Other consequences, of immediate practical importanegjramvn in the next section.
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2.3.2 SCED $HEDULERS [73]

Given, for all, a functions;, SCED defines a deadline allocation algorithm that guaesntender some
conditions, that flowi does haves; as a minimum service curYeRoughly speaking, SCED sef5(t), the
number of packets with deadline up#tdo (R; ® 3;)(t).

DEFINITION 2.3.1 (SCED).Call A7 the arrival time for packet of flow:. Define functionsk} by:

RE() = inf | (Ri(s) + Bilt = 5]

With SCED, the deadline for packeif flow: is defined by

D = (RM)"Y(n) = min{t € N: R?(t) > n}
Functiong; is called the “target service curve” for flov
FunctionR} is similar to the min-plus convolutioR; ® 3;, but the minimum is computed over all times up to
A?. This allows to compute a packet deadline as soon as thetpackes; thus SCED can be implemented
in real time. The deadline is obtained by applying the psdnderse ofR}, as illustrated on Figure 2.5.

If 3; = éq,, then it is easy to see th&d] = A + d;, namely, SCED is the delay based scheduler in that
case. The following proposition is the main property of SCEBhows that SCED implements a deadline

Bi (t

R (1)

(1)

v

Figure 2.5:Definition of SCED. Packet n of flow i arrives at time A?". Its deadline is D?'.

allocation method based on service curves.

PrROPOSITION2.3.2. For the SCED scheduler, the number of packets with deadlinés given byZ;(t) =
(R ® Bi)(t)]

PROOF:  We drop indexi in this demonstration. First, we show thaft) > |(R ® §)(t)]|. Letn =
[(R®B)(t)]. SinceR® 3 < R andR takes integer values, we must haRé) > n and thusA™ < t. Now
R™(t) > (R ® B)(t) thus

R(t) = (R® B)(t) = n

1We use the original work in [73], which is called there “SCEBD-For simplicity, we call it SCED.
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By definition of SCED,D™ this implies thatD™ < t which is equivalent t&Z (t) > n.

Conversely, for some fixed but arbitratylet nown = Z(t). Packetn has a deadline ¢, which implies
that A” < ¢t and for alls € [0, A"] :

R(s)+p(t—s)>n (2.19)
Now for s € [A", ¢] we haveR(s) > n thusR(s) + (¢t — s) > n. Thus (2.19) is true for al¥ € [0,¢],
which means thatR ® 3)(t) > n. O

THEOREM 2.3.1 (Schedulability of SCED, ATM)Consider a SCED scheduler wiftflows, total outgoing
rate C, and target service curvg; for flow .

1. 1If
I

> Bi(t) < Ctforall t >0 (2.20)
i=1

then every packet is served before or at its deadline andydlew i receives| 5; | as a service curve.
2. Assume that in addition we know that every flas/constrained by an arrival curve;. If

I
> (i @ Bi)(t) < Ctforall t > 0 (2.21)
=1

then the same conclusion holds

PROOF:

1. Proposition 2.3.2 implies tha; (t) < R;(s)+Si(t—s)for0 < s < t. ThusZ;(t)—R;(s) < Bi(t—s).
Now 0 < B;(t — s) thus

Zi(t) — Ri(s)]" = max[Z;(t) — Ri(s),0] < Bi(t — s)

By hypothesis,ZL1 Bi(t — s) < C(t — s) thus by application of Proposition 2.3.1, we know that
every packet is served before or at its deadline. TRus Z; and from Proposition 2.3.2:

R, > Z; = |8 ® R;]

Now R; takes only integer values thiig; ® R;| = | 5;] ® R;.
2. By hypothesisR; = «; ® R; thusZ; = |o; ® 8; ® R;] and we can apply the same argument, with
«o; ® B3; instead off;. O

SCHEDULABILITY OF DELAY BASED SCHEDULERS A delay based scheduler assigns a delay objective
d; to all packets of flowi. A direct application of Theorem 2.3.1 gives the followiraipedulability condition.

THEOREM2.3.2 ([55]). Consider a delay based scheduler that seii/8ews, with delayl; assigned to flow
1. All packets have the same size and time is slotted. Assumeifiay;-smooth, wherey; is sub-additive.
Call C the total outgoing bit rate. Any mix of flows satisfying thassumptions is schedulable if

Zai(t —d;) < Ct

If a;(t) € N then the condition is necessary.
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PrROOF: A delay based scheduler is a special case of SCED, with taggeice curves; = d4,. This
shows that the condition in the theorem is sufficient. Cosefgr consider the greedy flows given By(t) =
a;(t). This is possible because is assumed to be sub-additive. Fld¥y must be schedulable, thus the
output R, satisfiesR/(t) > «;(i —d;). Now ). R/(t) < ct, which proves that the condition must hold]

It is shown in [55] that a delay based scheduler has the lasgbgdulability region among all schedulers,
given arrival curves and delay budgets for every flow. Notevdv@r that in a network setting, we are
interested in the end-to-end delay bound, and we know @edtié.3) that it is generally less than the sum
of per hop bounds.

The schedulability of delay based schedulers requiresathatrival curve is known and enforced at every
node in the network. Because arrival curves are modified byar& nodes, this motivates the principle of

Rate Controlled Service Disciplines (RCSDs) [44, 82, 30jiol implement in every node a packet shaper
followed by a delay based scheduler. The packet shapermaagathat an arrival curve is known for every
flow. Note that such a combination is not work conserving.

Because of the "pay bursts only once” phenomenon, RCSD migiide end-to-end delay bounds that are
worse than guaranteed rate nodes. However, it is possilaeoid this by aggressively reshaping flows in
every node, which, from Theorem 2.3.2, allows us to set nd#adlines. If the arrival curves constraints
on all flows are defined by a single leaky bucket, then it is shwW66, 65] that one should reshape a flow
to its sustained rate at every node in order to achieve the sauhto-end delay bounds as GR nodes would.

SCHEDULABILITY OF GR NODES Consider the family of GR nodes, applied to the ATM case. We
cannot give a general schedulability condition, since #ut that a scheduler is of the GR type does not tell
us exactly how the scheduler operates. However, we shoviacthanhy rater and delayv we can implement

a GR node with SCED.

THEOREM 2.3.3 (GR node as SCED, ATM casefonsider the SCED scheduler wittflows and outgoing
rate C. Let the target service curve for floiskbe equal to the rate-latency service curve with ratend

latencyv;. If
I

ZT‘Z' S C
=1

then the scheduler is a GR node for each fipwith rater; and delayy;.

PrROOF: From Proposition 2.3.2:
Zi(t) = [(Ri ® A, )(t — vi) ]

thus Z; is the output of the constant rate server, with ngtedelayed byv;. Now from Theorem 2.3.1 the
condition in the theorem guarantees tiat> Z;, thus the delay for any packet of flows bounded by the
delay of the constant rate server with rateplusv;. O

Note the fundamental difference between rate based ang blat®d schedulers. For the former, schedula-
bility is a condition on the sum of the rates; it is indepertdaiihe input traffic. In contrast, for delay based
schedulers, schedulability imposes a condition on thearcurves. Note however that in order to obtain a
delay bound, we need some arrival curves, even with delagdosshedulers.

BETTER THAN DELAY BASED SCHEDULER A scheduler need not be either rate based or delay based.
Rate based schedulers suffer from coupling between del@gtoke and rate allocation: if we want a low
delay, we may be forced to allocate a large rate, which becati$heorem 2.3.3 will reduce the number
of flows than can be scheduled. Delay based schedulers dsidrawback, but they require that flows be
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reshaped at every hop. Now, with clever use of SCED, it isipEs$o obtain the benefits of delay based
schedulers without paying the price of implementing shaper

Assume that for every flowwe know an arrival curvey; and we wish to obtain an end-to-end delay bound
d;. Then the smallest network service curve that should beathal to the flow isy; ® 4, (the proof is
easy and left to the reader). Thus a good thing to do is to lausicheduler by allocating to floithe target
service curvey; ® §4,. The schedulability condition is the same as with a delagdasheduler, however,
there is a significant difference: the service curve is guaed even if some flows are not conforming to
their arrival curves. More precisely, if some flows do notfoom to the arrival curve constraint, then the
service curve is still guaranteed, but the delay bound is not

This observation can be exploited to allocate service auivea more flexible way than what is done in
Section 2.2 [20]. Assume flowuses the sequence of nodes= 1, ..., M. Every node receives a paff’
of the delay budget;, with Z%:l di < d;. Then itis sufficient that every node implements SCED with a

target service curvg;" = dq» ® «; for flow i. The schedulability condition at node is

> a(t—df') < Ct

J€Em
whereFE,, is the set of flows scheduled at nodeandC,,, is the outgoing rate of node. If it is satisfied,
then flow: receiveso; ® 64, as end-to-end service curve and therefore has a delay bibunydé. The
schedulability condition is the same as if we had implem#atenodem the combination of a delay based
scheduler with delay budgéf”, and a reshaper with shaping curvg but we do not have to implement a
reshaper. In particular, the delay bound for float nodem is larger thani”; we find again the fact that the
end-to-end delay bound is less than the sum of individuahtsu

In [73], it is explained how to allocate a service cury®s to every network element. on the path of the
flow, such that3! ® 52 ® ... = a; ® &;, in order to obtain a large schedulability set. This geregaland
improves the schedulability region of RCSD.

EXTENSION TO VARIABLE LENGTH PACKETS  We can extend the previous results to variable length
packets; we follow the ideas in [11]. The first step is to cdesia fictitious preemptive EDF scheduler

(system 1), that allocates a deadline to every bit. We defifig) as before, as the number of bits whose
deadline is< t. A preemptive EDF scheduler serves the bits present in ttersyin order of their deadlines.

It is preemptive (and fictitious) in that packets are notwagld entirely, but, in contrast, are likely to be

interleaved. The results in the previous sections applly mit change to this system.

The second step is to modify system | by allocating to evetry lieadline equal to the deadline of the last
bit in the packet. Call it system II. We have//(t) = PLi(Z!(t)) where PLi is the cumulative packet
length (Section 1.7) for flow. From the remarks following Proposition 2.3.1, it followst if system | is
schedulable, then so is system Il. System Il is made of a grteerEDF scheduler followed by a packetizer.

The third step consists in defining “packet-EDF” schedwgstem l1l1); this is derived from system Il in the
same way as PGSP is from GPS. More precisely, the packet Bidegler picks the next packet to serve
among packets present in the system with minimum deadlihen,;Twhen a packet is being served, it is not
interrupted. We also say that system Il is the non-preeraDF scheduler. Then the departure time of
any packet in system lll is bounded by its departure time giesy Il pluslm% wherel,,.x is the maximum
packet size across all flows andis the total outgoing rate. The proof is similar to Propeosit2.1.1 and is
left to the reader (it can also be found in [11]).

We can apply the three steps above to a SCED scheduler widblesize packets, called “Packet-SCED”.

DEFINITION 2.3.2 (Packet SCED)A PSCED schedulers is a non-premptive EDF schedulers, wiezre-
lines are allocated as follows. Call the arrival time for packet. of flowi. Define functiong?;’ by:

RI'(t) = 86%&2?][&(5) + Bi(t — s)]
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With PSCED, the deadline for packebf flowi is defined by
D} = (R?)"'(Li(n)) = min{t € N: RP(t) > (Li(n))}

whereL; is the cumulative packet length for flawFFunctiong; is called the “target service curve” for flow
i

The following proposition follows from the discussion akov

PrRoPOSITION 2.3.3. [11] Consider a PSCED scheduler withflows, total outgoing rate”’, and target
service curves; for flows. Call I the maximum packet size for flowand letl,,., = max; !

max max-*

1. 10f
I

> Bi(t) < Ctforall t >0 (2.22)
=1
then every packet is served before or at its deadline h};as A bound on packet delay ig«;, 5;) +
% Moreover, every flow receivess; (t — 17 ...) — lm%ﬁ as a service curve.
2. Assume that, in addition, we know that every flasvconstrained by an arrival curve;. If

1
> (i @ B)(t) < Ctforall t >0 (2.23)
=1

then the same conclusion holds.

Note that the first part of the conclusion means that the maximacket delay can be computed by assuming
that flowi would receives; (not 5; (¢ — I%,,,)) as a service curve, and addifg*.

Proor: It follows from the three steps above that the PSCED schedale be broken down into a
preemptive EDF scheduler, followed by a packetizer, foddvby a delay element. The rest follows from
the properties of packetizers and Theorem 2.3.1.

2.3.3 BUFFER REQUIREMENTS

As we mentioned at the beginning of this section, buffer memuents have to be computed in order to
accept a reservation. The condition is simply X; < X whereX; is the buffer required by flow at this
network element, and’ is the total buffer allocated to the class of service. Thematation of X; is based
on Theorem 1.4.1; it requires computing an arrival curveveigflow as it reaches the node. This is done
using Theorem 1.4.2 and the flow setup algorithm, such asfimiben 2.2.1.

It is often advantageous to reshape flows at every node. dindedhe absence of reshaping, burstiness
is increased linearly in the number of hops. But we know tkeahaping to an initial constraint does not

modify the end-to-end delay bound and does not increasetiffier lequirement at the node where it is

implemented. If reshaping is implemented per flow, then tirstiness remains the same at every node.

2.4 APPLICATION TO DIFFERENTIATED SERVICES

2.4.1 DFFERENTIATED SERVICES

In addition to the reservation based services we have studi&ection 2.2, the Internet also proposes
differentiated services [7]. The major goal of differetei services is to provide some form of better
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service while avoiding per flow state information as is reggiiby integrated services. The idea to achieve
this is based on the following principles.

o Traffic classes are defined; inside a network, all traffic hgilog to the same class is treated as one
single aggregate flow.

e At the network edge, individual flows (called “micro-flowsf)e assumed to conform to some arrival
curve, as with integrated services.

microflow i (p;, ;)

(05, ;) \X e

>
rate ry
EF aggregate latency e,
at node m

Figure 2.6: Network Model for EF. Microflows are individually shaped and each conform to some arrival
curve. At all nodes, microflows R; to R3 are handled as one aggregate flow, with a guaranteed rate (GR)
guarantee. Upon leaving a node, the different microflows take different paths and become part of other
aggregates at other nodes.

If the aggregate flows receive appropriate service curvébémetwork, and if the total traffic on every
aggregate flow is not too large, then we should expect somedsoon delay and loss. The condition on
microflows is key to ensuring that the total aggregate traéfinains within some arrival curve constraints.
A major difficulty however, as we will see, is to derive bouridsindividual flows from characteristics of

an aggregate.

Differentiated services is a framework that includes a neinds different services. The main two services
defined today are expedited forwarding (EF)[23, 5] and a&skforwarding (AF)[39]. The goal of EF is
to provide to an aggregate some hard delay guarantees, dodsoThe goal of AF is to separate traffic
between a small number of classes (4); inside each clasg liéwels of drop priorities are defined. One of
the AF classes could be used to provide a low delay servidenitoss, similar to EF.

In this chapter, we focus on the fundamental issue of howeagde scheduling impacts delay and through-
put guarantees. In the rest of this section, we use the netwvodel shown on Figure 2.6. Our problem is

to find bounds for end-to-end delay jitter on one hand, foklmarat all nodes on the other hand, under the
assumptions mentioned above. Delay jitter is is the diffeeebetween maximum and minimum delay; its
value determines the size of playout buffers (Section 1.1.3

2.4.2 AN EXxpLICIT DELAY BOUND FOR EF

We consider EF, the low delay traffic class, as mentioned ati@e2.4.1, and find a closed form expression
for the worst case delay, which is valid in any topology, irossless network. This bound is based on a
general time stopping method explained in detail in Chatérwas obtained in [14] and [43].

ASSUMPTION AND NOTATION  (See Figure 2.6)
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e Microflow ¢ is constrained by the arrival curygt + o; at the network access. Inside the network, EF
microflows arenot shaped.

e Nodem acts as a Guaranteed Rate node for the entire EF aggregéteatst,,, and latency,,,. This
is true in particular if the aggregate is served as one flowRH® service curve element, with a rate-
latency service curve; but it also holds quite generallgnel nodes are non-FIFO (Section 2.1.3).
In Chapter 6, we explain that the generic node model usedeircdhtext of EF is packet scale rate
guarantee, which satisfies this assumption.
Let e be an upper bound an,, for all m.

e /i is a bound on the number of hops used by any flow. This is tylgiddl or less, and is much less
than the total number of nodes in the network.

o Utilization factors: Define/,,, = % > _ism Pi» Where the notation > m means that node: is on the
path of microflow:. Let~ be an upper bound on al},,.

e Scaled burstiness factors: Defing = % > ism 0i- LetT be an upper bound on at,.

e L.« IS an upper bound on the size (in bits) of any EF packet.

THEOREM 2.4.1 (Closed form bound for delay and backlog [14T)v < ﬁ then a bound on end-to-end

delay variation for EF ish.D; with
e+ 71

T 1-(h-1w
Atnodem, the buffer required for serving low delay traffic withous$ds bounded bireq = 7, D1+ Linax-

Dy

PrRooF: (Part 1:) Assume that a finite bound exists and tathe least upper bound. The data that feeds
nodem has undergone a variable delay in the rajigéh — 1) D], thus an arrival curve for the EF aggregate
at nodem is vry,(t + (h — 1)D) + r,,7. By application of (2.4), the delay seen by any packet is dedn
bye+ 7+ (h—1)Dv;thusD < e + 7+ (h — 1) Dv. If the utilization factorv is less thanL+, it follows
thatD < D;.

(Part 2:) We prove that a finite bound exists, using the titopging method. For any time> 0, consider
the virtual system made of the original network, where allrses are stopped at tinte This network
satisfies the assumptions of part 1, since there is only & fimitnber of bits for the entire lifetime of the
network. CallD’(t) the worst case delay across all nodes for the virtual netwatéxed byt. From the
above derivation we see th&X (t) < D for all t. Lettingt¢ tend to+oc shows that the worst case delay at
any node remains bounded By .

(Part 3:) By Corollary 2.1.1, the backlog is bounded by theiea deviation between the arrival curve
vrm(t + (h — 1)D) + r,,7 and the service curvig,, (t — ;) — Lmax) ", Which after some algebra gives
Breq Ol

The theorem can be slightly improved by avoiding to take maxfor v/,,,; this gives the following result
(the proof is left to the reader):

COROLLARY 2.4.1. If v < +L- then a bound on end-to-end delay variation for EFig with
em + T

D/ — . m m

L mnin{1—(h—1)ym}

IMPROVED BOUND WHEN PEAK RATE IS KNOWN: A slightly improved bound can be obtained if, in
addition, we have some information about the total inconfiitgate at every node. We add the following
assumptions to the previous list.

e Let (), denote a bound on the peak rate of all incoming low delay traféiffic at nodem. If we
have no information about this peak rate, tligp = +o0o. For a router with large internal speed and
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buffering only at the output(’,, is the sum of the bit rates of all incoming links (the delay hdus
better for a smalle€’,,).

e Fan-in: Letl,, be the number of incident links at node Let F' be an upper bound oﬁ@ Fis
the maximum time to transmit a number of EF packets that sanebusly appear on multlple inputs.

o Redefiner,, := max{f=tmax 15" 5} Letr be an upper bound on ai,.
o Letu,, = [Crn=rnl”  Note thatd < w,, < 1, u,, increases withC,,,, and if C,,, = +o0, then

Cm—VUmTm
= 1. Callu = max,, u,,. The parametet. € [0, 1] encapsulates how much we gain by knowing

the maximum incoming rates,,, (u is small for small values of’,,).

THEOREM2.4.2 (Improved Delay Bound When Peak Rate is Known [14,433)v* = min,, { (h_l)(cmcm

_7"m)++7"m }
If v < v*, a bound on end-to-end delay variation for EFi®, with

et+ur+ (1 —u)F
1—(h—1)uv

Dy =

PrROOF: The proof is similar to the proof of Theorem 2.4.1. CaAlthe least bound, assuming it exists.

An arrival curve for the flow of EF packets arriving at nadeon some incident link is Cfnt + Lmax, Where
C! is the peak rate of the link (this follows from item 4 in Theword.7.1). Thus an arrival curve for the
incoming flow of EF packets at node is C,,t + I,,,Lmax. The incoming flow is thus constrained by the
T-SPEC(M, p,r,b) (see Page 13) With! = I,,Lax, p = Ciny 7 = iV, b = 1oy + (B — 1) D1y,
By Proposition 1.4.1, it follows that

ImLmax(l - um)

Tm

D < + (7 + (h — 1) Dvpy ) up,

The conditionv < v* implies thatl — (b — 1), uy, > 0, thus

D < em + TmUm + IMLma;;Ell_um)
- 1 — (h— Dvmun,

The above right-hand-side is an increasing function,f due tor,,, > %;“‘“ Thus we have a bound by

replacingu,, by u:
em _|_7_mu+ ImLmax(l—u)

D< I'm <D
= 1= (h—Dvpu 2
The rest of the proof follows along lines similar to the probfTheorem 2.4.1. O

It is also possible to derive an improved backlog bound,gi§iroposition 1.4.1. As with Theorem 2.4.2,
we also have the following variant.

COROLLARY 2.4.2. If v < v*, a bound on end-to-end delay variation for ERi#), with

ImLmax —Um
D' — min em + TmUm + 77%(11 Um)
27w 1—(h—1)vmup

DiscussioN: If we have no information about the peak incoming rate then we set’; = +oo and
Theorem 2.4.2 gives the same bound as Theorem 2.4.2. Fenvalites oi’,,,, the delay bound is smaller,
as illustrated by Figure 2.7.

The bound is valid only for small utilization factors; it dedes atv > ﬁ which does not mean that
the worst case delay does grow to infinity [41]. In some cakesmetwork may be unbounded; in some
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Figure 2.7:The bound D (in seconds) in Theorem 2.4.1 versus the utilization factor v for h = 10, e = 212008
Lyax = 1000 b, o; = 100B and p; = 32kb/s for all flows, r,, = 149.760Mb/s, and C,,, = +oo (thin I|ne) or
Cyn = 21, (thick line).

other cases (such as the unidirectional ring, there is @veafinite bound for al < 1. This issue is
discussed in Chapter 6, where we we find better bounds, akgiense of more restrictions on the routes
and the rates. Such restrictions do not fit with the diffaedatl services framework. Note also that, for
feed-forward networks, we know that there are finite bourmis/f< 1. However we show now that the
conditionr < ﬁ is the best that can be obtained, in some sense.

PROPOSITION2.4.1. [4, 14] With the assumptions of Theorem 2.4.1, i#
is a network in which the worst case delay is at leBst

-, then for anyD’ > 0, there

In other words, the worst case queuing delay can be madeaailpitarge; thus if we want to go beyond
Theorem 2.4.1, any bound for differentiated services meggedd on the network topology or size, not only
on the utilization factor and the number of hops.

PrRoOF:  We build a family of networks, out of which, for anfy’, we can exhibit an example where the
gueuing delay is at leagd’.

The thinking behind the construction is as follows. All floare low priority flows. We create a hierarchical
network, where at the first level of the hierarchy we choose ‘flow” for which its first packet happens
to encounter jusbne packet of every other flow whose route it intersects, whaeniéxt packet does not
encounter any queue at all. This causes the first two packéte ehosen flow to come back-to-back after
several hops. We then construct the second level of therbigrdy taking a new flow and making sure
that its first packet encountetwo back-to-back packets of each flow whose routes it intersedtsre the
two back-to-back packet bursts of all these flows come frasnotlitput of a sufficient number of networks
constructed as described at the first level of the hierardRgpeating this process recursively sufficient
number of times, for any chosen delay vall’ewe can create deep enough hierarchy so that the queuing
delay of the first packet of some flow encounters a queuingaetae thanD (because it encounters a large
enough back-to-back burst of packets of every other flowtcocted in the previous iteration), while the
second packet does not suffer any queuing delay at all. Wedesaribe in detail how to construct such a
hierarchical network (which is really a family of networks)ch that utilization factor of any link does not
exceed a given factar, and no flow traverses more tharhops.
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Now let us describe the networks in detail. We consider aljaaiinetworks with a single traffic class and
constant rate links, all with same bit rate The network is assumed to be made of infinitely fast switches
with one output buffer per link. Assume that sources areealky bucket constrained, but are served in an
aggregate manner, firstin first out. Leaky bucket conssairg implemented at the network entry; after that
point, all flows are aggregated. Without loss of generality,also assume that propagation delays can be set
to 0; this is because we focus only on queuing delays. As ali§icagion, in this network, we also assume
that all packets have a unit size. We show that for any fixetlathitrary delay budgeb, we can build a
network of that family where the worst case queueing deldgrgger thanD, while each flow traverses at
most a specified number of hops.

A network in our family is calledV (h, v, J) and has three parameterks:(maximum hop count for any
flow), v (utilization factor) and/ (recursion depth). We focus on the cases wiieke 3 andﬁ <v<l,
which implies that we can always find some integesuch that

1 kh+1
V> —

h—1kh—1

(2.24)

Network N (h, v, J) is illustrated in Figures 2.8 and 2.9; it is a collection oémdical building blocks,
arranged in a tree structure of depth Every building block has one internal source of traffic l@al
“transit traffic”), kh(h — 1) inputs (called the “building block inputs”fh(h — 1) data sinksh — 1 internal
nodes, and one output. Each of the 1 internal nodes receives traffic frokh building block inputs plus it
receives transit traffic from the previous internal nodehwhe exception of the first one which is fed by the
internal source. After traversing one internal node, wdffom the building block inputs dies in a data sink.
In contrast, transit traffic is fed to the next internal noebecept for the last one which feeds the building
block output (Figure 2.8). Figure 2.9 illustrates that oatwork has the structure of a complete tree, with

buffer
—+/D %—W:—»
multiplexer _g_ demultiplexer
1 data

source (h-1) kh inputs

/\

L

| W W
>—~> 0 —~\> o —~\> o 1 output

h-1 internal nodes (h-1) kh data sinks

Figure 2.8:The internal node (top) and the building block (bottom) used in our network example.
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depthJ. The building blocks are organized in levgls= 1, ..., J. Each of the inputs of a level building

block (j > 2) is fed by the output of one levgl— 1 building block. The inputs of level building blocks
are data sources. The output of gne 1 building block feeds exactly one levgbuilding block input. At
level J, there is exactly one building block, thus at level- 1 there areth(h — 1) building blocks, and at
level 1 there argkh(h — 1))’ ~! building blocks. All data sources have the same rate X<~ and burst

level J - 2 ||||||I|&|fII i I‘Y!||||||!|¢" |”||||Iltt|””"” i

IIIIIIIll\‘I, I LT
/\

/4‘:&—

level J-1

level J S d

Figure 2.9:The network made of building blocks from Figure 2.8

toleranceh = 1 packet. In the rest of this section we take as a time unit #restnission time for one packet,
so thatC' = 1. Thus any source may transmit one packet every ’“h“ time units. Note that a source
may refrain from sending packets, which is actually whateatthe Iarge delay jitter. The utilization factor
on every link isv, and every flow uses or h hops.

Now consider the following scenario. Consider some antyittavel 1 building block. At time,, assume
that a packet fully arrives at each of the building block itgpaf level 1, and at timety + 1, let a packet
fully arrive from each data source inside every levéduilding block (this is the first transit packet). The
first transit packet is delayed % — 1 time units in the first internal node. Just one time unit befhis
packet leaves the first queue, let one packet fully arriveaalh énput of the second internal node. Our first
transit packet will be delayed again by — 1 time units. If we repeat the scenario along all internal 1sode
inside the building block, we see that the first transit pagkdelayed byh — 1)(hk — 1) time units. Now
from (2.24),0 < (h—1)(hk — 1), so itis possible for the data source to send a second tradiet at time
(h —1)(hk — 1). Let all sources mentioned so far be idle, except for the gionis already described. The
second transit packet will catch up to the first one, so thpuiuif any levell building block is a burst of
two back-to-back packets. We can choaggarbitrarily, so we have a mechanism for generating bursg of
packets.

Now we can iterate the scenario and use the same constrattiemel2. The level-2 data source sends
exactly three packets, spaced y Since the internal node receiveg bursts of two packets originating
from level 1, a judicious choice of the level 1 starting timaéslthe first level 2 transit packet find a queue of
2hk — 1 packets in the first internal node. With the same constrna®in level 1, we end up with a total
queuing delay ofh — 1)(2hk — 1) > 2(h — 1)(hk — 1) > 26 for that packet. Now this delay is more than
26, and the first three level-2 transit packets are delayed égdme set of non-transit packets; as a result,
the second and third level-2 transit packets will evenyuzditch up to the first one and the output of a level
2 block is a burst of three packets. This procedure easilgmgdines to all levels up td. In particular, the
first transit packet at level has an end-to-end delay of at led$t Since all sources become idle after some
time, we can easily create a last levetransit packet that finds an empty network and thus a zeroilggieu
delay.
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Thus there are two packets in netwokk(h, v, J), with one packet having a delay larger thaf, and the
other packet has zero delay. This establishes that a bougdearing delay, and thus on delay variation in
network N (h, v, J) has to be at least as large .2 O

2.4.3 BOUNDS FOR AGGREGATE SCHEDULING WITH DAMPERS

At the expense of some protocol complexity, the previousidswcan be improved without losing the feature
of aggregate scheduling. It is even possible to avoid bouptbsions at all, using the conceptsd#mper
Consider an EDF scheduler (for example a SCED scheduleraasuime that every packet sent on the
outgoing link carries a field with the differeneebetween its deadline and its actual emission time, if it is
positive, and) otherwise. A damper is a regulator in the next downstreane ttloat picks for the packet an
eligibility time that lies in the intervala + d — A, a + d], whereA is a constant of the damper, ands the
arrival time of the packet in the node where the damper residée callA the “damping tolerance”. The
packet is then withheld until its eligibility time [80, 20§ee Figure 2.10. In addition, we assume that the
damper operates in a FIFO manner; this means that the seqgakeligibility times for consecutive packets
is wide-sense increasing.

Unlike the scheduler, the damper does not exist in isolatibis associated with the next scheduler on the
path of a packet. Its effect is to forbid scheduling the pablkéore the eligibility time chosen for the packet.
Consider Figure 2.10. Scheduterworks as follows. When it has an opportunity to send a padest,at
time ¢, it picks a packet with the earliest deadline, among all peckhat are present in nodé and whose
eligibility date is< ¢. The timing informationd shown in the figure is carried in a packet header, either as
a link layer header information, or as an IP hop by hop heaxtension. At the end of a path, we assume
that there is no damper at the destination node.

The following proposition is obvious, but important, andjigen without proof.

PrROPOSITION2.4.2. Consider the combinatio§ of a scheduler and its associated damper. If all packets
are served by the scheduler before or at their deadlines) &hprovides a bound on delay variation equal
to A.

It is possible to letA = 0, in which case the delay is constant for all packets. A boumthe end-to-end
delay variation is then the delay bound at the last schedudgig the combination of a scheduler and a
damper (this is called “jitter EDD” in [80]). In practice, wensiderA > 0 for two reasons. Firstly, it is
impractical to assume that we can write the fiéhdith absolute accuracy. Secondly, having some slack in
the delay variation objective provides better performandew priority traffic [20].

There is no complicated feasibility condition for a dampeer,there is for schedulers. The operation of a
damper is always possible, as long as there is enough buffer.

PropPosITION2.4.3 (Buffer requirement for a dampety.all packets are served by the scheduler before or
at their deadlines, then the buffer requirement at the assed damper is bounded by the buffer requirement
at the scheduler.

PROOF:  Call R(t) the total input to the scheduler, afti(¢) the amount of data with deadline ¢. Call
R*(t) the input to the damper, we hav& (t) < R(t). Packets do not stay in the damper longer than until
their deadline in the scheduler, thus the outfy(t) of the damper satisfieR; (t) > R'(t). The buffer
requirement at the scheduler at timis R(t) — R/ (t); at the damper it i®*(¢t) — R1(t) > R(t)— R/(t). O

THEOREM2.4.3 (Delay and backlog bounds with dampei&ke the same assumptions as in Theorem 2.4.1,
we assume that every schedulerthat is not an exit point is associated with a damper in thet dexvn-
stream node, with damping tolerangg,,. Let A be a bound on all\,,,.
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Figure 2.10:Dampers in a differentiated services context. The model shown here assumes that routers
are made of infinitely fast switching fabrics and output schedulers. There is one logical damper for each
upstream scheduler. The damper decides when an arriving packet becomes visible in the node.
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If v < 1, then a bound on the end-to-end delay jitter for low delayfitras
D=e+(h—-1)AQ+v)+T1V
A bound on the queuing delay at any scheduler is
Dy =e+v[r+ (h—1)A]
The buffer required at schedulet, for serving low delay traffic without loss is bounded by
Byeq = rmDo

A bound on the buffer required at damperis the same as the buffer required at scheduter

PrROOF: The variable part of the delay between the input of a scheduléd the input of the next one is
bounded byA. Now let us examine the last scheduler, sayon the path of a packet. The delay between a
source for a flowi 5 m and schedulem is a constant plus a variable part bounded by- 1)A. Thus an
arrival curve for the aggregate low-delay traffic arrivirigsehedulern is

as(t) =vrp(t+ 7+ (h—1)A)
By applying Theorem 1.4.2, a delay bound at schedulés given by
Dy = E +uv[r + (h — 1)A]
A bound on end-to-end delay variation(fs — 1) A + D2, which is the required formula.

The derivation of the backlog bound is similar to that in Tiesw 2.4.1. O

The benefit of dampers is obvious: there is no explosion tdthend, it is finite (and small if\ is small)
for any utilization factor up td (see Figure 2.11). Furthermore, the bound is dominatellbyacross the
whole range of utilization factors up o A key factor in obtaining little delay variation is to havesmall
damping tolerancé\.

There is a relation between a damper and a maximum serviee.ddonsider the combination of a scheduler
with minimum service curved and its associate damper with damping toleraceCall p the fixed delay

on the link between the two. It follows immediately that tleerination offers the maximum service curve
B ® 0p—a and the minimum service curve® d6,. Thus a damper may be viewed as a way to implement
maximum service curve guarantees. This is explored inldetg0].

2.4.4 SATIC EARLIEST TIME FIRST (SETF)

A simpler alternative to the of dampers is proposed by Z.4haxg et al under the name of Static Earliest
Time First (SETF) [84].

AsSSUMPTIONS We take the same assumptions as with Theorem 2.4.1, witlollog/ing differences.

e At network access, packets are stamped with their time @fahrr At any node, they are served
within the EF aggregate at one node in order of time stampas We assume that nodes offer a GR
guarantee to the EF aggregate, as defined by (2.1) or (283)\Hare packets are numbered in order
of time stamps (i.e. their order at the network access, nhishode).

THEOREM2.4.4. If the time stamps have infinite precision, foralk 1, the end-to-end delay variation for
the EF aggregate is bounded by
1—(1—v)h

D:(e+7)m
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Figure 2.11:The bound D (in seconds) in Theorem 2.4.3 the same parameters as Figure 2.7, for a damping
tolerance A = 5 ms per damper, and C,, = +oo (thick line). The figure also shows the two curves of
Figure 2.7, for comparison. The bound is very close to hA = 0.05s, for all utilization factors up to 1.

PrRoOF: The proof is similar to the proof of Theorem 2.4.1. CR}} the least bound, assuming it exists,
on the end-to-end delay aftérhops,k < h. Consider a tagged packet, with labgland calld;, its delay
in & hops. Consider the node that is thehth hop for this packet. Apply (2.3): there is some labet n

such that

A, <etap+ kot (2.25)
r

wherea; andd; are the arrival and departure times at ned®f the packet labelegl, andl; its length in
bits. Now packets: to n must have arrived at the network access befgre- d;, and aftera,,, — Dgj—_1.

Thus
lp+...4+1, < a(an — Qp — dp + thl)

where « is an arrival curve at network access for the traffic that Wilv through nodem. We have
a(t) < rp(vt + 7). By (2.4), the delayl,, — a,, for our tagged packet is bounded by

t—d Dy, _
e + sup o L2 hl)—t =e+ 7+ v(Dp_1 —dg)
t>0 T'm

thus
dp1 < dp+e+T17+ I/(Dh_1 — dk)

The above inequation can be solved iteratively dgras a function ofD;,_;; then takek = h — 1 and
assume the tagged packet is one that achieves the worst-tegedelay, thus,_; = d;,_1 which gives
an inequality forD;,_1; last, takek = h and obtain the end-to-end delay bound as desired. O

COMMENTS:  The bound is finite for all values of the utilization facter< 1, unlike the end-to-end
bound in Theorem 2.4.1. Note that for small valueg ahe two bounds are equivalent.

We have assumed here infinite precision about the arrivad stamped in every packet. In practice, the
timestamp is written with some finite precision; in that cadeang [84] finds a bound which lies between
Theorem 2.4.1 and Theorem 2.4.4 (at the limit, with null ieo, the bound is exactly Theorem 2.4.4).
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2.5 BIBLIOGRAPHIC NOTES

The delay bound for EF in Theorem 2.4.2 was originally found1i4], but neglecting the .. term; a
formula that accounts fak,,,., was found in [43].

Bounds that account for statistical multiplexing can benfibin [58].

2.6 EXERCISES

EXERCISE2.1. Consider a guaranteed rate scheduler, with r&end delayv, that receives a packet flow
with cumulative packet length. The (packetized) scheduler output is fed into a constamats trunk with
rate c > R and propagation delay".

1. Find a minimum service curve for the complete system.
2. Assume the flow of packetgisb)-constrained, witth > I,,,.x. Find a bound on the end-to-end delay
and delay variation.

EXERCISE 2.2. Assume all nodes in a network are of the GR type with Fand latencyl’. A flow with
T-SPECa(t) = min(rt + b, M + pt) has performed a reservation with rafe across a sequence @
nodes, withp > R. Assume no reshaping is done. What is the buffer requireatghe hth node along the
path, forh =1,..H ?

EXERCISE 2.3. Assume all nodes in a network are made of a GR type with Raa@d latencyT’, before
which a re-shaper with shaping curve= v, ; is inserted. A flow with T-SPE(t) = min(rt+ b, M + pt)
has performed a reservation with rafeacross a sequence &f such nodes, withh > R. What is a buffer
requirement at théth node along the path, far=1,..H ?

EXERCISE 2.4. Assume all nodes in a network are made of a shaper followed BYF@ multiplexer.
Assume that flow has T-SPEC¢;(t) = min(r;t + b;, M + p;t), that the shaper at every node uses the
shaping curver; = v, ;, for flow . Find the schedulability conditions for every node.

EXERCISE 2.5. A network consists of two nodes in tandem. Therenarfiows of typel andn, flows of
type2. Flows of type have arrival curven;(t) = r;t + b;, i = 1,2. All flows go through nodes then2.
Every node is made of a shaper followed by an EDF scheduldo#tnodes, the shaping curve for flows of
typei is somer; and the delay budget for flows of types d;. Every flow of type should have a end-to-end
delay bounded byp;. Our problem is to find good values @&f andds.

1. We assume that; = «;. What are the conditions aiy andd, for the end-to-end delay bounds to be
satisfied ? What is the set @1,, n9) that are schedulable ?
2. Same question if we set = \,,

EXERCISE 2.6. Consider the scheduler in Theorem 2.3.3. Find an efficiegoréhm for computing the
deadline of every packet.

EXERCISE2.7. Consider a SCED scheduler with target service curve for flgiven by

Bi = Yri by ® 04

Find an efficient algorithm for computing the deadline ofrgyeacket.
Hint: use an interpretation as a leaky bucket.

EXERCISE 2.8. Consider the delay bound in Theorem 2.4.1. Take the samenasisans but assume also
that the network is feedforward. Which better bound can yee @
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CHAPTER 3

BASIC MIN-PLUS AND MAX-PLUS
CALCULUS

In this chapter we introduce the basic results from Min-pithet are needed for the next chapters. Max-
plus algebra is dual to Min-plus algebra, with similar cqtseand results when minimum is replaced by
maximum, and infimum by supremum. As basic results of netveaitkulus use more min-plus algebra

than max-plus algebra, we present here in detail the fundiseof min-plus calculus. We briefly discuss

the care that should be used when max and min operations geel iz the end of the chapter. A detailed

treatment of Min- and Max-plus algebra is provided in [28rdrwe focus on the basic results that are
needed for the remaining of the book. Many of the resultswbelan also be found in [11] for the discrete-

time setting.

3.1 MIN-PLUS CALCULUS

In conventional algebra, the two most common operationdaments ofZ or R are their addition and their
multiplication. In fact, the set of integers or reals enddwéth these two operations verify a number of
well known axioms that define algebraic structurég: +, x) is a commutative ring, whered®, +, x)

is a field. Here we consider another algebra, where the opesaaire changed as follows: addition be-
comes computation of the minimum, multiplication becomgditton. We will see that this defines another
algebraic structure, but let us first recall the notion ofimum and infimum.

3.1.1 INFIMUM AND MINIMUM

Let S be a nonempty subset &. S is bounded from below if there is a numbg&f such thats > M
for all s € S. The completeness axiom states that every nonempty sgbseRR that is bounded from
below has a greatest lower bound. We will calinfimumof S, and denote it byinf S. For example
the closed and open intervdls, b] and (a, b) have the same infimum, which is Now, if S contains an
element that is smaller than all its other elements, thisetd is calledninimumof S, and is denoted by
minS. Note that the minimum of a set does not always exist. For @&, b) has no minimum since
a ¢ (a,b). On the other hand, if the minimum of a seexists, it is identical to its infimum. For example,
min|a, b] = inf[a, b] = a. One easily shows that every finite nonempty subs&t bés a minimum. Finally,
let us mention that we will often use the notatiarto denote infimum (or, when it exists, the minimum).

103
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For exampleg A b = min{a, b}. If S is empty, we adopt the convention thaf S = +oc.
If fis afunction fromS to R, we denote byf (S) its range:

f(S) = {t such that t = f(s) for somes € S}.

We will denote the infimum of this set by the two equivalentatioins
inf £(8) = inf {£(s)}.

We will also often use the following property.

THEOREM 3.1.1 (“Fubini” formula for infimum).Let S be a nonempty subset Bf and f/ be a function
fromS to R. Let{S, }.en be a collection of subsets 8f whose union iss. Then

inf ()} = jnt { inf (s} }-

SESh

ProOF: By definition of an infimum, for any sets,,,

inf {Usn} = inf {inf S,,} .

On the other hands, sincg,S,, = S,

(0e)-yre

neN

so that

seS

inf {f(s)} = inff(S):inff(U sn>

— int { it o}

neN | seS,

3.1.2 Doib (RU{+oc},A,+)

In traditional algebra, one is used to working with the afgébstructurgR, +, x), that is, with the set of
reals endowed with the two usual operations of addition antfiptication. These two operations possess
a number of properties (associativity, commutativitytriisitivity, etc) that makdR, +, x) a commutative
field. As mentioned above, in min-plus algebra, the openatib‘addition’ becomes computation of the
infimum (or of the minimum if it exists), whereas the one of ltiplication’ becomes the classical operation
of addition. We will also includetroo in the set of elements on which min-operations are carriédsouthat
the structure of interest is nofR U {+oc0}, A, +). Most axioms (but not all, as we will see later) defining
a field still apply to this structure. For example, distribat of addition with respect to multiplication in
conventional (‘Plus-times’) algebra

(3+4)x5=(3x5)+(4x5)=15+20=35
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translates in min-plus algebra as
BAN4)+5=B3+5)AN(4+5)=8A9=28.
In fact, one easily verifies that and+ satisfy the following properties:

e (Closure of A) Foralla,b € RU {4+00},a Ab € RU {+0c0}.

e (Associativity of A) For alla,b,c € RU {400}, (a Ab) Ac=a A (bAc).

e (Existence of a zero element for\) There is some e= 400 € R U {400} such that for alu €
RU{+o0},aNne=a.

e (Idempotency of A) For alla € RU {+}, a A a = a.

e (Commutativity of A) Foralla,b € RU{+o0},a Ab=0bAa.

e (Closure of+) Foralla,b € RU {4+00},a+b € RU {+oc0}.

e (Associativity of +) For alla,b,c € RU {400}, (a +b) + ¢ =a+ (b + c).

e (The zero element forA is absorbing for +) Foralla € RU {+x},a +e=e=e+a.

¢ (Existence of a neutral element for+) There is some; = 0 € R U {+o0} such that for allu €
RU{+0},a+u=a=u+a.

o (Distributivity of + with respecttoA) Foralla,b,c € RU{+o0c}, (aAb)+c = (a+c)A(b+¢c) =
c+ (aND).

A set endowed with operations satisfying all the above axidggncalled adioid. Moreover ast+ is also
commutative (for alk,b € RU {400}, a + b = b + a), the structurdR U {400}, A, +) is a commutative
dioid. All the axioms defining a dioid are therefore the saxieras as the ones defining a ring, except one:
the axiom of idempotency of the ‘addition’, which in dioid=pfaces the axiom of cancellation of ‘addition’
in rings (i.e. the existence of an eleménia) that ‘added’ toa gives the zero element). We will encounter
other dioids later on in this chapter.

3.1.3 A CATALOG OF WIDE-SENSEINCREASING FUNCTIONS

A function f is wide-sense increasing if and onlyfifs) < f(¢) for all s < ¢t. We will denote byg the

set of non-negative wide-sense increasing sequences didios and byF denote the set of wide-sense
increasing sequences or functions such J{a; = 0 for ¢ < 0. Parametet can be continuous or discrete:
in the latter casef = {f(t),t € Z} is called a sequence rather than a function. In the formes, ves take
the convention that the functioh= {f(¢),t € R} is left-continuous. The range of functions or sequences
of F andgG isR™ = [0, +o0].

Notation f + g (respectivelyf A g) denotes the point-wise sum (resp. minimum) of functigrandg:
(f+9)t) = [f({t)+g(t)
(fAg)t) = f(t)ng(t)

Notation f < (=, >)g means thaf (t) < (=, >)g(t) for all ¢.

Some examples of functions belongingZaand of particular interest are the following ones. Notafiot
denotesnax{x, 0}, [x] denotes the smallest integer larger than or equal to

DEFINITION 3.1.1 (Peak rate functionsg).

Rt ift>0
)\R(t):{

0 otherwise

for someR > 0 (the ‘rate’).
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DEFINITION 3.1.2 (Burst delay function&r).

or(t) =

+oo ift>T
0 otherwise

for someT’ > 0 (the ‘delay’).

DEFINITION 3.1.3 (Rate-latency functionsg 7).

Rt—-T) ift>T
_ ot
Prr(t) = Rlt =T { 0 otherwise
for someR > 0 (the ‘rate’) andT" > 0 (the ‘delay’).
DEFINITION 3.1.4 (Affine functionsy, ;).
(1) = rt+b ift>0
=0 otherwise

for somer > 0 (the ‘rate’) andb > 0 (the ‘burst’).

DeFINITION 3.1.5 (Step Functionr).

1 ift>T
vr(t) = Lgsry = { 0 otherwise

for someT” > 0.

DEFINITION 3.1.6 (Staircase Functions ;).

[ [&F] ift>0
ur(t) = { 0 otherwise

for someT’ > 0 (the ‘interval’) and0 < 7 < T (the ‘tolerance’).

These functions are also represented in Figure 3.1. By aontbthese basic functions, one obtains more
general piecewise linear functions belongingftoFor example, the two functions represented in Figure 3.2

are written using\ and+ from affine functions and rate-latency functions as followgh r{ > r9 > ... >
rrandb; < by < ...<b;

fl = Tri,by A Vra,bo AR Yrrbr = 1221[{%%@} (31)
fo = ArA{Bror + RT} AN{Brar +2RT} A ...
= igg {Br2ir +iRT} . (3.2)

We will encounter other functions later in the book, and mbtather representations with the min-plus
convolution operator.
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Peak rate function Burst-delay function
Ya =Rt 4 5.()=0fort<T
R T zwfort>T
/ R
t t
> >
T
Rate-latency function Affine function
) = R[t-T1+ y (=0 fort=0
A Br O =RET] Ab 4 b fort>0
R r
b
T t t
> >
Staircase function Step function
Av_ (t)=[+0)/TO Au (=1 =0 fortsT
T T T 1 fort>T
4__ —
3+ —
2+ —
11— 1T
| | : > o >
T-1 2Tt 3Tt ¢t T t

Figure 3.1:A catalog of functions of F: Peak rate function (top left), burst-delay function (top right), rate-
latency function (center left), affine function (center right), staircase function (bottom left) and step function
(bottom right).
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A 0
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RTL--
. > — >
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Figure 3.2:Two piecewise linear functions of 7 as defined by (3.1) (left) and (3.2) (right).

3.1.4 PSEUDO-INVERSE OF WIDE-SENSE|INCREASING FUNCTIONS

It is well known that any strictly increasing function istéfvertible. That is, if for anyt; < to, f(t1) <
f(t2), then there is a functiorf = such thatf~!(f(¢)) = ¢ for all . Here we consider slightly more
general functions, namely, wide-sense increasing funstiand we will see that a pseudo-inverse function
can defined as follows.

DEFINITION 3.1.7 (Pseudo-inverse).et f be a function or a sequence &t The pseudo-inverse d¢fis the
function
f~Y(x) = inf {t such that f(t) > z}. (3.3)

For example, one can easily compute that the pseudo-irsvefdbe four functions of Definitions 3.1.1 to
3.1.4 are

Aet = Auyr
oot = SAT
Brr = Y/RT
’Yr_bl = Bijrp-

The pseudo-inverse enjoys the following properties:

THEOREM 3.1.2 (Properties of pseudo-inverse functionsgt f € F, z,t > 0.

e (Closure)f~! € Fand f~1(0) = 0.
e (Pseudo-inversion)Ve have that

f&yzz = )<t (3.4)
ey <t = ft)>w (3.5)

e (Equivalent definition)
f~Yx) = sup {t such that f(t) < z}. (3.6)

PROOF:  Define subsesS, = {t such that f(t) >z} C R*. Then (3.3) becomeg~!(x) = infS,.
(Closure) Clearly, from (3.3)f ~!(z) = 0 for < 0 (and in particularf =1 (0) = 0). Now, let0 < x; < .
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ThenS,, 2 S,,, which implies thainf S,, < inf S,, and hence that ~!(z;) < f~!(z2). Thereforef !
is wide-sense increasing. (Pseudo-inversion) Supposéhatsf () > x. Thent € S,, and so is larger than

the infimum ofS,, which is f~!(z): this proves (3.4). Suppose next thfat!(z) < t. Thent > inf S,,
which implies that € S, by definition of an infimum. This in turn yields thg{¢) > x and proves (3.5).
(Equivalent definition) Define subsét, = {t such that f(t) < z} C R*. Pickt € S, andt € S,. Then

f(~) < f(t), and sincef is wide-sense increasing, it implies thak t. This is true for anyt € S, and
te Sx, hencesupS <inf S,. AsS US, = RT, we cannot haveupS < inf S,.. Therefore

sup S, = inf S, = f~H(x).

3.1.5 CoNCAVE, CONVEX AND STAR-SHAPED FUNCTIONS

As an important class of functions in min-plus calculus &edonvex and concave functions, it is useful to
recall some of their properties.

DEFINITION 3.1.8 (Convexity inR™). Letu be any real such that < u < 1.

e SubsetS C R" is convex if and only ifix + (1 — u)y € Sforall z,y € S.

e Functionf from a subseD C R" toR is convex if and only if (uz+(1—u)y) < uf(z)+(1—u)f(y)
forall z,y € D.

e Function f from a subseD C R" to R is concave if and only if- f is convex.

For example, the rate-latency function (Fig 3.1, centd) isfconvex, the piecewise linear functigingiven
by (3.1) is concave and the piecewise linear functfeigiven by (3.2) is neither convex nor concave.

There are a number of properties that convex sets and funsatiojoy [76]. Here are a few that will be used
in this chapter, and that are a direct consequence of Defirtil.8.

e The convex subsets & are the intervals.
e If S; andS, are two convex subsets Bf?, their sum

S=81+8 ={seR"|s=s;+ sy forsomes; € S; ands, € Sy}

is also convex.

e Functionf from an intervalfa, b] to R is convex (resp. concave) if and onlyfifux + (1 — u)y) <
(resp.>) uf(xz) + (1 —u)f(y) forall z,y € [a,b] and allu € [0.1].

e The pointwise maximum (resp. minimum) of any number of canfresp. concave) functions is a
convex (resp. concave) function.

e If Siis a convex subset @"*!, n > 1, the function fromR™ to R defined by

f(z) = inf{p € R such that (z,u) € S}

IS convex.
e If fis a convex function fronR™ to R, the setS defined by

S = {(z, ) € R"! such that f(z) < u}

is convex. This set is called the epigraphfoflt implies in the particular case where= 1 that the
line segment betweefu, f(a)} and{b, f(b)} lies above the graph of the curye= f(z).
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The proof of these properties is given in [76] and can beedsitiuced from Definition 3.1.8, or even from
a simple drawing. Chang [11] introducsthr-shapedunctions, which are defined as follows.

DEFINITION 3.1.9 (Star-shaped functionfrunction f € F is star-shaped if and only jf(¢) /t is wide-sense
decreasing for alk > 0.

Star-shaped enjoy the following property:

THEOREM3.1.3 (Minimum of star-shaped functiond)et f, g be two star-shaped functions. Thee= fAg
is also star-shaped.

PrROOF:  Consider some > 0. If h(t) = f(t), then for alls > ¢, h(t)/t = f(t)/t > f(s)/s > h(s)/s.
The same argument holds of coursé(f) = g(t). Thereforeh(t)/t > h(s)/s for all s > t, which shows
thath is star-shaped. O

We will see other properties of star-shaped functions im# sections. Let us conclude this section with
an important class of star-shaped functions.

THEOREM 3.1.4. Concave functions are star-shaped.

PROOF: Let f be a concave function. Then for amye [0,1] andz,y > 0, f(uzx + (1 — w)y) >
uf(z)+ (1 —u)f(y). Takex = t,y = 0 andu = s/t, with 0 < s < ¢. Then the previous inequality
becomesf(s) > (s/t) f(t), which shows thaf (¢)/t is a decreasing function of O

On the other hand, a star-shaped function is not necessagiyncave function. We will see one such
example in Section 3.1.7.

3.1.6 MIN-PLUS CONVOLUTION

Let f(¢) be a real-valued function, which is zero fox< 0. If ¢t € R, the integral of this function in the
conventional algebréR, +, x) is
t
/ f(s)ds
0

which becomes, for a sequengé&) wheret € Z,

In the min-plus algebraR U {+occ}, A, +), where the ‘addition’ isA and the ‘multiplication’ is+, an
‘integral’ of the functionf becomes therefore

inf {f()},

s€R such that 0<s<t

which becomes, for a sequen£g) wheret € Z,

min  {f(s)}.

s€Z such that 0<s<t

We will often adopt a shorter notation for the two previoupressions, which is

inf {f(s)},

0<s<t

with s € Z or s € R depending on the domain ¢t
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A key operation in conventional linear system theory is tbevolution between two functions, which is

defined as
+oo

(f@g)(t) = f(t—s)g(s)ds

and becomes, whefit) andg(t) are two functions that are zero fok 0,

(f )t /ft—s

In min-plus calculus, the operation of convolution is théunal extension of the previous definition:

DEFINITION 3.1.10 (Min-plus convolution) Let f andg be two functions or sequences/®f The min-plus
convolution off andg is the function

(fegt) = Oiggfgt {f(t—s5)+g(s)}. (3.7
(Ift <0, (f®g)(t) =0).

Example. Consider the two functions, ;, and Sr 7, with 0 < » < R, and let us compute their min-plus
convolution. Let us first compute it for< ¢ < 7.

(rp ® Br)(t) = Oglfq{%«b t—s)+R[s—T]"}
= Jinf {3alt = 5) +0} = 3,4(0) +0 =040 =0

Now, if t > T, one has

(Yrp ® BrT)(1)

— oinf< {rrp(t—s)+ R[s—T]"}

_ _ _ Jr : o _ +
= dnf {yp(t =)+ Rls = T]"} A inf {34(t = s) + Rls — T]"}

Amf{%b t—s)+R[s—T]"}

= b {b+r(t—s)+0}A inf {b+r(t—s)+R(s = T)}
ANO+R(t—T)}

- {b+r(t—T)}/\{b+rt—RT+ inf {(R —r)s}}/\{R(t—T)}

T<s<t
= {b+rt-T)}AN{b+r(t-—T)} A{R(t-T)}
= {b+r({t—T) A{R(t-T)}.

The result is shown in Figure 3.3. Let us now derive some lipefyperties for the computation of min-plus
convolution.

THEOREM 3.1.5 (General properties of). Letf, g, h € F.

e Rule 1 (Closure of2) (f ® g) € F.

e Rule 2 (Associativity of?) (f ® g) @ h = f ® (g ® h).

Rule 3 (The zero element fon is absorbing for®) The zero element fox belonging toF is the
functione, defined as(t) = +oo forall t > 0 ande(t) = 0forall t < 0. One hasf ® e = ¢.

Rule 4 (Existence of a neutral element fab) The neutral element &, asf ® g = f.

Rule 5 (Commutativity ofp) f ® g = g ® f.

Rule 6 (Distributivity of @ with respecttor) (f Ag) @ h = (f ® h) A (g ® h).

Rule 7 (Addition of a constantforany K € R", (f+ K)®g=(f®g) + K.

The proof of these rules is easy. We prove the two first rutesptoof of the five others are left to the reader.
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 (Vrp ® Brr)(T)

4

b—1rT -

v

Figure 3.3:Function v,., ® Br,r When 0 < r < R.

ProoF: (Rule 1) Sincef is wide-sense increasing,

ftr—s)+g(s) < f(ta—s)+g(s)

forall0 < t; < t9 and alls € R. Therefore
;gﬂg {ft1—s)+g(s)} < ;felﬂg {f(ta—s)+g(s)}
and asf (t) = g(t) = 0 whent < 0, this inequality is equivalent to

inf {f(ti —s)+g(s)} < inf {f(ta—s)+g(s)},

0<s<t; 0<s<ty

which shows thatf @ g)(t1) < (f ® g)(t2) forall 0 < ¢; < t2. (Rule 2) One has

(feg@h)(t) = inf{ inf {f(t—s—u)+g(u)}+h(s)}

0<s<t | 0<u<t—s

—  inf { inf {f(t—u’)+g(2/—8)+h(3)}}

0<s<t | s<u'<t

= inf { inf {f(t—u’)+g(U'—8)+h(5)}}

0<u/<t | 0<s<uw/

0<u’/<t

= inf {f(t—u)+(g@n)(W))}

0<u/<t
= (f@(geh)(d).
]

Rules 1 to 6 establish a structure of a commutative dioid farA, ®), whereas Rules 6 and 7 show that
is a linear operation ofR*, A, +). Now let us also complete these results by two additionaisrthat are
helpful in the case of concave or convex functions.

THEOREM 3.1.6 (Properties of for concave/convex functions).et f, g € F.

e Rule 8 (Functions passing through the originlf f(0) = g(0) = 0thenf ® g < f A g. Moreover, if
f andg are star-shaped, thefi® g = f A g.
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e Rule 9 (Convex functions)f f andg are convex therf ® g is convex. In particular iff, g are convex
and piecewise linearf ® g is obtained by putting end-to-end the different linear peoff and g,
sorted by increasing slopes.

Since concave functions are star-shaped, Rule 8 also isrpilie if f, g are concave witlf (0) = ¢g(0) = 0,
thenf®@g=fAg.

PrRoOOF: (Rule 8) Asf(0) = ¢g(0) =0,

(f@g(t)=gt)A inf {f(t—s)+g(s)}Af(E)<[fE)NgE). (3.8)

0<s<t

Suppose now that, in additiorf andg are star-shaped. Then for ahy> 0 and0 < s < ¢ f(t — s) >
(1 —s/t)f(t)andg(s) > (s/t)g(t), so that

ft—s)+g(s) = f(t) + (s/t)(g(t) — (1))
Now, as0 < s/t <1, f(t)+ (s/t)(g(t) — f(t)) > f(t) A g(t) so that

ft=s5)+9(s) = f(t) Ag(t)
for all 0 < s < t. Combining this inequality with (3.8), we obtain the dediresult. (Rule 9) The proof

uses properties of convex sets and functions listed in teeiquis subsection. The epigraphsfadindg are
the sets

S1 = {(s1,p1) € R? such that f(s1) < 1}
Sy = {(s2,p2) € R? such that g(s2) < 2}

Since f andg are convex, their epigraphs are also convex, and so is th&itSs= S; + So, which can be
expressed as

S = {(t,u) € R?| for some(s, &) € [0,2] x [0, ], f(t —5) < p—&,9(s) < €}
As S is convex, functiom(¢) = inf{u € R such that (¢, ) € S} is also convex. Nowk can be recast as

h(t)
= inf{u € R |for somés, &) € [0,¢] x [0, ], f(t —s) < p— &, g(s) < €}
= inf{u € R |for somes € [0,¢], f(t — s) + g(s) < u}
= inf{f(t —s)+ g(s),s € [0,t]}
= (f®g)1),

which proves thatf ® g) is convex.

If f andg are piecewise linear, one can construct theSset S; + S», which is the epigraph of ® g, by
putting end-to-end the different linear piecesfaindg, sorted by increasing slopes [24].

Indeed, leth’ denote the function that results from this operation, ahddeshow that’ = f ® g. Suppose
that there are a total of linear pieces frony andg, and label them from to n according to their increasing
slopes:0 < r; < ry < ... < r,. Figure 3.4 shows an example for= 5. Let T; denote the length of
the projection of segmeritonto the horizontal axis, fof < i < n. Then the length of the projection of
segment onto the vertical axis i$;7;. Denote byS’ the epigraph of)’, which is convex, and byS’ its
boundary. Pick any pointt, 4’(¢)) on this boundanpS’. We will show that it can always be obtained by
adding a point{t — s, f(t — s)) of the boundary)S; of S; and a point(s, g(s)) of the boundary)S, of Sa.
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Figure 3.4:Convex, piecewise linear functions f (and its epigraph S; (top left)), g (and its epigraph S, (top
right)), and f ® ¢ (and its epigraph S = S; + S, (bottom)).
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Let £ be the linear segment index to whi¢h //(¢)) belongs, and assume, with no loss of generality, that
this segment is a piece gf(that is,k C 9S;). We can express/'(t) as

k—1

k—1
W(t)y=rit=> T)+ > riT (3.9)
=1

=1
Now, lets be the sum of the lengths of the horizontal projections ostgments belonging pand whose
index is less thak, that is,
s = Z T;.
1COS2,1<i<k—1

Then we can compute that

k—1 k—1
t—s = t—Y Ti+y Ti— oo
=1 =1

1COS,,1<i<k—1

k—1
= t-> Ti+ > T
=1

iCOS,,1<i<k—1

and that
k-1
ft—s) = rk(t—ZTi)—i- Z riT;
i= iCOS1,1<i<k—1

g(s) = Z riT;.

1C082,1<i<k—1

The addition of the right hand sides of these two equatioesjigl toh'(t), because of (3.9), and therefore
f(t—s)+ g(s) = R'(t). This shows that any point ¢fS’ can be broken down into the sum of a point of
08, and of a point 0DS,, and hence thalS’ = 9S; + 0S,, which in turn implies thaS’ = S; + S, = S.
Thereforeh' = f ® g. O

The last rule is easy to prove, and states thét isotone, namely:

THEOREM 3.1.7 (Isotonicity of®). Letf,g, f',¢ € F.
e Rule 10 (Isotonicity)lf f < gandf' < ¢ thenf® f'<g® (.

We will use the following theorem:

THEOREM3.1.8. For f andg in F, if in addition g is continuous, then for anythere is some, such that

(f ®9)(t) = filto) + g(t — o) (3.10)

wherefi(to) = supg,<4,} f(s) is the limit from the left of att,. If f is left-continuous, theifi(to) = f(to).

PrROOF: Fixt. There is a sequence of tim@és< s,, < ¢ such that

inf (f(to) +g(t —to)) = lim (f(sn) +g(t — sn)) (3.11)
to<t n—o00

Since0 < s, < t, we can extract a sub-sequence that converges towards saoeety. We take a
notation shortcut and writém,, .. s, = to. If f is continuous, the right hand-side in 3.11 is equal
to fi(to) + g(t — to) which shows the proposition. Otherwigehas a discontinuity aty. Defined =
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f(to) — fi(to). We show that we can again extract a subsequence such,that,. Indeed, if this would
not be true, we would have, > ¢, for all but a finite number of indices. Thus forn large enough we
would have

f(sn) > fl(tO) +9
and by continuity ofy:

gt — 5) > glt — 1) — 2

thus i 5
f(sn) +g(t = s,) > filto) + g(t —to) + 3
Now
filto) +g(t —to) = isrg(f(s) +g(t —s))
thus )

. )
f(sn) +g(t - Sn) > géft‘ (f(s) —{—g(t - ‘9)) + 5
which contradicts 3.11. Thus we can assume tha¥ ¢, for n large enough and thdém,, o f(s,) =
filto). O
Finally, let us mention that it will sometimes be useful tedk down a somewhat complex function into the
convolution of a number of simpler functions. For exampleserve that the rate-latency functiéa r can

be expressed as
Brr = 6T ® AR. (3.12)

3.1.7 SUB-ADDITIVE FUNCTIONS

Another class of functions will be important in network adies are sub-additive functions, which are
defined as follows.

DEFINITION 3.1.11 (Sub-additive function)Let / be a function or a sequence 8t Thenf is sub-additive
ifand only if f(t + s) < f(t) + f(s) forall s,t > 0.

Note that this definition is equivalent to imposing thfatl f @ f. If f(0) = 0, it is equivalent to imposing
thatf @ f = f.

We will see in the following theorem that concave functioas$ing through the origin are sub-additive. So
the piecewise linear functiofy given by (3.1), being concave and passing through the Qiigysub-additive.

The set of sub-additive functions is however larger than dfiaconcave functions: the piecewise linear
function f, given by (3.2) is not concave, yet one check that it verifiefriteon 3.1.11 and hence is sub-
additive.

Contrary to concave and convex functions, it is not alwaysaus, from a quick visual inspection of the
graph of a function, to establish whether it is sub-additverot. Consider the two functions$z r + K’
andjSgr + K”, represented respectively on the left and right of Figube Although they differ only by
the constantd(’ and K"/, which are chosen so that< K’ < RT < K’ < 400, we will seefrr + K'is
sub-additive but noBr r + K”. Consider firsBrr + K'. If s +¢ < T, thens,t < T and

5R,T(3 + t) + K' =K' <2K' = (,BR7T(S) + K/) + (5R,T(t) + K,).
On the other hand, i§ + ¢ > T, then, sincek” > RT,

Brr(t+s)+K' = R{t+s—T)+K'

R(s+t—-T)+ K'+ (K'— RT)
(Rt—T)+K')+ (R(s—T)+ K"
< Brrt)+K')+ (Brr(s) + K'),

A
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A Br) + K A Br() + K’

K1

ar RT

| -t L >t
T T

Figure 3.5:Functions 8z r + K’ (left) and Sz r + K" (right). The only difference between them is the value
of the constant: K" < RT < K'.

which proves thaBr r + K’ is sub-additive. Consider negi; r + K". Picks = T'andt > T'. Then, since
K" < RT,

Brr(t+s)+ K" =
Brr(t+T)+ K"=Rt+ K"=R(t—-T)+ RT + K"
>Rt—-T)+K'+ K" = (Brr(t)+ K")+ (Brr(s) + K"),
which proves thatr  + K" is not sub-additive.
Let us list now some properties of sub-additive functions.

THEOREM 3.1.9 (Properties of sub-additive functiond)et f, g € F.

e (Star-shaped functions passing through the origitf f is star-shaped withf(0) = 0, then f is
sub-additive.

e (Sum of sub-additive functionslf f andg are sub-additive, so i§f + g).

¢ (Min-plus convolution of sub-additive functionslf f andg are sub-additive, so i§f ® g).

The first property also implies that concave functions pegstirough the origin are sub-additive. The proof
of the second property is simple and left to the reader, weepttee two others.

PROOF:  (Star-shaped functions passing through the origin)d.et> 0 be given. Ifs ort = 0, one
clearly has thaff (s + ¢t) = f(s) + f(t). Assume next that, ¢ > 0. As f is star-shaped,

fs) > ——f(s+1)

s+t
fls+1)

s+t
which sum up to givef (s) + f(t) > f(s+t). (Min-plus convolution of sub-additive functions) Lett > 0

be given. Then
(f®g)(s) + (f®g)(t)
= nf {f(s—u)+g(u)} + oot {ft—v)+g(v)}
= inf inf {f(s—u)+ f(t—v)+g(u)+gv)}

0<u<s 0<v<t
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> inf  inf {f(s+t—(u+v))+g(u+v)}

T 0<u<s 0<w<t

= ogui%28+t{f(s +t—(u+v))+gu+v)}

(f @ g)(t +s).

O

The minimum of any number of star-shaped (resp. concavefitns is still a star-shaped (resp. concave)
function. If one of them passes through the origin, it is ¢fi@re a sub-additive function: for example, as
already mentioned earlier, the concave piecewise lineatifon f; given by (3.1) is sub-additive. On the
other hand the minimum of two sub-additive functions is fotgeneral, sub-additive. Take for example
the minimum between a rate latency functieg - and functionf, given by (3.2), wher?’ = 2R/3. with
R,T as defined in (3.2). Both functions are sub-additive, butaarecheck thatz r A f> is not.

The first property of the previous theorem tells us that alt-shaped functions are sub-additive. One can
check for example thatr  + K’ is a star-shaped function (which is not concave), butmpr + K”.

One can also wonder if, conversely, all sub-additive furdtiare star-shaped. The answer is no: take again
function f, given by (3.2), which is sub-additive. It is not star-shapbdcausef(27")/2T = R/2 <
2R/3 = f(3T)/3T.

3.1.8 SB-ADDITIVE CLOSURE

Given a functionf € F,if f(0) = 0, thenf > f ® f > 0. By repeating this operation, we will get a
sequence of functions that are each time smaller (in the sédee) and converges to some limiting function
that, as we will see, is the largest sub-additive functioalfanthany (in the wide sense) and zeroiin= 0,
and is called sub-additive closure pf The formal definition is as follows.

DEFINITION 3.1.12 (Sub-additive closure).et f be a function or a sequence Bt Denotef (™ the function
obtained by repeatingn — 1) convolutions off with itself. By conventionf(®) = 4y, so thatf") = f,
f@ = f® f, etc. Then the sub-additive closurefgfdenoted byf, is defined by

fzéoAf/\(f@f)/\(f@f@f)/\...:inf{f(">}. (3.13)

n>0

Example. Let us compute the sub-additive closure of the two functi®pg + K’ andSrr + K”, repre-
sented respectively on the left and right of Figure 3.5. Nios¢that Rule 7 of Theorem 3.1.5 and Rule 9 of
Theorem 3.1.6 yield that for ankf > 0,

(Brr + K) ® (Brr + K) = (Brr ® Br1) + 2K = Bror + 2K.
Repeating this convolution times yields that for all integens > 1
(Brr + K)™ = Brur + nK.
Now, if K = K’ > RT andt < nT,

Brnr +nK' = nK'>(n—-1)RT+K' =R(nT-T)+K'
> R[t—T]—’_—FK,:ﬁR,T—FK/,

whereas it > nT

Brnr+nK' = R(t—nT)+nK' =R(t—-T)+ (n—1)(K'—RT)+ K’
> R(t—T)+K' = frg+ K’
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so that(Br 7 + K')™ > Brr + K’ for all n > 1. Therefore (3.13) becomes
Brr + K = A H;fl {(5R,T + K’)(n)} = A (Brr + K'),

and is shown on the left of Figure 3.6. On the other hand i K’ < RT, the infimum in the previous
equation is not reached in= 1 for everyt > 0, so that the sub-additive closure is now expressed by

Fra K7 =60k {(Onr+ K = o\ nt { i + 0K}

and is shown on the right of Figure 3.6.

A

4 Br,1() + K Br1(t) + K’

RTH

—t—+—+— —» 1
T T 2T3T4

Figure 3.6:The sub-additive closure of functions Sg r+ K’ (left) and S+ K" (right), when K” < RT < K'.

Among all the sub-additive functions that are smaller (i tiide sense) thafi and that are zero ih= 0,
there is one that is an upper bound for all others; it is equél Bs established by the following theorem.

THEOREM 3.1.10 (Sub-additive closure).et f be a function or a sequence &, and let f be its sub-
additive closure. Then (if < f, f € F and f is sub-additive. (i) if functiory € F is sub-additive, with
g(0) =0andg < f,theng < f.

ProoF: (i) It is obvious from Definition 3.1.12, thaf < f. By repeating(n — 1) times Rule 1 of
Theorem 3.1.5, one has thiltY € F foralln > 1. As f(O) = 6§y € Ftoo, f = inf,>o{f™} € F. Letus
show next thaff is sub-additive. For any integersm > 0, and for anys, ¢ > 0,

frrmets) = (FMe f)tds) = it {FP(4s - )+ f(w)

< fU) + F(s)
so that
Fits) = inf (fU(t o)) = it (f00( 45}
<

Jint { FO @) + £ (s)}
= E{FOO) + int (£ () = T0) + ()

which shows thaff is sub-additive. (ii) Next, suppose thatc F is sub-additiveg(0) = 0 andg < f.
Suppose that for some > 1, f(» > g. Clearly, this holds fom = 0 (because;(0) = 0 implies that
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g < & = fO)yandforn = 1. Now, this assumption and the sub-additivity @fyield that for any
0<s<t f(t—s)+ f(s) > g(t —s)+ g(s) > g(t) and hence that™+1)(¢) > g(t). By recursion on
n, f® > gforalln > 0, and thereforef = inf,,>o{f™} > g. O

COROLLARY 3.1.1 (Sub-additive closure of a sub-additive functiobgt f € F. Then the three following
statements are equivalent: (fY(0) = 0 and f is sub-additive (ii)f ® f = f (i) f = f.

PrROOF: (i) = (i) follows immediately from from Definition 3.1.11. (i (iii): first note thatf @ f = f
implies thatf™ = f for all n > 1. Second, note thatf ® f)(0) = f(0) + £(0), which implies that
£(0) = 0. Thereforef = inf,,>q{f™} = & A f = f. (iii) = (i) follows from Theorem 3.1.10. O
The following theorem establishes some additional usafperties of the sub-additive closure of a func-
tion.

THEOREM 3.1.11 (Other properties of sub-additive closuregt f, g € F

e (Isotonicity) If f < gthenf < 3.
e (Sub-additive closure of a minimumf A g = f
e (Sub-additive closure of a convolutionj ® g >

®g. _
f®g. Iff(0)=g(0)=0thenf®g=f®

PROOF: (Isotonocity) Suppose that we have shown that for sare1, £ < ¢(") (Clearly, this holds
for n = 0 and forn = 1). Then applying Theorem 3.1.7 we get

Pt Z ) g f < o) g g = D)

which implies by recursion on that f < g. (Sub-additive closure of a minimum) One easily shows,aisin
Theorem 3.1.5, that

fAgP =R NHAfogA(gRg).
Suppose that we have shown that for same 0, the expansion off A ¢)™ is

(f/\g)(")
)/\(f(" 2)®g(2)) ./\g(”) —

A (S
Oéﬁin{ @9}
Then
(FAQY = (Frgefrg®={rergm}r{sefrgm}
—  inf {f(n+1—k) ®g(k)} A inf {f(n—k) ®g(k+1)}

0<k<n 0<k<n

= if [y gl inp LK) g 6]

0<k<n 1<k <n+1

_ . (n+1—k) (k)
it e g

which establishes the recursion for all> 0. Therefore

— : (n—Fk) (B) L — se s (n—Fk) (k)
Thg = inf it {70 eg® | =l il {000}

— inf inf{f(” ®g(k)} — inf {mf{f t®g ’“)}

k>01>0 k>0 | >0

_ —= K\ _F . k)Y — Fon
;i%%{f@’g } f®lg21g{g }=f®y.
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(Sub-additive closure of a convolution) Using the samenretice argument as above, one easily shows that
(f®g)™ = f™ @ g™, and hence that

Feg = mi{(feg™}=

n>0

inf { ™ g g(m)}

n,m>0

= (s {r}) e (g {o}) ~Tos (3.14)

If £(0) = g(0) = 0, Rule 8in Theorem 3.1.6 yields thftz g < f A g, and therefore that @ g < f A g.
Now we have just shown above thaih ¢ = f ® g, so that

feg<f®yg
Combining this result with (3.14), we gét® g = f ® 3. O

Let us conclude this section with an example illustrating ¢fffect that a difference in takingcontinuous
or discrete may have. This example is the computation ofubeaslditive closure of

1™ eg™)

inf
n>0

v

2 if t>0
f(t)_{o if t<0

Suppose first that € R. Then we compute that
(F@ )t = inf {(t-9)7+} = (t/2)° +(¢/2)* = /2
as the infimum is reached in= ¢/2. By repeating this operation times, we obtain
(n) o )2 (n—1)\2 _
7O = it (=9 + (7)) | =
: 2 2 _ 42
Oér;f%t{(t—s) +s°/(n—1)} =t*/n

as the infimum is reached in= ¢(1 — 1/n). Therefore
F(t) = mf{t*/n} = lim ¢°/n = 0.

Consequently, if € R, the sub-additive closure of functighis

f=0,
as shown on the left of Figure 3.7.

Now, if ¢ € Z, the sequencg (t) is convex and piecewise linear, as we can always connectiffieeedt
successive point&, t2) for all t = 0,1,2,3,...: the resulting graph appears as a succession of segments
of slopes equal t92¢ + 1) (the first segment in particular has slope 1), and of prajestion the horizontal

axis having a length equal to 1, as shown on the right of Fi@ire Therefore we can apply Rule 9 of
Theorem 3.1.6, which yields thgt® f is obtained by doubling the length of the different lineagresents

of f, and putting them end-to-end by increasing slopes. Thetcellexpression of the resulting sequence

is

(£ © 1)(E) = gnin {(t =5+ 5} = [£2/2].

Sequencg® = f® f is again convex and piecewise linear. Note the first segmanslopel, but has now
a double length. If we repeattimes this convolution, it will result in a convex, piecewinear sequence
™) (t) whose first segment has slope 1 and horizontal length

M@y =t ifo<t<n,
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f()
()

£ (t) T

fi(t) >t 1

——t———— >t

123
Figure 3.7:The sub-additive closure of f(t) = t\;(t), when ¢ € R (left) and when ¢ € Z (right).

as shown on the right of Figure 3.7. Consequently, the suiithzel closure of sequencg is obtained by
lettingn — oo, and is thereforgf (¢) = t for t > 0. Therefore, ift € Z,

f=A.

3.1.9 MIN-PLUS DECONVOLUTION

The dual operation (in a sense that will clarified later orthefmin-plus convolution is the min-plus decon-
volution. Similar considerations as the ones of Subse@idrnl can be made on the difference between a
sup and amax. NotationV stands fosup or, if it exists, formax: a V b = max{a, b}.

DEeFINITION 3.1.13 (Min-plus deconvolution)Let f and g be two functions or sequencesBf The min-
plus deconvolution of by g is the function

(fog(t) = sup {ft+u)—g(uw)}. (3.15)

If both f(¢) andg(t) are infinite for some, then (3.15) is not defined. Contrary to min-plus convohutio
function (f @ g)(¢) is not necessarily zero far< 0, and hence this operation is not closedfinas shown
by the following example.

Example. Consider again the two functions, andsr 7, with 0 < r < R, and let us compute the min-plus
deconvolution ofy,;, by Br 7. We have that

(vrp @ BrT)(t)
= sup {yp(t+u) — Rlu—T]"}
u>0
= sup {yp(t+u) — Rlu—T]"} Vsup {yp(t+u) — Rlu—T]"}
0<u<T u>T
= sup {yp(t+uw)}Vsup{yp(t+u) —Ru+ RT}
0<u<T u>T
= {yp(t+T)} Vsup {yp(t+u) — Ru+ RT}. (3.16)
u>T

Let us first compute this expression fo< —7". Then~, ,(t + 7') = 0 and (3.16) becomes

(Yrp @ Br,T)(1)
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= 0V sup {vp(t+u)— Ru+ RT}
T<ul—t

V sup {yp(t+u) — Ru+ RT}

u>—t

= 0V sup {0—Ru+ RT}V sup {b+r(t+u) — Ru+ RT}

T<u<l—t
= OVOV{b+Rt+RT} =+ R(t+T)".

u>—t

Let us next computéy, , © Srr)(t) fort > —T. Then (3.16) becomes

(Yrp @ BrT)(1)

The result is shown in Figure 3.8.

{o+rt+T)} vsup{b+r(t+u) — Ru+ RT}

u>T

(b+rt+T)}V{b+r(t+T)} =b+r(t+T)

A (Vo Br )M

Figure 3.8:Function v,., @ Br,r When 0 < r < R.

Let us now state some propertiescof{Other properties will be given in the next section).

THEOREM 3.1.12 (Properties ab). Let f,g,h € F.

ProoF: (Rule 11) If f < g, then for anyh € F

(f @ h)(t) = sup { f(t +u) — h(u)}

u>0

(h @ f)(t) = sup {A(t +u) — f(u)}

u>0

(Rule 12) One computes that

IN

v

Rule 11 (Isotonicity of) If f < g,thenf o h<gohandh® f > h© g.
Rule 12 (Composition 0b) (f @ g) @ h = f @ (g ® h).

Rule 13 (Composition o and®) (f ® g) © g < f ® (9 @ g).

Rule 14 (Duality betweem and®) f @ g < hifand only if f < ¢ ® h.
Rule 15 (Self-deconvolution]f @ f) is a sub-additive function of such that(f @ f)(0) = 0.

sup {g(t +u) —h(u)} = (9@ h)(¥)

sup {A(t +u) — g(u)} = (h @ g)(t).

u>0

123
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(fog)oh)(t) = sup{(fog)(t+u)—h(u)}

u>0

= sup {sup (0w +0) = g0)} ~ b |

u>0 L v>0

= sup {sup {fie+0") =g’ —uw)} - h(u)}

u>0 | v'>u

= supsup {f(t+v')— {g(v' —u)+h(u)}}

u>0v'>u

= sup sup {f(t+v)—{g(' —u)+h(u)}}
V' >0 0<u<o’

— < AN 1 r_

= sup {f(t+v) Ogliliv/{g(v u)—i—h(u)}}

v'>0

= sup {f(t+v)—(9@n)(V)} =(f @ (g®h)(t).

v'>0

(Rule 13) One computes that

(feg og(t) = iglg{(f®g)(t+U)—g(U)}

— sup inf {f(t+u—s)+g(s) - glu)}

u>0 0<s<t+u

= s (S o) ol ) - o)

< f t —
a Zglgogsl%t{f s) +g(s" +u) = (u)}

< sup inf {f(t—S’)+igg{g(8’+v)—g(v)}}

u>0 0<s’'<t

= nt L) sty + 0 - o)

0<s’<t

= inf {flt—5)+29) (N} =(®(g29)@).

0<s'<t

(Rule 14) Suppose firstthaf @ g)(s) < h(s) for all s. Take anys,v > 0. Then

fls +v) —g(v) <sup {f(s+u) —g(u)} = (f @ 9)(s) < h(s)

u>0
or equivalently,

f(s+v) <g(v) + h(s).
Lett = s 4+ v. The former inequality can be written as

f(t) < gt —s)+ h(s).

As itis verified for allt > s > 0, it is also verified in particular for the value sthat achieves the infimum
of the right-hand side of this inequality. Therefore it isiz@lent to

7t < int {g(t =) +h(s)} = (92 h)(1)

for all t > 0. Suppose now that for all, f(v) < (¢ ® h)(v). Pick anyt € R. Then, sincey, h € F,

fl) < inf {g(v—s)+h(s)} = inf {g(v—s) +h(s)} < g(t —v) + h(t).

0<s<wv
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Letu = ¢t — v, the former inequality can be written as

f(t+u) —g(u) < h(?).
As this is true for allu, it is also verified in particular for the value afthat achieves the supremum of the
left-hand side of this inequality. Therefore it is equivdléo

Sup {f(t+u) —g(u)} < h(t).
Now if u < 0, g(u) = 0, so thatsup,,o{ f(t + u) — g(u)} = f(¢) and the former inequality is identical to
sup {f (£ +u) — g(u)} < h(t)

u>0
for all t. (Rule 15) It is immediate to check thef @ f)(0) = 0 and thatf © f is wide-sense increasing.

Now,
(fofs)+(fof)d)
= iglg{f(HU)—f(U)}+iL>113{f(8+v)—f(v)}
= igg{f(HU)—f(U)}Jr sup {f(s+t+w) — f(t+w)}

w>—t

> 51;% {sg;g{f(t%—u) —flu)+ f(s+t+w) —f(t+w)}}
> lsUL;%{f(Hw)—f(w)+f(8+t+w)—f(t+w)}

(fofs+t).
]
Let us conclude this section by a special property that apppdi self-deconvolution of sub-additive functions.

THEOREM 3.1.13 (Self-deconvolution of sub-additive functionget f € F. Thenf(0) = 0 and f is
sub-additive if and only if @ f = f.

PROOF: (=) If fis sub-additive, then for all, u > 0, f(t + u) — f(u) < f(t) and therefore for all
t >0,
(f © N)(t) =sup{f(t+u) — f(u)} < F (D).

u>0

On the other hand, if (0) = 0,
(foH) = sgg{f(t +u) — f(u)} = f(t) = f(0) = f(1).
Combining both equations, we get that» f = f. (<) Suppose now thaf © f = f. Then f(0)

(f© f)(0) =0andforanyt,u >0, f(t) = (f© f)(t) = f(t+u) = f(u) sothatf(t) + f(u) > f(t+u
which shows thaf is sub-additive.

~—

O

3.1.10 REPRESENTATION OF MIN-PLUS DECONVOLUTION BY TIME INVERSION

Min-plus deconvolution can be represented in the time tegedomain by min-plus convolution, for func-
tions that have a finite lifetime. Function € G has a finite lifetime if there exist some finit& and
T such thatg(t) = 0if t < Ty andg(t) = ¢(T) for t > T. Call G the subset ofj, which contains
functions having a finite lifetime. For functiop € G, we use the notatiop(+occ) as a shorthand for
supier{g(t)} = lim¢ 100 g(t).

LEMMA 3.1.1. Let f € F be such thatim;,, f(t) = +oco. Foranyg € G, g @ fis also inG and
(9@ f)(+00) = g(+00).
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PrRoOOF: DefineL = g(+00) and callT a number such that(t) = L fort > T. f(0) > 0 implies that
g0 f < g(+00) =g(L). Thus
(go f)(t) < Lfort>T. (3.17)

Now sincelim;_, o, f(t) = 400, there is som&; > T such thatf(¢t) > Lforall ¢ > T;. Now lett > 277.
If w> T3, thenf(u) > L. Otherwiseu < T} thust —u >t — Ty > Ty thusg(t — u) > L. Thus in all
casesf(u) + g(t — u) > L. Thus we have shown that

(9@ f)(t) > Lfort > 2T;. (3.18)

Combining (3.17) and (3.18) shows the lemma. O

DEFINITION 3.1.14 (Time Inversion) For a fixedT € [0, +oc|, the inversion operato® is defined oG
by:
vt >0, @7(g)(t) = g(+o0) — g(T — 1)

Graphically, time inversion can be obtained by a rotation&° around the poin(%, @). It is simple

to check thatbr(g) is in G, that time inversion is symmetrica®(P7(g)) = g) and preserves the total
value @7(g)(+00) = g(+0)). Lastly, for anya andT, « is an arrival curve fog if and only if « is an
arrival curve for®,(g).

THEOREM 3.1.14 (Representation of Deconvolution by Time Inverkidret g € G, and letT be such that
g9(T) = g(+00). Let f € F be such thatim;_, . ~, f(t) = +oc0. Then

9 f=2or(2r(g9) @ f) (3.19)

The theorem says thgt® f can be computed by first inverting time, then computing the-ptius con-
volution betweenf, and the time-inverted functiog, and then inverting time again. Figure 3.9 shows a
graphical illustration.

PROOF:  The proof consists in computing the right handside in Equa(B.19). Callj = ®1(g). We
have, by definition of the inversion

Or(Pr(9) ® f) = 2r(g© f) = (9 © f)(+00) = (@ ) (T 1)
Now from Lemma 3.1.1 and the preservation of total value:
(9 ® f)(+00) = g(+00) = g(+00)
Thus, the right-handside in Equation (3.19) is equal to
9(+00) = (50 (T = 1) = gl(+00) = f (3T ¢ = w) + f(u)}
Again by definition of the inversion, it is equal to

g(+00) — 5gg{g(+oo) —g(t+u)+ f(u)} = ig%{g(t +u) — f(u)}.



3.1. MIN-PLUS CALCULUS 127
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Figure 3.9:Representation of the min-plus deconvolution of g by f = ~,; by time-inversion. From top to
bottom: functions f and g, function ®1(g), function ®r(g) ® f and finally function ¢ @ f = &7 (P (g9) ® f).
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3.1.11 \ERTICAL AND HORIZONTAL DEVIATIONS

The deconvolution operator allows to easily express twy veportant quantities in network calculus,
which are the maximal vertical and horizontal deviationsMeen the graphs of two curvgsandg of F.
The mathematical definition of these two quantities is de\id.

DerINITION 3.1.15 (Vertical and horizontal deviationgd)et f and g be two functions or sequences.bf
The vertical deviation( f, g) and horizontal deviatior( f, g) are defined as

v(f,0) = sw{f{t) —9(®)} (3.20)
h(f,g) = s;p {inf {d > 0 such that f(¢t) < g(t+d)}}. (3.21)
>0

Figure 3.10 illustrates these two quantities on an example.

A g(t)

iy [ —

>

Figure 3.10:The horizontal and vertical deviations between functions f and g.

Note that (3.20) can be recast as

v(f,9) = (f @ 9)(0) (3.22)
whereas (3.21) is equivalent to requiring thay, ¢) is the smallestl > 0 such that for alt > 0, f(¢) <
g(t + d) and can therefore be recast as

h(f,g) = inf {d > 0 such that (f © g)(—d) < 0}.

Now the horizontal deviation can be more easily computenhftioe pseudo-inverse gf Indeed, Defini-
tion 3.1.7 yields that

g '(f(t)) = inf{A suchthat g(A) > f(t)}
= inf{d > O such that g(t +d) > f(t)} + ¢
so that (3.21) can be expressed as

hf,g) = sup {71 (1) =t} = (g7 (f) @ A1)(0). (3.23)

We have therefore the following expression of the horiziodégiation betweerf andg:

PROPOSITION3.1.1 (Horizontal deviation).

h(f,g) = sup {7 (f@®) —t}.
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3.2 MAX-PLUS CALCULUS

Similar definitions, leading to similar properties, can leeived if we replace the infimum (or minimum, it
is exists) by a supremum (or maximum, if it exists). We usertbgtion\V for denotingsup or max. In
particular, one can show théR U {—oo}, vV, +) is also a dioid, and construct a max-plus convolution and
deconvolution, which are defined as follows.

3.2.1 MAX-PLUS CONVOLUTION AND DECONVOLUTION

DEFINITION 3.2.1 (Max-plus convolution)Let f and g be two functions or sequences®f The max-plus
convolution off andg is the function

(fRg)(t) = sup {f(t—s)+g(s)}. (3.24)

0<s<t

(Ift <0, (fRg)(t) = 0).

DEFINITION 3.2.2 (Max-plus deconvolution).et f andg be two functions or sequences/f The max-plus
deconvolution off by g is the function

(fZg)(t) = it {f(t+ ) — glw)} (3.25)

3.2.2 LINEARITY OF MIN-PLUS DECONVOLUTION IN MAX-PLUS ALGEBRA

Min-plus deconvolution is, in fact, an operation that isetn in (R™*, Vv, +). Indeed, one easily shows the
following property.

THEOREM 3.2.1 (Linearity of® in max-plus algebra)Let f,g,h € F.

e Rule 16 (Distributivity of® with respecttov) (f Vg) @ h= (f @ h)V (g @ h).
e Rule 17 (Addition of a constantforany K e R™, (f+ K)o g= (f 0 g) + K.

Min-plus convolution is not, however, a linear operatiof{lti", \/, +), because in general

(fvg @h#(feh)V(gh).

Indeed, takef = Bsr1, g = Ag andh = Ao for someR, T > 0. Then using Rule 9, one easily computes
(see Figure 3.11) that

f®h = B3pr ® Mg = PorT
gR®h = ArR®Apr = AR
(fVg)@h = (B3rrVAR)® AR = Bopar/aV AR
# Borr VAR =(f®h)V(9®h).

Conversely, we have seen that min-plus convolution is atimgeration in(R*, A, +), and one easily
shows that min—plus deconvolution is not linear(ix™, A, +). Finally, let us mention that one can also
replace+ by A, and show thafR U {+o00} U {—o0}, Vv, A) is also a dioid.Remark However, as we have
seen above, as soon as the three operationg and + are involved in a computation, one must be careful
before applying any distribution.
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A((th)D(QJDh))(t) >R (Eng)Dh))(t)
2R
DRT}-rmmmmresmnnees :
i 3RT/2f /
; R
T 27 " 3T/4 3712 g

Figure 3.11:Function (f ® h) V (¢ ® h) (left) and (f V g) ® h (right) when f = Bsg7, g = Ag and h = Xap
for some R, T > 0.

3.3 EXERCISES

ExeErcISE3.l. 1. Computex ® ¢ for any functiona
2. Express the rate-latency function by meané aifd A\ functions.

EXERCISE3.2. 1. ComputeX), 5; whenp; is a rate-latency function
2. Computed; @ [ with 81(t) = R(t — T)* and fa(t) = (1t + b) L0y

ExeErcISE3.3. 1. Is® distributive with respect to thewin operator ?



CHAPTER 4

MIN-PLUS AND MAX-PLUS SYSTEM
THEORY

In Chapter 3 we have introduced the basic operations to mktéfunctions and sequences in Min-Plus or
Max-Plus algebra. We have studied in detail the operatidresmvolution, deconvolution and sub-additive

closure. These notions form the mathematical cornerstanghich a first course of network calculus has
to be built.

In this chapter, we move one step further, and introducehtberetical tools to solve more advanced prob-
lems in network calculus developed in the second half of thekb The core object in Chapter 3 were
functions and sequences which operations could be performed. We will now placeselves at the level

of operatorsmapping an input function (or sequence) to an output funadiosequence. Max-plus system
theory is developed in detail in [28], here we focus on thelteghat are needed for the remaining chapters
of the book. As in Chapter 3, we focus here Min-Plus Systenoihas Max-Plus System Theory follows
easily by replacing minimum by maximum, and infimum by suprem

4.1 MIN-PLUS AND MAX-PLUS OPERATORS

4.1.1 VECTOR NOTATIONS

Up to now, we have only worked with scalar operations on sdalections inF or G. In this chapter, we
will also work with vectors and matrices. The operationsextended in a straightforward manner.

Let J be afinite, positive integer. For vectars:’ € R/, we definez A 7’ as the coordinate-wise minimum
of Zandz’, and similarly for the+ operator. We writeZ < 2’ with the meaning that; < z§ fort <j<J.
Note that the comparison so defined is not a total order, shaté cannot guarantee that eithex 2 or
z' < Z holds. For a constari’, we notez + K the vector defined by adding to all elements of.

We denote byG’ the set ofJ-dimensional wide-sense increasing real-valued funstionsequences of
parametet, and F”’ the subset of functions that are zero fot 0.

For sequences or function4t), we note similarly(Z A 4)(t) = Z(t) A ¢(t) and(Z + K)(t) = Z(t) + K
for all t > 0, and writez < ¢ with the meaning that(¢) < ¢(¢) for all ¢.

For matrices4, B € Rt/ x RT”/, we defined A B as the entry-wise minimum o and B. For vector
7 € Rt 7, the ‘multiplication’ of vectorz € R+ by matrix A is — remember that in min-plus algebra,

131
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multiplication is the+ operation — by
A+ Z,

and has entriemini << (a;; + z;). Likewise, the ‘product’ of two matriced and B is denoted byA + B
and has entriesiing << s(a;; + b;i) for 1 < i,k < J.

Here is an example of a ‘multiplication’ of a vector by a matiwhenJ = 2

5 3 n 21 |4
1 3 1] |3
and an example of a matrix ‘multiplication’ is
5 3 2 4 4 3
At e]-[5 3]

We denote by7-"J2 the set ofJ x J matrices whose entries are functions or sequencés ahd similarly
for G7°.

The min-plus convolution of a matrid € F/* by a vectorZ € F7 is the vector of7” defined by
(A®2)(t) = nf {A(t—s)+2(s)}
and whoseJ coordinates are thus

1I§ji£J{aij ® zj}(t) = Oiggfgt @i&{aij(t —s) +2;(s)}-
Likewise, A ® B is defined by
(A® B)(t) = nggt{/l(t — )+ B(s)}

and has entriesin; << j(a;; ® bj) for 1 <i,k < J.

|: )\r e :| ® |: Yr/2,b :| _ |: )‘7" /\r}/r/Q,b :|
o0 5T 52T 53T

{ Ar 00 ] % { Yr/2p  Yrb } _ [ Ar AVrj2p Ar ]
o0 Ot dor  Ar d3r Br.T

For example, we have

and

Finally, we will also need to extend the set of wide-senseeiasing functiong; to include non decreasing
functions of two arguments. We adopt the following defimit{@ slightly different definition can be found
in [11]).

DEFINITION 4.1.1 (Bivariate wide-sense increasing functionale denote by the set of bivariate functions
(or sequences) such that for all < s and anyt < ¢/

We call such functions bivariate wide-sense increasingtfans.

In the multi-dimensional case, we denote &y the set ofJ x .J matrices whose entries are wide-sense
increasing bivariate functions. A matrix df(t) € 77/° is a particular case of a matr# (¢, s) € G”, with
s set to a fixed value.
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4.1.2 OPERATORS

A system is an operatdil mapping an input function or sequengento an output function or sequence
7 = TI(Z). We will always assume in this book thaty € G/, where J is a fixed, finite, positive integer.
This means that each of thecoordinatese;(t), y;(t), 1 < j < J, is a wide-sense increasing function (or
sequence) of.

It is important to mention that Min-plus system theory applio more general operators, takiRd to R,
where neither the input nor the output functions are reduicebe wide-sense increasing. This requires
minor modifications in the definitions and properties essaleld in this chapter, see [28] for the theory
described in a more general setting. In this book, to avaidutinecessary overhead of new notations and
definitions, we decided to expose min-plus system theorgperators taking” to G-.

Most often, the only operator whose output may not b&ihis deconvolution, but all other operators we
need will takeF” to F”.

Most of the time, the dimension of the input and outpuf is- 1, and the operator takes to F. We will
speak of ascalaroperator. In this case, we will drop the arrow on the input anighut, and write; = I1(x)
instead.

We write IT; < II, with the meaning thall; () < IIy(Z) for all Z, which in turn has the meaning that
I, (2) (t) < Iy(Z)(¢t) for all ¢.

For a set of operatoiid;, indexed by in some sef, we callinf ;< ¢ IT; the operator defined Bnfscs 11| (x(t)) =
inf,eg[Is(x(t))]. ForS = {1,2} we denote it withI; A Ils.

We also denote by the composition of two operators:
(I o Iy)(#) = Iy (I (7))
We leave it to the alert reader to check thaft,c 5 IT, andIl; o II, do map functions i’ to functions in
g’.
4.1.3 A CATALOG OF OPERATORS

Let us mention a few examples of scalar operators of paatidaterest. The first two have already been
studied in detail in Chapter 3, whereas the third was inttedun Section 1.7. The fact that these operators
mapG” into G’ follows from Chapter 3.

DEFINITION 4.1.2 (Min-plus convolutior?,,).

Co ' F — F
z(t) — y(t) =Co(x)(t) = (0 @ x)(t) = infocs<t {o(t — 5) + 2(s)},

for somes € F.

DEFINITION 4.1.3 (Min-plus deconvolutio®,,).

D, : F — G
z(t) = y(t) = Do(x)(t) = (@ 0)(t) = sup,>o {z(t + u) — o(u)},

for somes € F.

Note that Min-plus deconvolution produces an output thasdwot always belong t8'.
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DEFINITION 4.1.4 (Packetizatiof®y).

Pr F = F
a(t) = y(t) =Pr(z)(t) = PH(@(t)) = supien { L) 1r6) <) | -

for some wide-sense increasing sequehddefined by Definition 1.7.1).

We will also need later on the following operator, whose navilibe justified later in this chapter.

DEFINITION 4.1.5 (Linear idempotent operatby).

he + F — F
z(t) — y(t) = he(2)(t) = infocs< {o(t) — o(s) + z(s)},

for somesr € F.

The extension of the scalar operators to the vector caseaiglstforward. The vector extension of the
convolution is for instance:

DEFINITION 4.1.6 (Vector min-plus convolutiofy).

Cy .7:‘] — .;EJ
I(t) — yt) =Cs(@)(t) = (B @ 7)) = infocsc {X( — 5) + T(s)},

for somex € F7*,
If the (i, j)th entry ofX is 0;;, theith component ofj(¢) reads therefore

yi(t) = ngﬁ nin) {oi(t —s) +z;(s)}

Let us conclude with the shift operator, which we directliraduce in the vector setting:
DEFINITION 4.1.7 (Shift operato&r).

Sr :+ G/ = ¢/
i(t) — yit)=5r@)@) =2t -1T),

for somel” € R.

Let us remark thab, is the identity operatorSy (%) = Z.

4.1.4 UPPER AND LOWER SEMI-CONTINUOUS OPERATORS

We now study a number of properties of min-plus linear opesat We begin with that of upper-semi
continuity.

DEFINITION 4.1.8 (Upper semi-continuous operato@peratorlIl is upper semi-continuous if for any (finite
or infinite) set of functions or sequencgs, }, &, € G”7,

I (igf{fn}> = inf {T1(Z,)} . (4.1)
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We can check that,, Cs;, h, andSy are upper semi-continuous. For example dgrwe check indeed that

Cs: (i%f{fn}) (t) = inf {z(t—s)ﬂgf{fn(s)}}

0<s<t
= Og;fgtuﬁf {2t —s) +7n(s)}
= 1%f0g£t{2(t —8)+ Zn(s)}
— it {Cs(@)(0)

To show thatP;, is upper semi-continuous, we proceed in two stepsatet inf, {z, }. We first note that
Pr, (inf{xn}) =Pr (z*) <inf {Pr(zn)}

becauser* < z,, for anyn and P” is a wide-sense increasing function. We next show that theerse
inequality also holds. We first assume that there is sonsich that:,,, = «*, namely that the infimum is
actually a minimum. Then

i%f {Pr(zn)} < Pr(zm) =P (z7).

We next suppose that there is no integesuch thatz,, = x*. Then for anys > 0, there is an integeim
such that) < z,,, — 2* < . Therefore

i%f {Pr(zn)} < Pr(xm) < Pr(x*+¢).
Since the above inequality is true for any- 0, and sinceP” is a right-continuous function, it implies that
inf {Pp(z,)} < Pr (%) = P <inf{:cn}) .

This concludes the proof.

On the other handD, is not upper semi-continuous, because its application tmfawould involve the
three operationsup, inf and+, which do not commute, as we have seen at the end of the psevi@pter.

It is easy to show that ifl; andIl; are upper semi-continuous, so afe A 11, andll; o Il,.
The dual definition of upper semi-continuity is that of loveemi-continuity, which is defined as follows.

DEFINITION 4.1.9 (Lower semi-continuous operato@peratorll is lower semi-continuous if for any (finite
or infinite) set of functions or sequencgs, }, &, € G/,

1 (sup 2, ) ) = sup (117} (4.2)

It is easy to check thab,, is lower semi-continuous, unlike other operators, excgptvhich is also lower
semi-continuous.

4.1.5 ISOTONE OPERATORS

DEFINITION 4.1.10 (Isotone operatorOperatorIl is isotone if7; < 7 always impliedI(7;) < II(Z>).

All upper semi-continuous operators are isotone. Indded; i< 7o, thenZ; A ¥, = &1 and sincell is
upper semi-continuous,

H(fl) = H(fl VAN fg) = H(fl) VAN H(fg) < H(fg)
Likewise, all lower semi-continuous operators are isotdndeed, ifr; < 7, then®; vV s = 5 and since
II is lower semi-continuous,

H(fl) < H(fl) vV H(fg) = H(fl V fg) = H(fg)
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4.1.6 LNEAR OPERATORS

In classical system theory diR, +, x ), a systermI is linear if its output to a linear combination of inputs
is the linear combination of the outputs to each particulput. In other wordslI is linear if for any (finite
or infinite) set of inputgx; }, and for any constarit € R,

and for any inputc and any constarit € R,

(k- x)=Fk - Il(zx).

The extension to min-plus system theory is straightforwartie first property being replaced by that of
upper semi-continuity, a min-plus linear operator is thefrebd as an upper semi-continuous operator that
has the following property (“multiplication” by a constant

DEFINITION 4.1.11 (Min-plus linear operatorOperatorIl is min-plus linear if it is upper semi-continuous
and if for anyz € G and for anyk > 0,

0 (Z+ k) = I1(&) + k. (4.3)

One can easily check thét, Cx:, h, andSy are min-plus linear, unlik®, andPy,. D, is not linear because
it is not upper semi-continuous, afy, is not linear because it fails to verify (4.3).

In classical linear theory, a linear system is represenyeitsbmpulse responsk(t, s), which is defined as
the output of the system when the input is the Dirac functidme output of such a system can be expressed
as

II(x)(t) = / h(t,s)z(s)ds
Its straightforward extension in Min-plus system theorgravided by the following theorem [28]. To prove
this theorem in the vector case, we need first to extend the thelay function introduced in Definition 3.1.2,
to allow negative values of the delay, namely, the valua

0 ift<T
5T(t)_{ o ift>T,

is now taking values ifR. We also introduce the following matri; € G7 x G”.

DEFINITION 4.1.12 (Shift matrix).The shift matrix is defined by

or(t) oo 00 00
oo op(t) oo
DT(t) = 00 00 5T(t)
| o oo or(t) |

for somel” € R.

THEOREM 4.1.1 (Min-plus impulse response)l is a min-plus linear operator if and only if there is a
unique matrixd € G” (called theimpulse respongesuch that for anyt € G’ and anyt € R,

H(@)(t) = inf {H(t.s) +T(s)} (4.4)
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PrROOF:  If (4.4) holds, one immediately sees tHatis upper semi-continuous and verifies (4.3), and
therefore is min-plus lineafl mapsG’ to G/ becaused € G”.

Suppose next thdl is min-plus linear, and let us prove that there is a uniqueirai (¢, s) € G such that
(4.4) holds.

Let us first note thaD,(t) + #(s) = #(s) for anys > t. Sincex € G/, we have
inf {D,(t) + #(s)} = inf {#(s)} = #(t).
On the other hand, all entries &f,(¢) are infinite fors < t. We have therefore that
Héf; {Ds(t) + Z(s)} = o0

We can combine these two expressions as

=(4) — inf {D -

Z(t) = inf {Ds(t) +7(s)},
or, dropping explicit dependence on

¥ = inf {D, + Z(s)} .
Z = inf {Ds + #(s)}

Let d, ; denote thejth column of D:

whered;, is located at thgth position in this vector. Using repeatedly the fécts min-plus linear, we get
that

(z) = I (Sigﬂg{Ds + f(s)}>
= inf {I1(Ds +7(s))}

Defining
H(t,s) = [ﬁl(t,s) o hi(ts) .. ﬁj(t,s)} (4.5)

where B B
hyt,s) =11 (ds,j) (t) (4.6)

for all t € R, we obtain therefore that

I(Z)(t) = inf { min {ﬁj(t, 5) +xj(s)}} = inf {H(t,s)+ Z(s)}.

seR | 1<i<T 0seR
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We still have to check tha (¢, s) € G”. Since for any fixed, IT <d;]) € G’, we have that for any < ¢/

-

hy(t,s) =11 (J;,j) (t) <II (Cis,j) (t) = hy(t', s),

henceH (t,s) < H(t',s). On the other hand, i < s, one easily check that, ; < d .. Therefore, since
Il is isotone (because it is linear and thus upper semi-comtis,

Byt ) =11 (dis) (0) < 11 (dig ) (1) = (e, )

and therefore (t, s) < H(t,s') for anys > s'. This shows that (¢, s) € G”.

To prove uniqueness, suppose that there is another nfatrixG” that satisfies (4.4), and IE@» denote its

jth column. Then for any. € R and anyl < j < J, taking® = cfw- as the input, we get from (4.6) that
fort e R

Rytw) = T () (6) = inf {H'(ts) + du(s) |

seR

= inf {l;’j(t, s) +5u(3)} = inf {f:’j(t,s)} = f:’j(t,u).

seR s<u

ThereforeH' = H. O

We will denote a general min-plus linear operator whose isgtesponse i&l by L. In other words, we
have that

La(@)(t) = inf {H(t,5) +F(s)}

One can compute that the impulse response correspondifigito

_f E(t—-s) ifs<t
H(t’s)_{ 5(0) if s> ¢
to hy IS
_oo(t)—o(s) ifs<t
H(t’s)_{ 0 if s>t~
and toSr is

H(t,s) = Dp(t —s).

In fact the introduction of the shift matrix allows us to verithe shift operator as a min-plus convolution:
STZCDT if 7> 0.

Let us now compute the impulse response of the compostiomaifitin-plus linear operators.

THEOREM4.1.2 (Composition of min-plus linear operatorgket £ and £ be two min-plus linear oper-
ators. Then their compositiofig o £ is also min-plus linear, and its impulse repsonse denoteH by’
is given by

(HoH')(t,s) = 11161[{{ {H(t,u) + H'(u,s)} .

PROOF: The compositionC o £y applied to some € G” is

La(Cm(@)E) = inf {H(tu)+inf {H'(u,5) + 7(s)} |
= mfmf{Htu )+ H'(u,s) + (s) }

= mf{mf{Ht s) + H'(u, s) }—Hc(s}
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We can therefore write
LroLlpy =Lyow.

Likewise, one easily shows that
LuNLy =Lynm -

Finally, let us mention the dual definition of a max-plus &neperator.

DEFINITION 4.1.13 (Max-plus linear operatorDperatorll is max-plus linear if it is lower semi-continuous
and if for anyz € G” and for anyk > 0,

(3 + k) = I1(&) + k. 4.7)

Max-plus linear operators can also be represented by theulse response.

THEOREM 4.1.3 (Max-plus impulse response)l is a max-plus linear operator if and only if there is a
unique matrixd € G’ (called theimpulse respondesuch that for anyt € G’ and anyt € R,

II(Z)(t) = ilelﬂg {H(t,s)+ Z(s)}. (4.8)

One can easily check th@t, andSy are max-plus linear, unlikéy, h, andPy.
For exampleD, (x)(t) can be written as

Do (x)(t) = iglg{x(t +u) —o(u)} = Ssgg{w(S) —o(s—1)} = igﬂg{w(S) —o(s—1)}

which has the form (4.8) iH (¢,s) = —o(s — t).

Likewise,Sr(x)(t) can be written as

Sr () (1) = &t — T) = sup(#(s) ~ D_r(s ~ 1)}

which has the form (4.8) iH (¢t,s) = —D_p(s —t).

4.1.7 CausAL OPERATORS

A system is causal if its output at tinteonly depends on its input before time
DEFINITION 4.1.14 (Causal operatorDperatorIl is causal if for anyt, 71 (s) = Z2(s) for all s < ¢ always
impliesII(Z)(t) = II(Z2)(¢).

THEOREM 4.1.4 (Min-plus causal linear operatorA min-plus linear system with impulse resporf$es
causal ifH(t,s) = H(t,t) for s > t.

PROOF: If H(t,s) = 0for s >t and if | (s) = #o(s) for all s < t then sincer, 7> € G/,

)
(

La(@)(0) = il {H(t,s) +71(5)}
= inf{H(t,s) + Z1(s)} Al {H(t,5) + F1(s)}
_ E;ﬁ {H(t,5) + & ()} Ainf {H(1,) + ()}
— inf{H(t,s) + 71(s)}
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= inf {H(t,s) +7(s))
— égg{H(t,s)Jr To(s)} A {H(t,8) + T2(s)}
= Inf{H(t,s) +To(s)} A {H(L, 5) + To(s)}
= inf {H(t,s) + To(s)} = Laa(T2)(1):

Ol
Cs, Cx, h, andPy, are causalSy is causal if and only i’ > 0. D, is not causal. Indeed if; (s) = Z5(s)
for all s < ¢, but that#; (s) # Z2(s) for all s > ¢, then

Do (Z1)(t) = ig%{fl(tJrU)—a(U)}

#+ sgpo) {Za(t +u) —o(u)}

= Do(72)(t)

4.1.8 SHIFT-INVARIANT OPERATORS

A system is shift-invariant, or time-invariant, if a shiftthe input of1" time units yields a shift of the output
of T time units too.

DEFINITION 4.1.15 (Shift-invariant operator)OperatorII is shift-invariant if it commutes with all shift
operators, i.e. if for any € G and for anyT € R

(87 (7)) = Sr(1I(T)).

THEOREM 4.1.5 (Shift-invariant min-plus linear operato)et £ and £y be two min-plus linear, shift-
invariant operators.

(i) A min-plus linear operatot ;; is shift-invariant if and only if its impulse respong&¢, s) depends only
on the differencét — s).

(if) Two min-plus linear, shift-invariant operato§; and £ 5, commute. If they are also causal, the impulse
response of their composition is

(HoH')(t,s)= inf {H(t—s—u)+Hu)}=(HH){t-s).

0<u<t—s

PrROOF: (i) Let i, (¢ i(t,s) andd;j(t) denote (respectively) thgh column of H (¢, s) and of D4(t). Note
thatdsj( ) =S5 (doj)( ). Then (4.6) yields that

Rittos) = T(day) () =1 (S,(do)) (1
= 8 (Wdo)) (1) = (o)) (t = 8) = (¢ — 5,0)
ThereforeH (t, s) can be written as a function of a single variabl¢t — s).
(il) Because of Theorem 4.1.2, the impulse respons€pb Ly is
(HoH')(t,s) = inf {H(t,u)+ H'(u,s)}.
SinceH (t,u) = H(t — u) andH'(u, s) = H'(u — s), and setting = u — s, the latter can be written as

(Ho H')(t,s) = inf {Ht —uw)+ H'(u—s)} = ir;f{H(t —s—v)+H'(v)}.
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Similarly, the impulse response 6f;: o Ly can be written as
(H' oH)(t,s) =inf {H'(t —u)+ H(u—s)} =inf {H(v) + H'(t — s —v)}

where this time we have set= ¢ — u. Both impulse responses are identical, which shows thatwbe
operators commute.

If they are causal, then their impulse response is infinite fo s and the two previous relations become

(HoH')(t,s)=(H o H)(t,s)= oigr};fgt {Ht—s—v)+H'(v)} = (H® H)(t—s).

O

Min-plus convolutionCyx, (including of courseC, and Sr) is therefore shift-invariant. In fact, it follows
from this theorem that the only min-plus linear, causal arnitt-gwariant operator is min-plus convolution.
Thereforeh,, is not shift-invariant.

Min-plus deconvolution is shift-invariant, as

Do(Sr(@))(t) = sup{Sr(x)(t +u) —o(w)} = sup{z(t +u—T) —o(u)}
= (200){t =T)=D,(2)(t = T) = Sr (Do) ()(1).

Finally let us mention thaP;, is not shift-invariant.

4.1.9 IDEMPOTENT OPERATORS

An idempotent operator is an operator whose composition igelf produces the same operator.

DEeFINITION 4.1.16 (Idempotent operatorDperatorll is idempotent if its self-composition]s i.e. if

IMoll =1I.

We can easily check that, andP;, are idempotent. I& is sub-additive, withr (0) = 0, thenC, o C, = Cy,
which shows that in this casé, is idempotent too. The same applieslg.

4.2 CLOSURE OF AN OPERATOR

By repeatedly composing a min-plus operator with itself,alsgain the closure of this operator. The formal
definition is as follows.

DEFINITION 4.2.1 (Sub-additive closure of an operatoket IT be a min-plus operator taking”’ — G”.
Denotell™ the operator obtained by composiiify(n — 1) times with itself. By conventioh](®) = S, =
Cp,, SOl =11, I1(® = IT o I1, etc. Then the sub-additive closurelbfdenoted by, is defined by

ﬁ:SO/\H/\(HoH)/\(HoHoH)/\...:ir;fo{l'[(")}. (4.9)

In other words,
(%) = & A TL(Z) A TI(TL(E)) A ...
It is immediate to check thal does map functions ig” to functions inG”.

The next theorem provides the impulse response of the sdibivedclosure of a min-plus linear operator. It
follows immediately from applying recursively Theorem 2.1
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THEOREM4.2.1 (Sub-additive closure of a linear operatdfhe impulse response 6f; is

H(t,s)=1inf inf {H(t,u1)+ H(uj,uz)+ ...+ H(up,s)}. (4.10)
andZH = Eﬁ

For a min-plus linear, shift-invariant and causal operg#i0) becomes

H(t—s)
= érellf\T sﬁunﬁ..i.rﬁlgzﬁ’lnﬁt {H({t —w)+ H(uy —ug) + ...+ H(up, —s)}
= irellf\mgvng...ig%ggmgt—s {H(t—s—wv1)+ H(vy —v2)+ ...+ H(vy)}
= inf {HM™}(t - s) (4.11)

whereH" = H@ H® ...® H (ntimes,n > 1) andH® = .
In particular, if all entriesr;;(t) of ¥(¢) are sub-additive functions, we find that

Cx, =Cs.

In the scalar case, the closure of the min-plus convolutjperatorC, reduces to the min-plus convolution
of the sub-additive closure of:

CU - CE.
If o is a “good” function (i.e., a sub-additive function witt{0) = 0), thenC,, = C,.

The sub-additive closure of the idempotent operatgrand P;, are easy to compute too. Indeed, since
ho(z) < zandPr(z) < z,

and
Pr =P

The following result is easy to prove. We write < IT’ to express thall(z) < II'(Z) for all # € G”.

THEOREM4.2.2 (Sub-additive closure of an isotone operatdir].I and IT' are two isotone operators, and
II < IT, thenII < II'.
Finally, let us conclude this section by computing the atesaf the minimum between two operators.

THEOREM4.2.3 (Sub-additive closure of; A II,). LetIl;, II, be two isotone operators takirg’ — G”.
Then

I, A1y = (Hl AN So) o (]._.[2 VAN So) (4.12)

ProoF: (i) SinceSy is the identity operator,

I AT, = (H1 OS()) A (S() o Hz)

((ITy A Sp) © Sop) A (So o (112 A Sp))

((Hl AN So) o (Hg N So)) VAN ((H1 VAN S(]) o (H2 AN 50))
(

I A SQ) o (H2 VAN 80)

Sincell; andIl; are isotone, so arH; A Il and (I} A Sp) o (IIs A Sp). Consequently, Theorem 4.2.2
yields that

I, A 115 > (Hl A 80) o (Hl A 80) (413)
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(i) Combining the two inequalities

II; NSy
IIs A Sy

II; ATIs A Sy
II; ATl A Sy

(AVANAY,

we get that

(H1 A SO) o (H1 AN SO) > (Hl AN1ly A SO) o (Hl Alls A SO) (4.14)
Let us show by induction that

((Hl VAN Hz) VAN So)(n) = min {(Hl VAN Hg)(k)} .

0<k<n
Clearly, the claim holds forn = 0, 1. Suppose it is true up to somec N. Then

((II; A TIy) A Sp) ™Y
= ((IT; ATI2) A Sp) o ((IT; ATI2) A 80)(n)

= ((IT; ATI2) A Sp) © ( min {(Hl A Hg)(k)}>

0<k<n

((Ih ATlp) o olgnkign {(Hl A Hz)(k)}> A <30 o min {(Hl /\Hz)(k)}>

0<k<n

= min {0 ATL)®} A min {120}

1<k<n+1 0<k<n

— ; (k)
T o<hent {(Hl AI) } :

Therefore the claim holds for all € N, and

((H1 A ]._.[2) A 50)(2n)
= min {(Hl VAN Hz)(k)} .

(T ATIp) A Sp) o (I A To) A Sp))™

0<k<2n
Consequently,
(M AT A Sy o (T ATl ASy) = inf min {(H1 A HQ)(k)}
= 1 A1
and combining this result with (4.13) and (4.14), we getZ4.1 O

If one of the two operators is an idempotent operator, we gaplgy the previous result a bit more. We
will use the following corollary in Chapter 9.

COROLLARY 4.2.1 (Sub-additive closure &f; A hy;). LetIl; be an isotone operator taking — F, and
let M € F. Then

IIi A by = (h]\/joﬂl)OhM. (4.15)

PrRoOF: Theorem 4.2.3 yields that

H1 A hM = (Hl A 80) ¢} hM (416)
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becausé; < Sy. The right hand side of (4.16) is the inf over all integersf
({11 A So} © har)™
which we can expand as
{I1; ASo} o haro {ITli AS} o haso...o{Il; ASy} o hay.
Since

har o {IIi ASo}ohyy = {hapoIlyohpy} Ahy
({har o1} A Sp) © hr

= min {(hMoﬂl)(q)}ohM,

0<¢<1

the previous expression is equal to

min {(h]\/j e} Hl)(q)} e} ]’L]\/j.

0<q<n

Therefore we can rewrite the right hand side of (4.16) as

_ : (@)
(II; ASp) ohpyr = VILIEIfN{OISI};gn{(hMonl) }ohM}

= grelg{(hM o Hl)(q)} ohpyr = (hpr oIly) o hyy,

which establishes (4.15).
Therefore we can rewrite the right hand side of (4.16) as

(I, ASy) o hyy = inf{min {(hMon1)<q>}ohM}

neN | 0<qg<n

= hpsoinf {(hM ) Hl)(Q)} o hpar = har o (has oIly) o hyy,
qeN

which establishes (4.15). O
The dual of sub-additive closure is that of super-additiesure, defined as follows.

DEFINITION 4.2.2 (Super-additive closure of an operatdrpt IT be an operator taking;’ — G”7. The
super-additive closure dil, denoted byl, is defined by

EZSO\/H\/(HOH)\/(HOHOH)\/...:sup{ﬂ(")}. (4.17)
n>0

4.3 HXED POINT EQUATION (SPACE METHOD)

4.3.1 MAIN THEOREM

We now have the tools to solve an important problem of netveatkulus, which has some analogy with
ordinary differential equations in conventional systewoity.

The latter problem reads as follows: Iétbe an operator froR” to R”, and let@ € R’. What is then the
solutionZ(t) to the differential equation

dr B
=) =@ (4.18)
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with the inital condition
7(0) = a. (4.19)

HereIl is an operator takingg/ — G”, and@ € G’. The problem is now to find the largest function
#(t) € G, which verifies the recursive inequality

(1) < TI(@)(1) (4.20)

and the initial condition
Z(t) < a(t). (4.21)

The differences are however important: first we have inetigsinstead of equalities, and second, contrary
to (4.18), (4.20) does not describe the evolution of thesttajy #(¢) with time ¢, starting from a fixed
pointd, but the successive iteration Bfon the whole trajectory(t), starting from a fixed, given function
at) € g’.

The following theorem provides the solution this problemder weak, technical assumptions that are almost
always met.

THEOREM 4.3.1 (Space method).etII be an upper semi-continuous and isotone operator takifig—
G7. For any fixed functio € G/, the problem

T < anl(Z) (4.22)
has one maximum solution ¢/, given byz* = T1(a).

The theorem is proven in [28]. We give here a direct proof tieas not have the pre-requisites in [28]. It
is based on a fixed point argument. We call the applicatiorisftheorem “Space method”, because the
iterated variable is not time(as in the “Time method” described shortly later) but thé $equence’ itself.
The theorem applies therefore indifferently whetherZ ort € R.

PROOF: (i) Let us first show thafl(a) is a solution of (4.22). Consider the sequefizé} of decreasing
sequences defined by

Then one checks that

it
gt

is a solution to (4.22) becausg < 7, = d and becaus#l is upper-semi-continuous so that
(") = I(inf {Z,}) = inf {I1(Z,)} > inf {Z > inf {7, } = 7".
(77) = I(inf {7 }) = midTI(Tn)} 2 inf{Zn 1} > midan} =7
Now, one easily checks that, = inf<,,<, {I1™ (@)}, so

7 = inf {7} = inf _inf {H(m)(ﬁ)}:ir;%{l'[(”)(c?)}:ﬁ(ﬁ).

n>00<m<n
This also shows that* € G”.

(i) Let # be a solution of (4.22). Thef < a and sincdl is isotone (%) < I1(d). From (4.22)7 < II(Z),
so thatz < II(d@). Suppose that for some > 1, we have shown that < I1(*~1(g). Then as? < II(Z)
and adl1 is isotone, it yields that < I1 (). Thereforer < inf,>o{I1(™ (@)} = TI(@), which shows that

Z* = TI(a) is the maximal solution. O
Similarly, we have the following result in Max-plus algebra
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THEOREM 4.3.2 (Dual space method).etII be a lower semi-continuous operator takigg — G”. For
any fixed functior@ € G”, the problem
Z>avIl(z) (4.23)

has one minimum solution, given By = I1(a).

4.3.2 EXAMPLES OF APPLICATION

Let us now apply this theorem to five particular examples. Vilefirst revisit the input-output charac-
terization of the greedy shaper of Section 1.5.2, and of gr@ble capacity node described at the end of
Section 1.3.2. Next we will apply it to two window flow contrptoblems (with a fixed length window).
Finally, we will revisit the variable length packet greedhaper of Section 1.7.4.

INPUT-OUTPUT CHARACTERIZATION OF GREEDY SHAPERS

Remember that a greedy shaper is a system that delays inpurnt ki buffer, whenever sending a bit would
violate the constraint, but outputs them as soon as possible otherwisg.i#f the input flow, the output is
thus the maximal functiom € F satisfying the set of inequalities (1.13), which we can stea

x < RACy(x).

It is thus given byR* = C, = Cz(x) = 7 ® x. If o is a “good” function, one therefore retrieves the main
result of Theorem 1.5.1.

INPUT-OUTPUT CHARACTERIZATION OF VARIABLE CAPACITY NODES

The variable capacity node was introduced at the end of @et1B.2, where the variable capacity is modeled
by a cumulative function\/(¢), whereM () is the total capacity available to the flow between tirbesd

t. If m(t) is the instantaneous capacity available to the flow at tirteen M (¢) is the primitive of this
function. In other words, if € R,

M(t):/o m(s)ds (4.24)

and ift € Z the integral is replaced by a sum enlf R is the input flow andr is the output flow of the
variable capacity node, then the variable capacity cangtiraposes that for all < s <t

x(t) —x(s) < M(t) — M(s),
which we can recast using the idempotent operaigras
x < hy(z). (4.25)
On the other hand, the system is causal, so that
< R. (4.26)

The output of the variable capacity node is therefore theimabsolution of system (4.25) and (4.26). Itis
thus given by

R (6) = (R)(t) = has (R)(t) = in {M(t) = M(s) + R(s)}

because the sub-additive closure of an idempotent opesatbe operator itself, as we have seen in the
previous section.
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STATIC WINDOW FLOW CONTROL —EXAMPLE 1

Let us now consider an example of a feedback system. Thism@gamfound independently in [10] and
[68, 2]. A data flowa(t) is fed via a window flow controller to a network offering a seevcurves. The
window flow controller limits the amount of data admittedarihe network in such a way that the total
backlog is less than or equal Y&, wherelW > 0 (the window size) is a fixed number (Figure 4.1).

controll er m
net wor k
a(t) x(t) NS

y(t)

Figure 4.1:Static window flow control, from [10] or [68]

Call z(t) the flow admitted to the network, and¢) the output. The definition of the controller means that
x(t) is the maximum solution to
x(t) < a(t)
L H0 a0+ w @20

We do not know the mappind : * — y = II(z), but we assume thal is isotone, and we assume that
y(t) > (B @ x)(t), which can be recast as

II(z) > Cp(x). (4.28)
We also recast System (4.27) as
x <aN{ll(z)+ W}, (4.29)

and direclty apply Theorem 4.3.1 to derive that the maximohat®n is

= I+ W)(a).

Sincell is isotone, so i$I + . Therefore, because of (4.28) and applying Theorem 4.22jetthat

z =+ W)(a) > (Cs + W)(a). (4.30)

Because of Theorem 4.2.1,

(Cs+W)(a) =Cprw(a) = Cappp(a) = (B+ W) ®a.

Combining this relationship with (4.30) we have that

yzBor=po (B+Mea) = (80B+W)) ),

which shows that the complete, closed-loop system of Figureffers to flowa a service curve [10]

Bwici =B & (B+W). (4.31)

For example, if3 = Br 1 then the service curve of the closed-loop system is the ifumcepresented on
Figure 4.2. WhemRT < W, the window does not add any restriction on the service gueeaoffered by
the open-loop system, as in this cagg., = 5. If RT' > W onthe other hand, the service curve is smaller
than the open-loop service curve.
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ABurca(t) =B(®) =R[t-T]* 4 Buica(®

R
Wi R
T t W t
> >
T 2T3T4T
Case 1: REW Case 2. RT>W

Figure 4.2:The service curve Bwic, Of the closed-loop system with static window flow control, when the
service curve of the open loop system is B 1 with RT < W (left) and RT > W (right).

STATIC WINDOW FLOW CONTROL —EXAMPLE 2

Let us extend the window flow control model to account for tRistence of background traffic, which
constraints the input traffic rate at timedz/dt(t) (if t € R) or z(t) — x(t — 1) (if t € Z), to be less
that some given ratex(t). Let M (t) denote the primitive of this prescribed rate function. Tlies rate
constraint onr becomes (4.25). Functiol/(¢) is not known, but we assume that there is some function
~ € F such that

M(t) — M(s) > ~(t — s)

for any0 < s < ¢, which we can recast as
har > C,. (4.32)

This is used in [47] to derive a service curve offered by thmplete system to the incoming flaw which
we shall also compute now by applying Theorem 4.3.1.

With the additional constraint (4.25), one has to compugentlaximal solution of
x <aA{ll(x) + W} Ahpy(x), (4.33)

which is

x={II+W}Ahy)(a). (4.34)

As in the previous subsection, we do not knbiabut we assume that it is isotone and thht> Cz. We
also know thath; > C,. A first approach to get a service curve fgris to compute a lower bound of the
right hand side of (4.34) by time-invariant linear operatawhich commute as we have seen earlier in this
chapter. We get

{IT+W}Ahy >{Cs + W AC, = Ciprwing

and therefore (4.34) becomes
z 2 Ciprwing(a) = Cmmas(a) = {(B+ WHAv) ®a.

Because of Theorem 3.1.11,

{B+WiAy=(B+W)x7

so that
y>pBRT > <ﬁ®(6+W)®7>®a
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and thus a service curve for flowis

BR(B+W)®7. (4.35)

Unfortunately, this service curve can be quite useless. eikample, if for somel” > 0, v(t) = 0 for
0 <t <T,theny(t) = 0forall ¢t > 0, and so the service curve is zero.

A better bound is obtained by differing the lower bounding:gf by the time-invariant operatdat, after
having used the idempotency property in the computatioh@bsub-additive closure of the right hand side
of (4.34), via Corollary 4.2.1. Indeed, this corollary alus to replace (4.34) by

z= ((hM oI+ W))o hM) (a).

Now we can bound,; below byC, to obtain

(haro(IL+W))ohyr > (CyoCpyiw)oCy

Cras+w) © Cy
- Cﬁ®w+w o Cy
= Cv®(6®v+W)‘

We obtain a better service curve than by our initial approadtere we had directly replacég; by Cyumma:

Bwfca =B @@ (BRy+W). (4.36)

is a better service curve than (4.35).
For example, if3 = Srr andy = Br v, with R > R andW < R'(T + T"), then the service curve of the

closed-loop system is the function represented on Figie 4.
PACKETIZED GREEDY SHAPER

Our last example in this chapter is the packetized greedyeshiatroduced in Section 1.7.4. It amounts to
computing the maximum solution to the problem

r < RAPL(z)ACo(x)

whereR is the input flow is a “good” function and. is a given sequence of cumulative packet lengths.
We can apply Theorem 4.3.1 and next Theorem 4.2.2 to obtain

© =PL ACy(R) = PL o Co(R)

which is precisely the result of Theorem 1.7.4.

4.4 HXED POINT EQUATION (TIME METHOD)

We conclude this chapter by another version of Theorem thatlapplies only to the disrete-time setting. It
amounts to compute the maximum solutior-= I1(a) of (4.22) by iterating on time instead of interatively
applying operatoil to the full trajectorya(t). We call this method the “time method” (see also [11]). It
is valid under stronger assumptions than the space methatde aequire here that operafidrbe min-plus
linear.
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A BO=RETI* A YO=R[TTF
R
R’
T t T t
> >
A (BOY(O A Buic2()

T+T T+T’

Figure 4.3:The service curve Bwic, Of the closed-loop system with window flow control (bottom right), when
the service curve of the open loop system is 5 = Gr r (top left) and when ~ = Br. 1+ (top right), with R > R’
and W < R/(T+1T").

THEOREM 4.4.1. LetIl = Ly be a min-plus linear operator taking” — F”, with impulse response
H e F’. For any fixed functio € F/, the problem

Z<anLy(d) (4.37)
has one maximum solution, given by

(0)

(t) A Ogir%ft_l{H(t, w) + 2 (u)}.

SIS

PROOF:  Note that the existence of a maximum solution is given by Téxo4.3.1. Definei* by the
recursion in the Theorem. A8 € F” it follows easily by induction thai* is a solution to problem (4.37).
Conversely, for any solutiod, Z(0) < a(0) = #*(0) and if Z(u) < #*(u) forall0 < u <t — 1, it follows
thatz(t) < 2*(t) which shows that™ is the maximal solution. O

4.5 CONCLUSION

This chapter has introduced min-plus and max-plus operatord discussed their properties, which are
summarized in Table 4.1. The central result of this chaptdich will be applied in the next chapters,
is Theorem 4.3.1, which enables us to compute the maximatisolof a set of inqualities involving the
iterative application of an upper semi-continuous operato
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Operator Cy, D, St he | PrL
Upper semi-continuoug yes no yes | yes| yes
Lower semi-continuous no yes yes | no | no

Isotone yes yes yes | yes| yes

Min-plus linear yes no yes |yes| no

Max-plus linear no yes yes | no | no

Causal yes no | yes(l)| yes| yes

Shift-invariant yes yes yes | no | no

Idempotent no(2)| no(2)| no (3) | yes| yes
) (f T > 0)

(2) (unlessr is a ‘good’ function)
(3) (unlessT” = 0)

Table 4.1:A summary of properties of some common operators
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A SECOND COURSE IN NETWORK
CALCULUS

153






CHAPTER 5

OPTIMAL MULTIMEDIA SMOOTHING

In this chapter we apply network calculus to smooth multimeathta over a network offering reservation
based services, such as ATM or RSVP/IP, for which we know omeénmal service curve. One approach
to stream video is to act on the quantization levels at th@dgrcoutput: this is called rate control, see
e.g. [26]. Another approach is to smooth the video streamgus smoother fed by the encoder, see e.g.
[69, 72, 59]. In this chapter, we deal with this second apghoa

A number of smoothing algorithms have been proposed to agivarious performance metrics, such as
peak bandwidth requirements, variability of transmisgiates, number of rate changes, client buffer size
[29]. With network calculus, we are able to compute the maliatient buffer size required given a maximal
peak rate, or even a more complex (VBR) smoothing curve. Weatsbo compute the minimal peak rate
required given a given client buffer size. We will see thatsbheduling algorithm that must be implemented
to reach these bounds is not unique, and we will determinéuthget of video transmission schedules that
minimize these resources and achieve these optimal bounds.

5.1 PROBLEM SETTING

A video stream stored on the server disk is directly delideosthe client, through the network, as shown on
Figure 5.1. At the sender side, a smoothing device readsitwed video strearR(t) and sends a stream
x(t) that must conform to an arrival curve which we assume to be a ‘good’ function, i.e. is sub-adelitiv
and such that(0) = 0. The simplest and most popular smoothing curve in practi@edonstant rate curve
(or equivalently, a peak rate constraiat}= A, for somer > 0.

We take the transmission start as origin of time: this ingptfeatz(¢) = 0 for ¢ < 0.

At the receiver side, the video strea®will be played back afteD units of times, thelayback delaythe
output of the decoding buffelB must therefore b& (¢ — D).

The network offers a guaranteed service to the flowlf y denotes the output flow, it is not possible, in
general, to expreggas a function ofc. However we assume that the service guarantee can be eghimss

a service curves. For example, as we have seen in Chapter 1, the IETF assuatdR3NP routers offer a
rate-latency service curve of the form g, o (t) = C[t — L]" = max{0,C(t — L)}. Another example is

a network which is completely transparent to the flow (i.e.ichldoes not incur any jitter to the flow nor
rate limitation, even if it can introduce a fixed delay, whigh ignore in this chapter as we can always take
it into account separately). We speak afudl network It offers a service curvg(t) = do(t).

155
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Cient

Vi deo vi deo
Server di spl ay

Net wor k
o
| 5 5
R(t+d) [ x(t) y(t) R(t-D)
Snoot her Cient
pl ayback

buffer

Figure 5.1: Video smoothing over a single network.

To keep mathematical manipulations simple, we assume tieag¢ricoding buffer size is large enough to
contain the full data stream. On the other hand, the recdédexroding) buffer is a much more scarce
resource. lts finite size is denoted By

As the stream is pre-recorded and stored in the video sahadlpws the smoother to prefetch and send
some of the data before schedule. We suppose that the sm@o#ie to look ahead data for up ddime
units ahead. Thikok-ahead delagan take values ranging from zero (in the most restrictiae eghere no
prefetching is possible) up to the length of the full stredrhe sum of the look-ahead delay and playback
delay is called théotal delay and is denoted by": T'= D + d.

These constraints are described more mathematically ito8ex2.
We will then apply Theorem 4.3.1 to solve the following prexils:
(i) we first compute, in Section 5.3, the minimal requirenseon the playback delafp, on the look-ahead

delayd, and on the client buffer sizB guaranteeing a lossless transmission for given smoothidgervice
curveso andg.

(if) we then compute, in Section 5.4, all scheduling strige@t the smoother that will achieve transmission
in the parameter setting computed in Section 5.3. We callghelting scheduling “optimal smoothing”.

(iii) in the CBR case¢ = \,), for a given rate- and for a rate-latency service curve € 51, ), we will
obtain, in Section 5.5, closed-form expressions of the méhivalues ofD, T' = D + d and B required for
lossless smoothing. We will also solve the dual problem ofigating the minimal rate needed to deliver
video for a given playback delay, look-ahead delay and client buffer size3.

We will then compare optimal smoothing with greedy shapm§éction 5.6 and with separate delay equal-
ization in Section 5.7. Finally, we will repeat problemsdid (iii) when intermediate caching is allowed
between a backbone network and an access network.

5.2 CONSTRAINTS IMPOSED BY LOSSLESSSMOOTHING

We can now formalize the constraints that completely defireesmoothing problem illustrated on Fig-
ure 5.1).

e Flow z € F: As mentioned above, the chosen origin of time is such #i&t = 0 for ¢t < 0, or
equivalently
z(t) < do(t). (5.1)

e Smoothness constraintFlow x is constrained by an arrival cured-). This means that for all > 0

2(t) < (2 @ 0)(t) = Cola) (). (5.2)
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e Playback delay constraint (no playback buffer underflow) The data is read out from the playback
buffer afterD unit of times at a rate given big(¢ — D). This implies that/(t) > R(t — D). However
we do not know the exact expression wfas a function ofr. All we know is that the network
guarantees a service curgenamely that(t) > (z® 3)(t). The output flow may therefore be as low
as(z® f)(t), and hence we can replagén the previous inequality to obtaix @ 5)(t) > R(t— D).
Using Rule 14 in Theorem 3.1.12, we can recast this lattepalkty as

2(t) = (R0 )t - D) = Dy(R)(t — D) (5.3)

forall t > 0.

e Playback buffer constraint (no playback buffer overflow): The size of the playback buffer is lim-
ited to B, and to prevent any overflow of the buffer, we must impose gk@t— R(t — D) < B for
all t > 0. Again, we do not know the exact valuewgfbut we know that it can be as highasbut not
higher, because the network is a causal system. Theref@tistraint becomes, for al>> 0,

() < R(t — D) + B. (5.4)

e Look-ahead delay constraint We suppose that the encoder can prefetch data from ther sgrte
d time units ahead, which translates in the following ineiyal

2(t) < R(t + d). (5.5)

5.3 MINIMAL REQUIREMENTS ON DELAYS AND PLAYBACK BUFFER

Inequalities (5.1) to (5.5) can be recast as two sets of mlédws as follows:

So(t) AR(t +d) A R(t — D) + B} ACy(x)(t) (5.6)
(R pB)(t— D). (5.7)

There is a solution: to the smoothing problem if and only if it simultaneouslyifies (5.6) and (5.7). This
is equivalent to requiring that the maximal solution of {5s6larger than the right hand side of (5.7) for all
t.

Let us first compute the maximal solution of (5.6). Ineqyali.6) has the form
z < aACy(x) (5.8)

where
a(t) = dp(t) N R(t +d) N{R(t — D) + B}. (5.9)

We can thus apply Theorem 4.3.1 to compute the uniqgue maxdoiation of (5.8), which isry. =
C,(a) = 0 ® a becauser is a ‘good’ function. Replacing by its expression in (5.9), we compute that the
maximal solution of (5.6) is

Tmax(t) = 0(t) A {(0 ® R)(t + d)} A {(0 ® R)(t — D) + B}. (5.10)

We are now able to compute the smallest values of the playdeldy D, of the total delayl” and of
the playback buffe3 ensuring the existence of a solution to the smoothing probteanks to following
theorem. The requirement atfor reaching the smallest value 6fis therefored =T — D.
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THEOREM 5.3.1 (Requirements for optimal smoothing)he smallest values d?, 7" and B ensuring a
lossless smoothing to a ‘good’ curgethrough a network offering a service curgeare

Dpin = h(R,(B®o))=inf{t>0: (R (B®0o))(-t) <0} (5.11)

Twin = h(ROR),(B®0a)) (5.12)
= inf{t>0:((ROR) 2 (B®0))(-t) <0}

Buin = v(ROR),(B®0)) = (RO R)2(8®0))0). (5.13)

whereh and v denote respectively the horizontal and vertical distargigen by Definition 3.1.15.

ProOOF: The set of inequalities (5.6) and (5.7) has a solution if, amig if, the maximal solution of (5.6)
is larger or equal to the right hand side of (5.7) at all timEsis amounts to impose that for ale R

(RoB)(t—D)—o(t)
(R®B)(t— D) — (6 ®R)(t+d)
(R B)({t—D)—(c®R)(t— D)

0
B.

VAN VAN VAN

Using the deconvolution operator and its properties, ttierléhree inequalities can be recast as

(Ro(B®o))(-=D) < 0
(RoR)©(B®0))(-T) < 0
(RoOR)2 (B®o))(0) <

The minimal values oD, T' and B satisfying these three inequalities are given by (5.11),2band (5.13).
These three inequalities are therefore the necessary diindesu conditions ensuring the existence of a
solution to the smoothing problem. O

5.4 OPTIMAL SMOOTHING STRATEGIES

An optimal smoothing strategy is a solutieit) to the lossless smoothing problem whéeT = D + d
and B take their minimal value given by Theorem 5.3.1. The previsection shows that there exists at least
one optimal solution, namely (5.10). It is however not thiyame, as we will see in this section.

5.4.1 MAXIMAL SOLUTION

The maximal solution (5.10) requires only the evaluatioraofinfimum at timet over the past values of

R and over the future values @ up to timet + din, With dpin = Tmin — Dmin. Of course, we need

the knowledge of the traffic trac(t) to dimensionD,yi,, dmin @and By,i,. However, once we have these
values, we do not need the full stream for the computatioh@smoothed input to the network.

5.4.2 MINIMAL SOLUTION

To compute the minimal solution, we reformulate the lossk®soothing problem slightly differently. Be-
cause of Rule 14 of Theorem 3.1.12, an inequality equivate(t.2) is

2(t) > (z @ 0)(t) = Dy()(t). (5.14)
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We use this equivalence to replace the set of inequaliti®&d @hd (5.7) by the equivalent set

z(t) < do(t)AR(t+d) A{R(t— D)+ B}
(5.15)
z(t) > (RoB)(t— D)V Ds(z)(t). (5.16)

One can then apply Theorem 4.3.2 to computertfi@mal solution of (5.16), which i, = D, (b) =
b@ o whereb(t) = (R @ B)(t — D), because is a ‘good’ function. Eliminating from these expressions,
we compute that the minimal solution is

Tmin(t) = (RO (B®0))(t — D), (5.17)

and compute the constraints dn.D and B ensuring that it verifies (5.15): one would get the very same
values ofDpin, Tmin @nd By, given by (5.11) (5.12) and (5.13).

It does achieve the values @,,;, and B, given by (5.11) and (5.13), but requires nevertheless the
evaluation, at time, of a supremum over all values &f up to the end of the trace, contrary to the maximal
solution (5.10). Min-plus deconvolution can however baespnted in the time inverted domain by a min-
plus convolution, as we have seen in Section 3.1.10. As thatido of the pre-recorded stream is usually
known, the complexity of computing a min-plus deconvolatizan thus be reduced to that of computing a
convolution.

5.4.3 ST OF OPTIMAL SOLUTIONS

Any functionz € F such that
Lmin S € S Lmax

and
r<zrR0

is therefore also a solution to the lossless smoothing propfor the same minimal values of the playback
delay, look-ahead delay and client buffer size. This gillesset of all solutions. A particular solution among
these can be selected to further minimize another metraty a8 the ones discussed in [29], e.g. number of
rate changes or rate variability.

The top of Figure 5.2 shows, for a synthetic tratg), the maximal solution (5.10) for a CBR smoothing
curveo(t) = \.(t) and a service curvé(t) = do(t), whereas the bottom shows the minimal solution (5.17).
Figure 5.3 shows the same solutions on a single plot, for tR&E®! traceR(t) of the top of Figure 1.2.4
representing the number of packet arrivals per time slofah4 corresponding to a MPEG-2 encoded video
when the packet size is 416 bytes for each packet.

An example of VBR smoothing on the same MPEG trace is shownigur& 5.4, with a smoothing curve
derived from the T-SPEC field, which is given by= vyp s A v,.1, Wherel is the maximum packet size
(hereM = 416 Bytes), P the peak rater the sustainable rate amdhe burst tolerance. Here we roughly
have P = 560 kbits/sec,r = 330 kbits/sec and = 140 kBytes The service curve is a rate-latency curve
Br.c with L = 1 second and” = 370 kbits/sec. The two traces have the same envelope, thus e sa
minimum buffer requirement (here, 928kBytes). Howeverdbeond trace has its bursts later, thus, has a
smaller minimum playback delayX% = 2.05s versusD; = 2.81s).

5.5 OPTIMAL CONSTANT RATE SMOOTHING

Let us compute the above values in the case of a constantGBf)(smoothing curve (t) = \.(t) = rt
(with ¢ > 0) and a rate-latency service curve of the netwe(k) = 81 (t) = C[t — L]". We assume that
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R(t+d,,) A

........................................ GNPl R(t-D,;, )
dmin<W> t
R(t) II, Xmin(t)
Bmin /’,l
R(t+d,,) . .
---------------------------------- R(t-D,,,)
dmin W t

Figure 5.2: In bold, the maximal solution (top figure) and mial solution (bottom figure) to the CBR
smoothing problem with a null network.

r < C, the less interesting case where> C being handled similarly. We will often use the decompositio
of a rate-latency function as the min-plus convolution ofiegdelay function, with a constant rate function:
Br.c = 01 ® A\c. We will also use the following lemma.

LEMMA 5.5.1.If f € F,

A(f Bre) = L+ 5 2 Ac)(0) (5.18)
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Figure 5.3: In bold, the maximal and minimal solutions to @8R smoothing problem of an MPEG trace
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PrROOF: As f(t) =0fort <0andasi, c = d;, ® A\c, we can write for any > 0

(foPreo)(=t) = sup{f(u—1t)— (0L ®Ac)(u)}

u>0

= Zglg{f(u —t) = Ao(u— L)}

= sup{f(v) = Ac(v+t— L)}

v>—t

= igg{f(v) —Ac(v+t—1L)}

= sup{f(v) = Ac(v)} —C(t - L)

v>0

= (foX)(0)-Ct+CL,

from which we deduce the smallest valuetahaking the left-hand side of this equation non-positive is
given by (5.18). O
In the particular CBR case, the optimal values (5.11), (bah@l (5.13) become the following ones.

THEOREM 5.5.1 (Requirements for CBR optimal smoothindf).c = A\, and 3 = g c withr < C, the
smallest values ab, of T"and of B are

Dun = L+ (ROA)0) (5.19)
Taw = L+ -(ROR)2A)0) (5.20)
Bunin = (RO R) @ \))(L) < rTinin. (5.21)

PROOF:  To establish (5.19) and (5.20), we note ti&and(R © R) € F. Sincer < C
/8®U:/8L,C®)\r:5L®)\C®)\r:5L®)\r:/8L,r

so that we can apply Lemma 5.5.1 with= R andf = (R @ R), respectively.
To establish (5.21), we develop (5.13) as follows

(ROR)(B2o)(0) = (R R)o (5, 7))(0)
= sup{(R R)(w) ~ Ar(u — L)}

u>0

= ((ROR)o\)(L)
= Zl;IL){(R @ R)(u) )\r( L)}
) —

= Z;l}g{(R@R)(u Ar(u)} +rL

< 21;13{(3 @ R)(u) = A\p(u)} + 1L

= ((R©R)2A\)(0)+ 7L = rTin.

O

This theorem provides the minimal values of playback débgy,, and bufferB,,;,, as well as the minimal
look-ahead delayi,,in, = Tmin — Dmin fOr a given constant smoothing rate< C' and a given rate-latency
service curvedr, . We can also solve the dual problem, namely compute for giakres of playback delay
D, of the look-ahead delay, of the playback buffe3 and for a given rate-latency service cuygc, the
minimal rater,,;, which must be reserved on the network.
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THEOREM5.5.2 (Optimal CBR smoothing rate)f o = A, and 8 = ¢ withr < C, the smallest value
of r,givenD > L,dandB > (R @ R)(L), is

o R(t) ] (R@R)(t)
i = sup { Iy { 20

{(R@R)(H-L)—B}_ (5.22)

V sup

>0 t

PrROOF: Let us first note that because of (5.19), there is no solufidn k L. On the other hand, if
D > L, then (5.19) implies that the ratemust be such that for all > 0

D> L+ S(R(t) - rt)
T
or equivalentlyr > R(t)/(t+D—L). The latter being true for all > 0, we must have > sup,~o{ R(t)/(t+

D — L)}. Repeating the same argument with (5.20) and (5.21), werotbta minimal rate (5.22). O

In the particular case where = 0 andr < C the network is completely transparent to the flow, and can
be considered as a null network: can replg¢e) by jy(¢). The values (5.19), (5.20) and (5.21) become,
respectively,

Duin = ~(ROA)0) (5.23)
Taw = (RO R)0A)0) (5.24)
Buin = ((R®R)®A))(0) = rTinin. (5.25)

It is interesting to compute these values on a real vide@trsuch as the first trace on top of Figure 1.2.4.
Since By is directly proportional tdl,;, because of (5.25), we show only the graphs of the values of
Dy anddpin = Tmin — Dmin, @s a function of the CBR smoothing rateon Figure 5.5. We observe
three qualitative ranges of rates: (i) the very low ones whke playback delay is very large, and where
look-ahead does not help in reducing it; (i) a middle randeeke the playback delay can be kept quite
small, thanks to the use of look-ahead and (iii) the highsrat®ve the peak rate of the stream, which do not
require any playback nor lookahead of the stream. These tegions can be found on every MPEG trace
[79], and depend on the location of the large burst in theetrditit comes sufficiently late, then the use of
look-ahead can become quite useful in keeping the playbeley dmall.

5.6 OPTIMAL SMOOTHING VERSUS GREEDY SHAPING

An interesting question is to compare the requirement®a@md B, due to the scheduling obtained in Sec-
tion 5.4, which are minimal, with those that a simpler schiedy namely the greedy shaper of Section 1.5,
would create. A is a ‘good’ function, the solution of a greedy shaper is

Tshapeft) = (0 @ R)(t). (5.26)

To be a solution for the smoothing problem, it must satisfycahstraints listed in Section 5.2. It already
satisfies (5.1), (5.2) and (5.5). Enforcing (5.3) is equnako impose that for all € R

(RO )t —D) < (0@ R)(1),

which can be recast as
(RoR)2 (B®o))(—D)<O0. (5.27)
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Figure 5.5: Minimum playback dela,,;, and corresponding look-ahead delgy;, for a constant rate
smoothingr of the MPEG-2 video trace shown on top of Figure 1.2.4.

This implies that the minimal playback delay needed for aaniag using a greedy shaping algorithm
is equal to the minimal total dela¥,,;,, the sum of the playback and lookahead delays, for the optima
smoothing algorithm. It means that the only way an optimabaiier allows to decrease the playback delay
is its ability to look ahead and send data in advance. If tog{ahead is not possiblé & 0) as for example

for a live video transmission, the playback delay is the semthe greedy shaper and the optimal smoother.

The last constraint that must be verified is (5.4), which ishejent to impose that for all € R
(c @ R)(t) < R(t — D) + B,

which can be recast as
(R®o)o R)(D) < B. (5.28)

Consequently, the minimal requirements on the playbackydmhd buffer using a greedy shaper instead of
an optimal smoother are given by the following theorem.

THEOREM5.6.1 (Requirements for greedy shapdf)o is a ‘good’ function, then the smallest values/of
and B for lossless smoothing of flof¥ by a greedy shaper are

Dshaper = Tmin = h((RO R), (B ® 0)) (5.29)
Bshaper = ((R®0) @ R)(Dshapep € [Bmin, 7(Dshapep]- (5.30)

PROOF:  The expressions dDShape,ansthape,follow immediately from (5.27) and (5.28). The only
point that remains to be shown is thifpaper< o(Dshapet: Which we do by pickings = u in the inf
below:

Bshaper = (R © (R®0))(Dshapet
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= sup { inf {R(s) + 0(u+ Dghaper— s)} — R(u)}

u>0 0<s<u+Dshaper

< sup{ R(u) + o(u + Dghaper—u) — R(u)}

u>0

= 0 (Dshape}-

O

Consequently, a greedy shaper does not minimize, in getleegblayback buffer requirements, although it
does minimize the playback delay when look-ahead is notilgless-igure 5.6 shows the maximal solution
Tmax Of the optimal shaper (top) and the solutiﬁghaperof the greedy shaper (bottom) when the shaping
curve is a one leaky bucket affine curve= v, ;, when the look-ahead delaly= 0 (no look ahead possible)
and for a null network§ = dp). In this case the playback delays are identical, but nopliagback buffers.

Another example is shown on Figure 5.7 for the MPEG-2 vidaodrshown on top of Figure 1.2.4. Here
the solution of the optimal smoother is the minimal solutigg,,.

There is however one case where a greedy shaper does mittaigltyback buffer: a constant rate smooth-
ing (c = A,) over a null network § = ). Indeed, in this case, (5.25) becomes

Bin = r'Tmin = 7 Dshaper= U(Dshape}7

and thereforeBghaper= Bumin- Consequently, if no look-ahead is possible and if the netistransparent
to the flow, greedy shaping is an optimal CBR smoothing sisate

5.7 COMPARISON WITH DELAY EQUALIZATION

A common method to implement a decoder is to first remove afgyditer caused by the network, by
delaying the arriving data in a delay equalization buffefobe using the playback buffer to compensate for
fluctuations due to pre-fetching. Figure 5.8 shows suchtesydf the delay equalization buffer is properly
configured, its combination with the guaranteed servicevolt results into a fixed delay network, which,
from the viewpoint we take in this chapter, is equivalent tmbhnetwork. Compared to the original scenario
in Figure 5.1, there are now two separate buffers for delagkzation and for compensation of prefetching.
We would like to understand the impact of this separatiorhemtinimum playback delai,i,.

The delay equalization buffer operates by delaying the lfitsdf data by an initial delayD.,, equal to the
worst case delay through the network. We assume that theriebtifers a rate-latency service curgg c.
Since the flowz is constainted by the arrival curvewhich is assumed to be a ‘good’ function, we know
from Theorem 1.4.4, that the worst-case delay is

Deq = h(o, Brc).

On the other hand, the additional part of the playback detagoimpensate for fluctuations due to pre-
fetching, denoted by, , is given by (5.11) with3 replaced byj:

Dy =h(R,60 ® 0) = h(R,0).

The sum of these two delays is, in general, larger than thienapplayback delay (without a separation
between equalization and compensation for prefetchibgy),,, given by (5.11):

Dmin - h(R7 5[;,0 X U)-
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Figure 5.6: In bold, the maximal solution (top figure) and imial solution (bottom figure) to the smoothing
problem with a null network, no look-ahead and an affine simagtcurves = -, .

Consider the example of Figure 5.9, where- ~,.;, with » < C'. Then one easily computes the three delays
Dryin, Deq @and D, ¢, knowing that

Brc®o = 0@ Ac @%b =0L® (Ac AVrp)
= (L ®Ac)A(OL @ Yp) = Br,c N (0L @ Yrp)-

One clearly hasD,;» < D., + D,: separate delay equalization gives indeed a larger ovelafback
delay. In fact, looking carefully at the figure (or workingtdhe computations), we can observe that the
combination of delay equalization and compensation fofegpching in a single buffer accounts for the
busrtiness of the (optimally) smoothed flow only once. Thkisamother instance of the “pay bursts only
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Figure 5.7: Example of optimal shaping versus optimal simagtfor the MPEG-2 video trace shown on
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M = 416 bytes, P = 600 kbits/sec,r = 300 kbits/sec and = 80 kBytes. The figure shows the optimal
shaper [resp. smoother] output and the original signhakgviace), shifted by the required playback delay.
The playback delay i8.76 sec for optimal shaping (top) aidd2 sec for optimal smoothing (bottom).
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once” phenomenon, which we have already met in Section.1.4.3

Do (cOB)(®)

Figure 5.9: Delayd,,in, Dy and D,,; for a rate-latency service curyg, ¢ and an affine smoothing curve
0 ="7rb -

We must however make — once again — an exception for a comatargmoothing. Indeed, if = A\, (with
r < C), thenD, is given by (5.23) and,;, by (5.19), so that

Deq = h()\raBL,C):L
1
Dy = L(R2A)0)

1

and thereforeD i, = D., + D). In the CBR case, separate delay equalization is thus alzitain the
optimal playback delay.

5.8 LOSSLESSSMOOTHING OVER TwO NETWORKS

We now consider the more complex setting where two netwaggarate the video server from the client:
the first one is a backbone network, offering a service cuvéo the flow, and the second one is a local
access network, offering a service curweto the flow, as shown on Figure 5.10. This scenario models
intelligent, dynamic caching often done at local networladivends. We will compute the requirements
on D, d, B and on the buffetX of this intermediate node in Subsection 5.8.1. Moreoverwilesee in
Subsection 5.8.2 that for constant rate shaping curvesaadatency service curves, the size of the client
buffer B can be reduced by implementing a particular smoothingegfyainstead of FIFO scheduling at the
intermediate node.

Two flows need therefore to be computed: the first ong) at the input of the backbone network, and the
second one»(t) at the input of the local access network, as shown on Figd 5.

The constraints on both flows are now as follows:
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Figure 5.10: Smoothing over two networks with a local caghinde.

e Causal flowzx;: This constraint is the same as (5.1), but witheplaced by :
w1(t) < do(t), (5.31)
e Smoothness constraintBoth flowsx; andxzs are constrained by two arrival curves andos:

1‘1(15) < (.%'1 (= O’1)(t) (532)
{L'Q(t) < (1‘2 & 0'2)(15). (533)

e No playback and intermediate server buffers underflow The data is read out from the playback
buffer afterD unit of times at a rate given bi(¢ — D), which implies thatz(¢) > R(t — D). On the
other hand, the data is retrieved from the intermediateesetva rate given by, (¢), which implies
thaty;(t) > x2(t). As we do not know the expressions of the outputs of each mkhvot only a

service curves; and 3, for each of them, we can replage by x1 ® 5, andy, by 29 ® 55, and
reformulate these two constraints by

z2(t) < (21 ® B1)(t) (5.34)
z2(t) = (R B2)(t — D). (5.35)

e No playback and intermediate server buffers overflow The size of the playback and cache buffers
are limited toB and X, respectively, and to prevent any overflow of the buffer, westimpose that
y1(t) — zo(t) < X andyq(t) — R(t — D) < Bforall t > 0. Again, we do not know the exact value
of y1 andys, but we know that they are bounded by and s, respectively, so that the constraints
becomes, for alt > 0,

z2(t) < R(t — D) + B. (5.37)

e Look-ahead delay constraint this constraint is the same as in the single network case:

z1(t) < R(t + d). (5.38)

5.8.1 MINIMAL REQUIREMENTS ON THE DELAYS AND BUFFER SIZES FOR TwO NET-
WORKS

Inequalities (5.31) to (5.38) can be recast as three setgeqtialities as follows:

z1(t) < So(t) AR(t+d) A (o1 @ 21)(t) A (zo(t) + X) (5.39)
22(t) < {R(t—D)+ B} A (B1®@x1)(t) A (02 @ x2) (1) (5.40)
z2(t) = (RO B2)(t—D). (5.41)
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We use the same technigue for solving this problem sa in@ebtB, except that now the dimension of the
system/J is 2 instead of 1.

With 1" denoting transposition, let us introduce the followingatiains:

Zt) = [wa(t)  wa(t)]"

d(t) = [bo(t) AR(t+d) R(t—D)+ BT
b(t) 0 (R B)(t—D)"

E(t) Ul(t) 50(t)—|—X

Bi(t)  oaft)

With these notations, the set of inequalities (5.39), (batt@ (5.41) can therefore be recast as

8]

< GAN(ZOD) (5.42)
i > b (5.43)

We will follow the same approach as in Section 5.3: we first pota the maximal solution of (5.42) and
then derive the constraints dn, 7' (and hencel), X and B ensuring the existence of this solution. We
apply thus Theorem 4.3.1 again, but this time in the two-disinal case, to obtain an explicit formulation
of the maximal solution of (5.42). We get

Trmax = Cx (@) = (T ® @) (5.44)
whereX is the sub-additive closure &f, which is, as we know from Section 4.2,

3= (n)
) VILIEIfN{E } (5.45)

wherex(®) = D, and (™ denotes theuth self-convolution ofS. Application of (5.45) to matriX is
straightforward, but involves a few manipulations whick skipped. Denoting

a = 01Q0® inf{ fnﬂ) +nX} (5.46)
neN
= 01R02® b/ 5/ +X,

we find that
¥ _ oiNa+X) (o1®0+X)A (o +2X)
N a oo A (a+ X)

and therefore the two coordinates of the maximal solutiofb@f2) are

Timax(t) = o1(t) AMa(t) + X} A (o1 @ R)(E+d) A{(e@ R)(t +d) + X}
N(o1® o2 @ R)(t— D)+ B+ X}

A(a®@R)(t — D)+ B +2X} (5.47)
Tamax(t) = a(t)A(a® R)(t+d) A{(o2® R)(t — D)+ B}
AM(a@R)(t— D)+ B+ X}, (5.48)

Let us mention that an alternative (and computationallypg#m) approach to obtain (5.47) and (5.48) would
have been to first compte the maximal solution of (5.40), ametion ofz,, and next to replace; in (5.39)
by this latter value.

We can now express the constraints¥n B, D andd that will ensure that a solution exists by requiring
that (5.48) be larger than (5.41). The result is stated iridlh@wving theorem, whose proof is similar to that
of Theorem 5.3.1.
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THEOREM 5.8.1. The lossless smoothing of a flow to (sub-additive) cueveand o, respectively, over
two networks offering service curvgs and 5, has a solution if and only if thé®, T, X and B verify the
following set of inequalities, with defined by (5.46):

(Ro(a®pB)(-D) < 0 (5.49)
(RoR)2 (a®B))(-T) < 0 (5.50)
((R %) R) @ (0'2 & ,32)) (0) < B (5.512)
(RoR)o(a®pB2))(0) < B+ X. (5.52)

5.8.2 OPTIMAL CONSTANT RATE SMOOTHING OVER TwO NETWORKS

Let us compute the values of Theorem 5.8.1 in the case of twetant rate (CBR) smoothing curves
o1 = A, andoy = A,,. We assume that each network offers a rate-latency servise 6; = Az, c;,

1 =1,2. We assume that < C; In this case the optimal values Bf, T'and B become the following ones,
depending on the value of.

THEOREM5.8.2. Letr = r1 A ro. Then we have the following three cases depending on
() If X > rLq, thenDyin, Tiin and B, are given by

Duin = L1+L2+%(R®>\r)(0) (5.53)
Toin = Lit Lot +(ROR)2A)0) (5.54)
Bumin = (RO R) @ A,)(L2) V(RO R) @A) (L1 + L) — X}

< ((R2R)2 M) (Ls). (5.55)

(i) If 0 < X < rLythenDyyin, Tmin and B, are bounded by

X Ly
—+ L —(Ro X 0) < Dpin
T+ 2+X( % %)()_

< L1+L2+%(R®)\L£)(O) (5.56)
=+ L+ RO B 0 A0 )(0) < T

< L1+L2+%((R@R)@A%)(o) (5.57)
(RoR)o ALL)(Ll + L) —roLy < By

< (RoR)©Ax)(Le) (5.58)

(i) Let K be duration of the stream. K = 0 < rL; thenD,;, = K.

Proof. One easily verifies that;' ™) = 6,1, and thath' ™" = Ao, Sinces, = B,.c, = 61, ® Acy,

and sincer = r A ro < (4, (5.46) becomes
a = M® fféfN {6tnt1)r, ® Aey +nX}
= 5L1 ® inIf;I {6nL1 X A\ + ’I’LX} . (5.59)
ne

O If X >rLq,thenfort > nl,
(Onn, @A)(t) +nX =N (t —nLy) +nX =rt+n(X —rLy) >rt = A\ (1)
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whereas fof) < t < nl;

(Onp; @A )() +nX = A\ (t —nly) +nX =nX >nrLly >rt = \(1).

Consequently, for all > 0, a(t) > (dz, ® A\.)(t). On the other hand, taking = 0 in the infimum in (5.59)
yields thate < 67, ® A,. Combining these two inequalities, we get that

oz:cSLl@)\r

and hence that

a® 62 = 5[/1 & )\T & 5[/2 & )\7“2 = 5L1+L2 & )‘7" = /8L1+L2,7“- (560)
Inserting this last relation in (5.49) to (5.52), and usingnima 5.5.1 we establish (5.53), (5.54) and the
equality in (5.55). The inequality in (5.55) is obtained htining thatr, > r and that

(RoR)oN)(L1+ La)— X = sup{(ROR)(u+ Ly + Lg) —ru} — X

u>0
= swp{(ROR)(v+La) = r(v =~ L)} = X
< sf;g{(}z O R)(v+ La) — rv} + (L1 — X)

< ((R©R)2 \)(La).

(i) If 0 < X < rL4, the computation ofr does not provide a rate-latency curve anymore, but a fumctio
that can be bounded below and above by the two followingledezicy curvessy,, x/r, < a < Bx/rx/L,-
Therefore, replacing (5.60) by

O0L1+Ly ® A x §a®ﬁ2§5§+L2®)\LL7
1 v 1

wl

and applying Lemma 5.5.1 to both bounding rate-latencyesiy,, x,., and8x/, x,/.,, We get respec-
tively the lower and upper bounds (5.56) to (5.58).

(i) If X = 0andrL; > 0then (5.59) yields that(t) = 0 for all ¢ > 0. In this case (5.49) becomes
sup,>o{ (v — D)} < 0. This is possible only i) is equal to the duration of the stream. O

It is interesting to examine these results for two particutdues ofX.

The first one isX = co. If the intermediate server is a greedy shaper whose owpyti) = (o2 ® y1)(t),

one could have applied Theorem 5.5.1 with= A\, and = 1 ® 02 ® B2 = 01,41, @ Ary = BLi+Lo,m

to find out thatD and T are still given by (5.53) and (5.54) but th& = (R @ R) @ \;)(L1 + L») is
larger than (5.55). Using the caching scheduling (5.48gaw of a greedy shaping one allows therefore to
decrease the playback buffer size, but not the delays. Tiferb¥i of the intermediate node does not need
to be infinite, but can be limited tal;.

The second one i¥ = 0. Then whatever the rate > 0, if L; > 0, the playback delay is the length of
the stream, which makes streaming impossible in practideen¥; = L, = 0 however (in which case we
have two null networksX = rL; = 0 is the optimal intermediate node buffer allocation. Thiswhown
in [69](Lemma 5.3) using another approach. We see that wihen 0, this is no longer the case.

5.9 BIBLIOGRAPHIC NOTES

The first application of network calculus to optimal smonogtis found in [53], for an unlimited value of
the look-ahead delay. The minimal solution (5.17) is showibé an optimal smoothing scheme. The
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computation of the minimum look-ahead delay, and of the makisolution, is done in [79]. Network
calculus allows to retrieve some results found using othethods, such as the optimal buffer allocation of
the intermdiate node for two null networks computed in [69].

It also allows to extend these results, by computing thedetl of optimal schedules and by taking into
account non null networks, as well as by using more complepisly curvess than constant rate service
curves. For example, with the Resource Reservation PriofB&VP), o is derived from the T-SPEC field

in messages used for setting up the reservation, and is gwen= vp ar A 7,5, WhereM is the maximum
packet sizeP the peak rate; the sustainable rate ahdhe burst tolerance, as we have seen in Section 1.4.3.

The optimal T-SPEC field is computed in [53]. More precis#éig following problem is solved. As assumed
by the Intserv model, every node offers a service of the fGpna for some latency. and rateC’, with the
latency parametet depending on the raté according tal, = % + Dy. The constant§’y and Dy depends
on the route taken by the flow throughout the network. Destina choose a target admissible network
delay D,.;. The choice of a specific service curgg  (or equivalently, of a rate parametéy) is done
during the reservation phase and cannot be known exactlghiaree. The algorithm developed in [53]
computes the admissible choicesoo= vp s A 7,5 and of D, in order to guarantee that the reservation
that will subsequently be performed ensures a playback delbexceeding a given value.
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CHAPTER 6

AGGREGATESCHEDULING

6.1 INTRODUCTION

Aggregate scheduling arises naturally in many case. Letistsmention here the differentiated services
framework (Section 2.4 on Page 86) and high speed switchsowiical switching matrix and FIFO out-
puts. The state of the art for aggregate multiplexing is oy vich. In this chapter, we give a panorama of
results, a number of which are new.

In a first step (Section 6.2), we evaluate how an arrival cisvueansformed through aggregate multiplex-
ing; we give a catalog of results, when the multiplexing nedeither a service curve element with FIFO
scheduling, or a Guaranteed Rate node (Section 2.1.3),@wvizs curve element with strict service curve
property. This provides many simple, explicit bounds wideh be used in practice.

In a second step (Section 6.3), we consider a global netwsirigaggregate multiplexing (see assumptions
below); given constraints at the inputs of the network, canolstain some bounds for backlog and delay ?
Here, the story is complex. The question of delay bounds fataork with aggregate scheduling was first
raised by Chang [8]. For a given family of networks, we eaitical load factor v.,; a value of utilization
factor below which finite bounds exist, and above which tlexist unstable networks, i.e., networks whose
backlog grow to infinity. For feed-forward networks with aggate multiplexing, an iterative application
of Section 6.2 easily shows that,; = 1. However, many networks are not feed-forward, and thisltresu
does not hold in general. Indeed, and maybe contrary totimtyiAndrews [3] gave some examples of
FIFO networks withv,,.; < 1. Still, the iterative application of Section 6.2, augmeiniéth a time-stopping
argument, provides lower bounds:gf; (which are less than 1).

In a third step (Section 6.4), we give a number of cases wheream say more. We recall the result in
Theorem 2.4.1 on Page 88, which says that, for a general rietmith either FIFO service curve elements,
or with GR nodes, we have.,; > ﬁ whereh is a bound on the number of hops seen by any flow. Then,
in Section 6.4.1, we show that the unidirectional ring alsvajways has,.,.; = 1; thus, and this may be
considered a surprise, the ring is not representative offeed-forward topologies. This result is actually
true under the very general assumption that the nodes omthare service curve elements, with any values
of link speeds, and with any scheduling policy (even non BltF@t satisfies a service curve property. As far
as we know, we do not really understand why the ring is alwtglde, and why other topologies may not be.
Last, and not least surprising, we present in Section 6.4&tcular case, originally found by Chlamtac,
Farag6, Zhang, and Fumagalli [15], and refined by Zhang @] Le Boudec and Hébuterne [51] which
shows that, for a homogeneous network of FIFO nodes withtanhsize packets, strong rate limitations at

175
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all sources have the effect of providing simple, closed foounds.

6.2 TRANSFORMATION OF ARRIVAL CURVE THROUGH AGGREGATE SCHEDUL -
ING

Consider a number of flows served as an aggregate in a comnumn nWithout loss of generality, we
consider only the case of two flows. Within an aggregate, gtackre served according to some unspecified
arbitration policy. In the following sub-sections, we ciales three additional assumptions.

6.2.1 AGGREGATE MULTIPLEXING IN A STRICT SERVICE CURVE ELEMENT

The strict service curve property is defined in Definition.2.8n Page 21. It applies to some isolated
schedulers, but not to complex nodes with delay elements.

THEOREM 6.2.1 (Blind multiplexing). Consider a node serving two flowk,and 2, with some unknown
arbitration between the two flows. Assume that the node giiees astrict service curved to the aggregate
of the two flows. Assume that fl@ws ay-smooth. Defingd, (t) := [3(t) — as(t)]T. If 31 is wide-sense
increasing, then it is a service curve for fldw

ProOF: The proof is a straightforward extension of that of Proposit..3.4 on Page 21. O

We have seen an example in Section 1.3.2i(#f) = Ct (constant rate server or GPS node) and= ~,
(constraint by one leaky bucket) then the service curve fov 1l is the rate-latency service curve with rate
C—rand Iatencyc%r. Note that the bound in Theorem 6.2.1 is actually for a pre@mpriority scheduler
where flow 1 has low priority. It turns out that if we have noatlnformation about the system, it is the
only bound we can find. For completeness, we give the follgwiase.

COROLLARY 6.2.1 (Non preemptive priority node)Consider a node serving two flow&, and L, with
non-preemptive priority given to flold. Assume that the node guaranteestict service curves to the
aggregate of the two flows. Then the high priority flow is gugéead a service curvey (t) = [B(t) —1L. ]t
wherelZ s the maximum packet size for the low priority flow.

If in addition the high priority flow isx-smooth, then defing, by 8.(t) = [3(t) — an(t)]t. If 8L is
wide-sense increasing, then it is a service curve for thedauarity flow.

PrROOF: The first part is an immediate consequence of Theorem 6.2d s&cond part is proven in the
same way as Proposition 1.3.4. O

If the arrival curves are affine, then the following coroflaf Theorem 6.2.1 expresses the burstiness in-
crease due to multiplexing.

COROLLARY 6.2.2 (Burstiness Increase due to Blind Multiplexing)onsider a node serving two flows in
an aggregate manner. Assume the aggregate is guarantettctservice curve3r . Assume also that
flow is constrained by one leaky bucket with parametgrso; ). If p1 + p2 < R the output of the first flow
is constrained by a leaky bucket with parametgrs b7) with

o + p2T

by = T
1=01+pid +p1 R— 1

Note that the burstiness increase contains a terim that is found even if there is no multiplexing; the
second ternpl% comes from multiplexing with flow 2. Note also that if we fugthassume that the
node is FIFO, then we have a better bound (Section 6.2.2).
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PROOF:  From Theorem 6.2.1, the first flow is guaranteed a serviceegtigv,» with R’ = R — p, and
=T+ ”;%7;2”2. The result follows from a direct application of Theorem.3.dn Page 23. O
DO WE NEED THAT THE SERVICE CURVE PROPERTY BE STRICT ? If we relax the assumption that
the service curve property is strict, then the above resldtaot hold. A counter-example can be built as
follows. All packets have the same size, 1 data unit, andtifipws have a peak rate equal to 1. Flow 1
sends one packet at tinle and then stops. The node delays this packet forever. Witibaious notation,
we have, fort > 0:

Ri(t) = min(¢,1) and R} (t) =0

Flow 2 sends one packet every time unit, starting at tirsel. The output is a continuous stream of packets,
one per time unit, starting from time Thus
Ry(t) = (t — 1)* and R)(t) = Ry(t)
The aggregate flows are, for> 0:
R(t)=tand R'(t) = (t — 1)*

In other words, the node offers to the aggregate flow a sewoticee §,. Obviously, Theorem 6.2.1 does
not apply to flowl: if it would, flow 1 would receive a service curé; — \;)™ = d&;, which is not true
since it receive$) service. We can interpret this example in the light of Sectict.4 on Page 29: if the
service curve property would be strict, then we could boutmedduration of the busy period, which would
give a minimum service guarantee to low priority traffic. Wertbt have such a bound on this example. In
Section 6.2.2 we see that if we assume FIFO scheduling, tleesiovihave a service curve guarantee.

6.2.2 AGGREGATE MULTIPLEXING INA FIFO SERVICE CURVE ELEMENT

Now we relax the strict service curve property; we assumettieanode guarantees to the aggregate flow a
minimum service curve, and in addition assume that it hangéekets in order of arrival at the node. We
find some explicit closed forms bounds for some simple cases.

ProPOSITIONG.2.1 (FIFO Minimum Service Curves [20]Consider a lossless node serving two flows,
and2, in FIFO order. Assume that packet arrivals are instantameoAssume that the node guarantees a
minimum service curvg to the aggregate of the two flows. Assume that flas as-smooth. Define the
family of functions3; by

BY(E) = [B(t) — anlt — O)] 1mgy

Call Ry(t), R} (t) the input and output for flow. Then for any) > 0
R, >R ® 5 (6.1)
If 84 is wide-sense increasing, flois guaranteed the service cungg

The assumption that packet arrivals are instantaneousshieainwe are either in a fluid system (one packet
is one bit or one cell), or that the input to the node is paeketiprior to being handled in FIFO order.

PROOF:  We give the proof for continuous time and assume that flowtfans are left-continuous. All
we need to show is (6.1). Calt; the flowi input, R = R; + Ry, and similarlyR,, R’ the output flows.

Fix some arbitrary parametérand timet. Define

u:=sup{v: R(v) < R'(t)}
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Note thatu < ¢ and that
R(u) < R'(t) and R, (u) > R'(t) (6.2)
whereR, (u) = inf,~,[R(v)] is the limit from the right ofR at u.

(Case 1) consider the case where- ¢. It follows from the above and fron®’ < R thatR|(t) = Ry (t).
Thus for anyd, we haveR) (t) = R;(t) + 35(0) which shows thaf} (t) > (R; ® 35)(t) in that case.

(Case 2), assume now that< t. We claim that
Ri(u) < Ry(t) (6.3)

Indeed, if this is not true, namelR; (u) > R (¢), it follows from the first part of (6.2) thaRs(u) < R,(t).
Thus some bits from flow arrived after timeu and departed by timg whereas all bits of flowt arrived
up to timeu have not yet departed at timeThis contradicts our assumption that the node is FIFO aaid th
packets arrive instantaneously.

Similarly, we claim that
(Ra)r(u) > Ry(t) (6.4)

Indeed, otherwise: := R, (t) — (R2)-(u) > 0 and there is somey € (u, t] such that for any € (u, vy
we haveRy(v) < Ry(t) — . From (6.2), we can find somg € (u,vo] such that ifv € (u,v;] then
Ri(v) + Rz(v) > R/(t) — . It follows that

Ry(v) > By(t) +

Thus we can find some with Ry(v) > R)(t) whereasRs(v) < R},(t), which contradicts the FIFO
assumption.

Call s atime such thal’(t) > R(s) + 8(t — s). We haveR(s) < R/(t) thuss < u.
(Case 2a) Assume that< ¢t — 6 thus alsa — s > 6. From (6.4) we derive
Ri(t) > Ri(s) + B(t — 5) + Ra(s) — Ry(t) > Rui(s) + B(t — s) + Ra(s) — (R2)r(u)
Now there exist some > 0 such thatu + € < t — 6, thus(Rz),(u) < Ra(t — 6) and
Ri(t) > Ri(s) + B(t —s) — aa(t —s —0)
It follows from (6.3) that
Ri(t) > Ri(s)
which shows that
Ri(t) 2 Ri(s) + By(t — 5)
(Case 2b) Assume that> t — 6. By (6.3):
Ri(t) = Ri(u) = Ry(u) + B4(t — u)
U

We cannot conclude from Proposition 6.2.1 thafy Bgl is a service curve. However, we can conclude
something for the output.

ProPOSITIONG.2.2 (Bound for Output with FIFO)Consider a lossless node serving two flolvand 2,

in FIFO order. Assume that packet arrivals are instantareoé\ssume that the node guarantees to the
aggregate of the two flows a minimum service cutvéssume that flo@ is as-smooth. Define the family
of functions as in Proposition 6.2.1. Then the output of flawa;-smooth, with

i (t) = inf (a1 @ fy) (t)

inf
0>0
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PROOF:  Observe first that the network calculus output bound holds &y is not wide-sense increasing.
Thus, from Proposition 6.2.1, we can conclude that 591 is an arrival curve for the output of flolv This
is true for anyb. O

We can apply the last proposition and obtain the followinacgical result.

THEOREMG6.2.2 (Burstiness Increase due to FIFO, General Casa)sider a node serving two flowisand

2, in FIFO order. Assume that flowis constrained by one leaky bucket with rateand burstinesg, and

flow 2 is constrained by a sub-additive arrival curage. Assume that the node guarantees to the aggregate
of the two flows a rate latency service curygr. Call p2 := infy~q %Oég(t) the maximum sustainable rate
for flow 2.

If p1 + p2 < R, then at the output, flow is constrained by one leaky bucket with rateand burstines$;

with R
B
by = o1+ p1 <T+ E)

B = sup [aa(t) + p1t — RY]
>0

and

The bound is a worst case bound.

PROOF:  (Step 1) Defined; as in Proposition 6.2.1. DefinB, = sup;s [a2(t) — Rt]. ThusB; is the
buffer that would be required if the laten@ywould be0. We first show the following

if&z%—i—Tthen fort>0: Bi(t) = Rt — RT — as(t — 0) (6.5)

To prove this, callp(¢) the right hand-side in (6.5), namely, for> 6 define¢(t) = Rt — as(t — 0) — RT.
We have

ir>1£ o(t) = 11)r>11; [Rv — az(v) — RT + R0

From the definition ofB,:
inf ¢(t) = —Ba + RO — RT
t>0
If 6 > % + T theng(t) > 0 for all t > 6. The rest follows from the definition gf}.
(Step 2) We apply the second part of Proposition 6.2.1 With % -+ T. An arrival curve for the output of
flow 1 is given by
O‘T = )‘[)1701 @ 591

We now computey]. First note that, obviouslyé’ > B, and therefore?};(t) = Rt — RT — a(t — 0) for
t > 6. o is thus defined fot > 0 by

o (t) = sup [pit + o1 + p1s — 691(3)] = pit + o1 +sup [p1s — ﬁ(}(s)]
5>0 5>0

Definew(s) := p1s — B4(s). Obviously:

sup [¥(s)] = p10

s€[0,0]
Now from Step 1, we have
supli(s)] = sup[p1s — Rs+ RT + as(s — 0)]
5>0 5>0

= sup[piv — Rv+ a2 (v)] + (p1 — R)8 + RT
v>0
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From the definition of3, the former is equal to

sup[t)(s)] = B + (p1 — R)0 + RT = p16

s>0
which shows the burstiness bound in the theorem.

(Step 3) We show that the bound is attained. There is a tihgiah that3 = (av2), () — (R — p1)0. Define
flow 2 to be greedy up to timé and stop from there on:

{ Ry(t) = ag(t) for t < 0
Ro(t) = (Ry), () for t > 6

Flow 2 is as-smooth because; is sub-additive. Define flow by

Ri(t) = pit for t < 0
Ri(t) = p1t + oy fort >0

Flow 1 is \,, »,-smooth as required. Assume the server delays all bit§' lay time 0, then after timel’
operates with a constant raf& until time 6 + 6, when it becomes infinitely fast. Thus the server satisfies
the required service curve property. The backlog just aftee 0 is precisely3 + RT. Thus all flow2

bits that arrive just after timé are delayed by% + T = 6. The output for flowl during the time interval

(0 46,0 + 0 + t] is made of the bits that have arrived(if 6 + t], thus there arg, ¢ + b% such bits, for any
t. ]

The following corollary is an immediate consequence.

COROLLARY 6.2.3 (Burstiness Increase due to FIF@pnsider a node serving two flowisand2, in FIFO
order. Assume that flowis constrained by one leaky bucket with rateand burstiness;. Assume that the
node guarantees to the aggregate of the two flows a rate latseiwice curvedr 1. If p1 + p2 < R, then
flow 1 has a service curve equal to the rate latency function with fa— p; and latencyl’ + % and at the
output, flowl is constrained by one leaky bucket with rateand burstines$; with

(02
bl =01+ p1 (T—i—ﬁ)

Note that this bound is better than the one we used in CoyoBa2.2 (but the assumptions are slightly
different). Indeed, in that case, we would obtain the ratercy service curve with the same r#te- po

but with a larger latencyT” + % instead ofl" + 3. The gain is due to the FIFO assumption.

6.2.3 AGGREGATE MULTIPLEXING INA GR NODE

We assume now that the node is of the Guaranteed Rate typgof62cl.3 on Page 70). A FIFO ser-
vice curve element with rate-latency service curve sasidfiss assumption, but the converse is not true
(Theorem 2.1.3 on Page 71).

THEOREM 6.2.3. Consider a node serving two flows,and 2 in some aggregate manner. Arbitration
between flows is unspecified, but the node serves the aggreggaa GR node with rat& and latency
T. Assume that flow is constrained by one leaky bucket with rateand burstinessr;, and flow 2 is
constrained by a sub-additive arrival curee. Call ps := inf;~g %ag(t) the maximum sustainable rate for
flow 2.

If p1 + p2 < R, then at the output, flow is constrained by one leaky bucket with rateand burstines$;
with R
bl =01+ p1 (T—i—D)
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and
. as(t) + pit + o1

>0 R

—t]

PROOF:  From Theorem 2.1.4 on Page 71, the delay for any packet isdeokioyD + 7". Thus an arrival
curve at the output of flow 1 ie; (¢ + D). O

COROLLARY 6.2.4. Consider a node serving two flowk,and 2 in some aggregate manner. Arbitration
between flows is unspecified, but the node serves the aggrega GR node with rat® and latencyT .
Assume that flowis constrained by one leaky bucket with rateand burstiness;. If p1 + p2 < R, then,
at the output, flowl is constrained by one leaky bucket with ratjeand burstines$;] with

o1 +02>

bT=U1+P1<T+ I

We see that the bound in this section is less good than Cor@lla.3 (but the assumptions are more general).

6.3 STABILITY AND BOUNDS FORANETWORKWITH AGGREGATE SCHEDUL -
ING

6.3.1 THE |ISSUE OFSTABILITY

In this section we consider the following global problemv&i a network with aggregate scheduling and
arrival curve constraints at the input (as defined in theodhiction) can we find good bounds for delay

and backlog ? Alternatively, when is a network with aggregatheduling stable (i.e., the backlog remains
bounded) ? As it turns out today, this problem is open in masgs. In the rest of the chapter, we make the
following assumptions.

ASSUMPTION AND NOTATION

e Consider a network with a fixed numbgiof flows, following fixed paths. The collection of paths is
called the topology of the network. A network node is modelséa collection of output buffers, with
no contention other than at the output buffers. Every buff@ssociated with one unidirectional link
that it feeds.

e Flow i is constrained by one leaky bucket of rateand burstiness; at the input.

¢ Inside the network, flows are treated as an aggregate by therke within an aggregate, packets
are served according to some unspecified arbitration politg assume that the node is such that
the aggregate of all flows receives a service curve at mo@gjual to the rate-latency function with
rater,, and latencye,,,. This does not imply that the node is work-conserving. Alsterthat we do
not require, unless otherwise specified, that the servioeequroperty be strict. In some parts of the
chapter, we make additional assumptions, as explained late
e accounts for the latency on the link that exits nedet also account for delays due to the scheduler
at nodem.

e We writei > m to express that node: is on the route of flowi. For any noden, definep(™ =
> ism Pi- The utilization factor of linkm is p;_:) and the load factor of the networkiis= max,, p;_:).

e The bit rate of the link feeding node is C,,, < +oo, with C,,, > r,.

In the context of the following definition, we call “network®” a system satisfying the assumptions above,
where all parameters except o;, rm, €., are fixed. In some cases (Section 6.3.2), we may add additiona
constraints on these parameters.
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DEFINITION 6.3.1 (Critical Load Factor)We say that,..; is the critical load factor for a network/ if

e for all values ofp;, o, 1, €, SUCh thaty < v,.,;, N is stable
e there exists values ¢f, o;, 7., e, With v > v,,.; such that\/ is unstable.

It can easily be checked that,; is unique for a given network/.

It is also easy to see that for all well defined networks, tligcat load factor is< 1. However, Andrews
gave in [3] an example of a FIFO network with,; < 1. The problem of finding the critical load factor,
even for the simple case of a FIFO network of constant ratesgrseems to remain open. Hajek [37] shows
that, in this last case, the problem can be reduced to thatevdwery source sends a burst; instantly at
time 0, then sends at a rate limited by.

In the rest of this section and in Section 6.4, we give lowermas orv,..; for some well defined sub-classes.

FEeD-FORWARD NETWORKS A feed-forward network is one in which the graph of unidirecal links
has no cycle. Examples are interconnection networks usideimouters or multiprocessor machines. For
a feed-forward network made efrict service curve element or GR nodes,; = 1. This derives from
applying the burstiness increase bounds given in Sectirefeatedly, starting from network access points.
Indeed, since there is no loop in the topology, the procegssind all input flows have finite burstiness.

A L OWER BOUND ON THE CRITICAL LOAD FACTOR It follows immediately from Theorem 2.4.1 on
Page 88 that for a network of GR nodes (or FIFO service cummehts), we have.,.; > ﬁ whereh is
the maximum hop count for any flow. A slightly better bound banfound if we exploit the values of the

peak rates’,, (Theorem 2.4.2).

6.3.2 THE TIME STOPPING METHOD

For a non feed-forward network madesifict service curve element or GR nodes, we can find a lower bound
on v,,; (together with bounds on backlog or delay), using the tinop@hg method. It was introduced by
Cruz in [22] together with bounds on backlog or delay. Westitate the method on a specific example,
shown on Figure 6.1. All nodes are constant rate serverg, umspecified arbitration between the flows.
Thus we are in the case where all nodes are strict service alements, with service curves of the form

/Bm = )\Cm-

The method has two steps. First, we assume that there is @ fimistiness bound for all flows; using
Section 6.2 we obtain some equations for computing thesedsouSecond, we use the same equations to
show that, under some conditions, finite bounds exist.

FIRST STEP: INEQUATIONS FOR THE BOUNDS For any flow: and any noden < i, defines]" as the
maximum backlog that this flow would generate in a constatet sarver with rate,. By convention, the
fresh inputs are considered as the outputs of a virtual nad@ered—1. In this first step, we assume that
o is finite for all: andm € 1.

By applying Corollary 6.2.2 we find that for allandm € i:

of <o

pred(m) .

o™ = JpreQ(m) + Yjomg#i% (6.6)
7 7 Pi szjam’j#i Pj

where preg(m) is the predecessor of node. If m is the first node on the path of flow we set by
convention pregm) = —1 ando; ' = ;.
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Node 2

Figure 6.1:A simple example with aggregate scheduling, used to illustrate the bounding method. There
are three nodes numbered 0, 1,2 and six flows, numbered 0,...,5. For i = 0,1,2, the path of flow i is
1, (1 4+ 1) mod 3, (i + 2) mod 3 and the path of flow i + 3 is ¢, (¢ + 2) mod 3, (i + 1) mod 3. The fresh arrival
curve is the same for all flows, and is given by «; = 7,,. All nodes are constant rate, work conserving
servers, with rate C'. The utilization factor at all nodes is 6 5.

Now put all theg”, for all (i, m) such thatn € i, into a vectorZ with one column anch rows, for some
appropriaten. We can re-write (6.6) as
¥<A¥+a (6.7)

where A is ann x n, non-negative matrix and is a non-negative vector depending only on the known
guantitieso;. The method now consists in assuming that the spectralgadimatrix A is less thanl. In
that case the power seriés- A + A% 4+ A3 + ... converges and is equal (6 — A)~!, wherel is then x n
identity matrix. Sinced is non-negative(/ — A)~! is also non-negative; we can thus multiply (6.7) to the
left by (I — A)~! and obtain:

Fr<(I—-A)"a (6.8)
which is the required result, singédescribes the burstiness of all flows at all nodes. From tiverean
obtain bounds on delays and backlogs.

Let us apply this step to our network example. By symmetryhae only two unknowns andy, defined
as the burstiness after one and two hops:

(6.6) becomes

Definen = 5%; we assume that the utilization factor is less thathus0 < n < 1. We can now write

(6.7) with
L [z B 2n 2 . [ o(l+n)
x_<y>’A_<1+n 277)’“_( 207)

Some remnant from linear algebra, or a symbolic computataftware, tells us that

1-2n 2n
-1 _ 1—6n+2n2 1—61+2n2
(I-A)" = A 0 T
1—6n+2n2  1—6n+2n>2

If n < (3 —+/7) ~ 0.177 then(I — A)~! is positive. This is the condition for the spectral radiusiofo
be less than 1. The corresponding condition on the utibpafctory = 6—68 is

i

8
9
TS

~ 0.564 (6.9)
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Thus, for this specific example, if (6.9) holds, and if thedtimess terms: andy are finite, then they are
bounded as given in (6.8), witd — A)~! anda given above.

SECOND STEP: TIME STOPPING We now prove that there is a finite bound if the spectral radfus is
less than 1. For any time > 0, consider the virtual system made of the original networtkere all sources
are stopped at time. For this network the total number of bits in finite, thus wa egply the conclusion
of step 1, and the burstiness terms are bounded by (6.8)e 8iraight-handside (6.8) is independent-pf
letting T tend to+oo shows the following.

ProOPOSITION6.3.1. With the notation in this section, if the spectral radiusAfs less thanl, then the
burstiness terms;* are bounded by the corresponding terms in (6.8).

Back to the example of Figure 6.1, we find that if the utili@atfactorv is less thari).564, then the burstiness
termsz andy are bounded by

36—96v+5712
y <20 18—18v+12

2
{ z < 2 18—33v+16v
36—960+-5712

The aggregate traffic at any of the three nodegsjs,-smooth withb = 2(o + x + y). Thus a bound on
delay is (see also Figure 6.2):

b o 108 — 198y + 9112

d = — =
C C 36 —96v + 57v?
100
80
60
40
0.2 0.4 0.6 0.8 1

Figure 6.2: The bound d on delay at any node obtained by the method presented here for the network
of Figure 6.1 (thin line). The graph shows d normalized by Z (namely, %), plotted as a function of the
utilization factor. The thick line is a delay bound obtained if every flow is re-shaped at every output.

THE CRITICAL LOAD FACTOR FOR THIS EXAMPLE For the network in this example, where we impose
the constraint that ap; are equal, we find.,; > 1y ~ 0.564, which is much less thah Does it mean that

no finite bound exists fary < v < 1 ? The answer to this question is not clear.

First, theyy found with the method can be improved if we express moreardonstraints. Consider our
particular example: we have not exploited the fact that thetion of input traffic to node that originates
from another node has to Be:-smooth. If we do so, we will obtain better bounds. Secondgiknow that
nodes have additional properties, such as FIFO, then we maple to find better bounds. However, even
so, the value of,,; seems to be unknown.
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THE PRICE FOR AGGREGATE SCHEDULING Consider again the example on Figure 6.1, but assume
now that every flow is reshaped at every output. This is nasipteswith differentiated services, since there
is no per-flow information at nodes other than access nodewekbr, we use this scenario as a benchmark
that illustrates the price we pay for aggregate scheduling.

With this assumption, every flow has the same arrival cunevety node. Thus we can compute a service
curve 37 for flow 1 (and thus for any flow) at every node, using Theorem 6.2.1; meetfiat3; is the rate-
latency function with ratéC — 5p) and Iatencyc%‘gp. Thus a delay bound for flow at any node, including
the re-shaper, i8(a1,a; @ £1) = h(a,B1) = CGTCEW for p < £. Figure 6.2 shows this delay bound,
compared to the delay bound we found if no reshaper is usedveAaready know, we see that with per-
flow information, we are able to guarantee a delay bound fgnitization factor< 1. However, note also
that for relatively small utilization factors, the bounds &ery close.

6.4 STABILITY RESULTS AND EXPLICIT BOUNDS

In this section we give strong results for two specific cadee fbrmer is for a unidirectional ring of aggre-
gate servers (of any type, not necessarily FIFO or strictigecurve). We show that for all rings,,.; = 1.
The latter is for any topology, but with restrictions on thetwiork type: packets are of fixed size and all
links have the same bit rate.

6.4.1 THE RING IS STABLE

The result was initially obtained in [77] for the case of ayrof constant rate servers, with all servers having
the same rate. We give here a more general, but simpler form.

ASSUMPTION AND NOTATION We take the same assumptions as in the beginning of Sectioang.
assume in addition that the network topology is a unidioeeti ring. More precisely:

e The network is a unidirectional ring d¥/ nodes, labelled, ..., M. We use the notatiom & k =
(m+k—1)mod M +1andm &k = (m —k — 1) mod M + 1, so that the successor of node
on the ring is noden @ 1 and its predecessor is nogec 1.

e The route of flowi is (0, i.first, i.first 1, ..., i.first & (h; — 1)) where0 is a virtual node representing
the source of flow, i.first is the first hop of flowi, andh; is the number of hops of flow At its last
hop, flowi exits the network. We assume that a flow does not wrap, nargkg, M. If h; = M,
then the flow goes around the all ring, exiting at the same itddes entered.

o Letb,, =e,rpandletb =) b, reflect the total latency of the ring.

e For any noden letc™ =3 o,

Let oyax = max_; o™ ando = >, 0i. Note thatoax < 0 < Mopax.

e Definen = min,, (r,, — p™).

(m) _ — maxM (m)] "
o Letpy ' =D arstem i @Ndp = max,)_ (Cyy — 1 + pg . p reflects the sum of the peak rate

of transit links and the rates of fresh sources, minus tleegaaranteed to the aggregate of microflows.
We expect high values ¢f to give higher bounds.

THEOREM6.4.1. If n > 0 (i.e. if the utilization factor is< 1) the backlog at any node of the unidirectional
ring is bounded by

MmE (Mopax +b)+0+b
Ui
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ProoOF:  The proof relies on the concept of chain of busy periods, éoetbwith the time stopping
method in Section 6.3.2.

For a noden and a flowi, defineR]"(t) as the cumulative amount of data of flowt the output of node.
Form = 0, this defines the input function. Also define

rm(t) =Y (R)t) — R(t)) (6.10)

2m

thusz,, (t) is the total amount of data that is present in the networkna tiand will go through node. at
some time> t.

We also define the backlog at nodeby

an(t)= Y RO+ Y R - R

i3m,i.first#m i.first=m i9m

Now obviously, for all timet and noden:

qm(t) < mp(t) (6.11)
and
M
Zm(t) < gn(t) (6.12)
n=1

(Step 1) Assume that a finite bourdd exists. Consider a timeand a noden that achieves the bound:
xm(t) = X. We fixm and apply Lemma 6.4.1 to all nodes Call s,, the time calleds in the lemma. Since
Zn(sn) < X, it follows from the first formula in the lemma that

(t —sp)n < Mopax + b (6.13)

By combining this with the second formula in the lemma we wbta

Moyax + b n
qn(t) < u# + by, +aé )

(n)

Now we apply (6.12) and note thﬁfyzl oy = o, from which we derive

X < ME (Mopax +b) +0+b (6.14)
n

(Step 2) By applying the same reasoning as in Section 6.2 2ind that (6.14) is always true. The theorem
follows from (6.11). O

LEMMA 6.4.1. For any nodesn, n (possibly withm = n), and for any time there is some such that

xm(t) < SCn(S) - (t - 5)77 + Momax +b
Gn(t) < (t — 8)p + by + 0V

with U(()n) = Zi.ﬁrst:n 04+
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ProOF: By definition of the service curve property at nagethere is some; such that
SR = > RMNs)+ D RY(s1) 4 rm(t—s1) = by
19m 19m,i.first#£m i.first=m

which we can rewrite as

SRt = —A+ > Rs1)+ rim(t—s1) — b
2m 2m

with

A= Z (RY(s1) — R"(s1))

i3m,i.first£m
Now the condition{i > m, i.first # m} implies that flowi passes through node—1, namely{i > (m — 1)}.
Furthermore, each element in the summation that constitife nonnegative. Thus

A< Y (R)s1) = RP7Hs1)) = amen (s1)
i5(m—1)

e S RI(E) = —amer(s1) + Y R (s1) + rm(t — $1) = by (6.15)
Now combining this wiih the definition af,,(¢) in (;.10) gives:
Tm(t) < wmor(s1) + Y (RY(E) = RY(51)) = rm(t — 51) + b
iam
From the arrival curve property applied to all micro-flowis the summation, we derive:
Tm(t) < Tmor(51) = (rm — p™)(t = 51) + 0 + by,
and sincer,,, — p™ > nando(™ < gy, by definition ofn ando .y, We have
T (t) < Tme1(s1) — (= 51)0 + Omax + b

We apply the same reasoning to nodec 1 and times;, and so on iteratively until we reach node
backwards frommn. We thus build a sequence of timas= ¢, sy, s, ..., 55, ..., s, such that

Tinej(85) < Trme(+1)(8+1) — (E = 8j41)0 + Tmax + bimej (6.16)

until we havem © k = n. If n = m we reach the same node again by a complete backwards rotaiibn
k = M. In all cases, we have < M. By summing (6.16) foj = 0 to k — 1 we find the first part of the
lemma.

Now we prove the second parts = s; is obtained by applying the service curve property to nade
and times;,_1. Apply the service curve property to nodeand timet. Sincet > s;_1, we know from
Proposition 1.3.2 on Page 19 that we can find sefhe s such that

ORI = > RN+ D RN At —5) by
ion 19n,i.first#n i.first=n

Thus
wmt) < D (RPN - RPFN)) +

i3n,i.first#n

> (RY(t) — RY(s)) = rult — 8) + by

i.first=n

<(Crn=rn 4Tt = 8) + by + 0 < (t— )+ by + o8

the second part of the formula follows frosm< s’. O
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REMARK : A simpler, but weaker bound, is
MH(MO'—Fb)—FO'—Fb
n

or

M% (MG mas + b) + Mo + b (6.17)

THE SPECIAL CASE IN [77]:  Under the assumption that all nodes are constant rate sex/eate equal
to 1 (thusC,, = r,, = 1 andb,, is the latency of the linkn), the following bound is found in [77]:

~ Mb+ M?0max

B = . +b (6.18)

In that case, we have < 1 — . By applying (6.17), we obtain the bound

_ Mpb + [M?pn+ M) omax
"

By +b

since
p<l-n (6.19)

ando < n <1, M < M?, we haveB, < Bj, namely, our bound is better than that in [77]. If there is
equality in (6.19) (namely, if there is a node that receivesransit traffic), then both bounds are equivalent
whenn — 0.

6.4.2 ExpPLICIT BOUNDS FOR AHOMOGENEOUS ATM N ETWORK WITH STRONG SOURCE
RATE CONDITIONS

When analyzing a global network, we can use the bounds indBe6i2.2, using the same method as in
Section 2.4. However, as illustrated in [41], the boundstsaioed are not optimal: indeed, even for a FIFO
ring, the method doesot find a finite bound for all utilization factors less than 1 lfaligh we know from
Section 6.4.1 that such finite bounds exist).

In this section we show in Theorem 6.4.2 some partial refiat goes beyond the per-node bounds in
Section 6.2.2. The result was originally found in [15, 51].83

Consider an ATM network with the assumptions as in Secti@n\gith the following differences

e Every link has one origin node and one end node. We say thak 4 is incident to linke if the origin
node of linke is the destination node of link. In general, a link has several incident links.

e All packets have the same size (called cell). All arrivald departures occur at integer times (syn-
chronized model). All links have the same bit rate, equdl ¢tell per time unit. The service time for
one cell isl time unit. The propagation times are constant per link atetyir.

e Alllinks are FIFO.

PrROPOSITIONG.4.1. For a network with the above assumption, the delay for accattiving at nodec over
incident linki is bounded by the number of cells arriving on incident lirikg i during the busy period,
and that will depart before.
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PrRoOF:  Call R'(t) (resp. R;(t), R(t))the output flow (resp. input arriving on link total input flow).
Call d the delay for a tagged cell arriving at timen link i. Call A; the number of cells arriving on link
up to timet that will depart before the tagged cell, and fet= Zj A;. We have

d=A—R(t)<A—R(s)— (t—s)

wheres is the last time instant before the busy period.at/e can rewrite the previous equation as

d <> [A; = Ri(s)] + [Ai(t) — Ri(s)] — (£ — 9)
i

Now the link rates are all equal tg thusA; — R;(s) <t — s and

d <Y [Aj = Ry(s)]
i

O

An “Interference Unit” is defined as a set, {j, k}) wheree is a link, {j, k} is a set of two distinct flows
that each have on their paths, and that arrive @abver two different incident links (Figure 6.3). The Route
Interference Number (RIN) of flow is the number of interference units that contairt is thus the number
of other flows that share a common sub-path, counted withiptiaity if some flows share several distinct
sub-paths along the same path. The RIN is used to define aiauiffamndition, under which we prove a
strong bound.

flow j flow i,
node!l  nodeh node g node f node e
4— N4 ] A — . : E — >
node
flow i

Figure 6.3:The network model and definition of an interference unit. Flows j and i, have an interference
unit at node f. Flows j and i; have an interference unit at node [ and one at node g.

DEFINITION 6.4.1 (Source Rate Condition)-he fresh arrival curve constraint (at network boundary) fo
flow j is the stair functiorvri1,r+1, WhereR is the RIN of flow;.

The source rate condition is equivalent to saying that a flemegates at most one cell in any time interval
of durationRIN + 1.

THEOREM 6.4.2. If the source rate condition holds at all sources, then

1. The backlog at any node is boundedMy- max; IN;, whereN; is the number of flows entering the
node via input linki, and N = ). N;.

2. The end-to-end queuing delay for a given flow is boundets3IN.

3. There is at most one cell per flow present during any busipger
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cell d

cell ¢4

cell ¢,

I h g cellc, e
I
Ce” d m m m { ] { ] { ]

cell ¢

Figure 6.4:A time-space diagram illustrating the definitions of d <, ¢; and ¢; ¢ c2. Time flows downwards.
Rectangles illustrate busy periods.

The proof of item 3 involves a complex analysis of chained/pesiods, as does the proof of Theorem 6.4.1.
It is given in a separate section. Item 3 gives an intuitivpl@xation of what happens: the source rate
condition forces sources to leave enough spacing betwdksn s@ that two cells of the same flow do not
interfere, in some sense. The precise meaning of this imgivehe proof. Items 1 and 2 derive from item 3
by a classical network calculus method (Figure 6.6).

PROOF OF THEOREM 6.4.2 As a simplification, we call “path of a cell“ the path of the fl@iithe cell.
Similarly, we use the phrase “interference unitbfvith the meaning of interference unit of the flow af

We define a busy period as a time interval during which the lbgcfor the flow at the node is always
positive. We now introduce a definition (super-chain) thdt ke central in the proof. First we use the
following relation:

DEFINITION 6.4.2 (“Delay Chain” [15]).For two cellsc andd, and for some link, we say that <. d if ¢
andd are in the same busy period atind c leavese befored.

Figure 6.4 illustrates the definition.

DEFINITION 6.4.3 (Super-Chain [15])Consider a sequence of cells= (o, ..., ¢, ..., ¢ ) and a sequence
of nodesf = (fi, ..., fx). We say thafc, f) is a super-chain if

e f1,..., fr are all on the pathP of cell ¢y (but not necessarily consecutive)
® i1y G fori=1tok.
e the path of celk; from f; to f;1 is a sub-path of?

We say that the sub-path af that spans from nodg¢, to nodef;, is the path of the super-chain.

DEFINITION 6.4.4 (Segment Interfering with a Super-Chaifr a given super-chain, we call “segment”
a couple(d, P) where P is a sub-path of the path of the super-chaihis a cell whose path also haB
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as a sub-path, and is maximal (namely, we cannot exteRdo be a common sub-path of bafrand the
super-chain). We say that the segm@nhtP) is interfering with super-chairic, f) if there is some on P
such thatd <y, ¢;.

LEMMA 6.4.2. Let (c, f) be a super-chain. Let, be the arrival time of celk, at link f; and s, the
departure time of celt;, from link fi. Thens, — so < Ry + Th %, WhereR, ; is the total number of
segments interfering witfx, f) and T, is the total transmission and propagation time on the patthef
super-chain.

PrRoOF:  Consider first some nodg on the super-chain. Let;_; (resp.t;) be the arrival time of cell
cj—1 (resp.c;) at the node. Lezt}f1 (resp.s;) be the departure time of cel}_; (resp.c;) (Figure 6.5). Let
v; be the last time slot before the busy period thais in. By hypothesisy; + 1 < s;_;. Also defines;

1Y
B;
Ce“ C SJ—I
0
A J{ '
tia
1 Cell ¢

L s
v time

Figure 6.5:The notation used in the proof of Lemma 6.4.2.

(resp.B?) as the set of segments, P) whered is a cell arriving at the node after time on a link incident
to the path of the super-chain (resp. on the path of the sthmen) and that will depart no later than cej
and whereP is the maximal common sub-path féand the super-chain thgj is in. Also defineA? as the
subset of those segments/#fi for which the cell departs after; ;. Let B; (resp. B, A) be the number
of elements in3; (resp.5}, AY), see Figure 6.5.

Since the rate of all incident links is we have
0
— Aj < 81—
Also, since the rate of the nodeliswe have:
0

s;- —vj = Bj+ Bj

Combining the two, we derive
S;- — Sj—l = Bj + B]O - (Sj—l - Uj) S Bj + Ag] (620)

By iterative application of (6.20) from = 1 to k, we obtain

k
ZB + AN + Ty
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Now we show that all sets in the coIIectic{IBj,A?, j = 1tok} are two-by-two disjoint. Firstly, if
(d, P) € B; thenf; is the first node of” thus(d, P) cannot be in some othét; with j # j'. Thus theB;
are two-by-two disjoint. Second, assuffae P) € B; and(d, P) € A?,. It is obvious from their definitions
that, for a fixedj, B; and A? are disjoint; thusj # j'. Sincef; is the first node of? andj’ is on P,
it follows thatj < j'. Now d leavesf; beforec; and leavesf; after c;,_;, which contradicts the FIFO
assumption. Thus ths; andA?, are two-by-two disjoint. The same reasoning shows thatribtgpossible
that(d, P) € A;[Aj with j < 5.

Now, by definition, every segment in eithB§ or AQ is an interfering segment. Thus

k
Z (Bj + AY) < Ry,
J=1

PROPOSITIONG.4.2. Assume the source rate condition holds. (ftf) be a super-chain.

1. For every interference unit ef) there is at most one cell interfering with the super-chain.
2. ¢, does not belong to the same flowcgs

ProoF: Define the time of a super-chain as the exit time for the lategeon the last nodg,.. We use
a recursion on the timeof the super-chain.

If t = 1, the proposition is true because any flow has at most one eelllmk in one time slot. Assume
now that the proposition holds for any super-chain with tihé — 1 and consider a super-chain with time
t.

First, we associate an interference unit to any segifigii?) interfering with the sub-chain, as follows. The
paths ofd andcy may share several non contiguous sub-paths,faisdone of them. Calf the first node of
P. Tod we associate the interference ufft {jo, 7}), wherejy (resp.j) is the flow ofeg (resp.d).

We now show that this mapping is injective. Assume that arosegmentd’, P') # (d, P) is associated
with the same interference uriit, {jo,7}). Without loss of generality, we can assume tthatas emitted
befored’. d andd’ belong to the same floy thus, since” and P’ are maximal, we must havé = P’. By
hypothesis, have an interference with the super-chain atle onP. Let f; be a node on the super-chain
and onP such thatd <y, ¢. If d' leaves nodef; beforec;, thend <y, &', and thus((d,d'), (f;)) is a
super-chain. Sincé is an interfering cell, necessarily, it must leave nggeeforet, thus the proposition
is true for super-chaif(d, d'), (f;)), which contradicts item 2. Thug must leave nodg¢; after cell¢;. But
there is some other index < k such thatd <y, ¢, thus celld’ leaves node,,, before cellc,,. Define

I as the smallest index with< I’ < m such thatd’ leaves nodef;: after cellc;_; and beforec;,. Then
((d,cpy.eycy—1,d), (fi, .-, frr)) is @ super-chain with time&. ¢ — 1 which would again contradict item 2 in
the proposition. Thus, in all cases we have a contradicttmmapping is injective, and item 1 is shown for
the super-chain.

Second, let us count a bound on the maximum queuing delayl afc€all v its emission timeP, the sub-
path ofcy from its source up to, but excluding, node andT the total transmission and propagation time
for the flow ofcy. The transmission and propagation time aldfgs thusT" — T . By Proposition 6.4.1,
the queuing delay afy at a nodef on F; is bounded by the number of cells< ;s ¢, that arrive on a link not
on P,. By the same reasoning as in the previous paragraph, thatensst one such cefl per interference
unit of ¢y at f. DefineR as the number of interference units of the flowegbn P;. We have thus

so<ug+R+T — Tl,k (6.21)

Similarly, from Lemma 6.4.2, we have

sp < so+ Ryp+ Ty
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Call R’ the number of interference units of the flowagfon the path of the super-chain. It follows from the
first part of the proof thak, ,, < R', thus

s <so+ R + Ty
Combining with (6.21) gives
sy, <up+R+R +T (6.22)
Now by the source condition, if, belongs to the flow of, its emission time,’ must satisfy
W >u+R+R +1
and thus
s >u+R+R +1+T

which contradicts (6.22). This shows that the second iterthefproposition must hold for the super-
chain. O

PROOF OF THEOREM 6.4.2: Item 3 follows from Proposition 6.4.2, since if there woulel tovo cells
d,d’' of the same flow in the same busy period, tiiéh d'), (¢)) would be a super-chain.

Now we show how items 1 and 2 derive from item 3. Gallt) the maximum number of cells that may
ever arrive on incident link duringt time units inside a busy period. Singeis a service curve for node
the backlogB at nodee is bounded by

I
B < sup [Z a; (t) — t]
i=1

>0

Now by item 3,a;(t) < N; and thus

Thus

Now define a renumbering of th¥;’s such thatNV;) < Ny < ... < N(py. The function); a;(t) — tis
continuous and has a derivative at all points exceptNh¢s (Figure 6.6). The derivative changes its sign
at Ny (=maxi<i<r(NV;)) thus the maximum is aV(;) and its value isV — N(), which shows item 1.

From Item 1, the delay at a node is bounded by the number afénémce units of the flow at this node.
This shows item 2. O

6.5 BIBLIOGRAPHIC NOTES

In [51], a stronger property is shown than Theorem 6.4.2:5@t@m a given linke and a subsetl of m con-

nections that use that link. Letbe a lower bound on the number of route interferences that@myection
in the subset will encounter after this link. Then over amydiinterval of durationn + n, the number of
cells belonging tA that leave linke is bounded byn.

It follows from item 1 in Theorem 6.4.2 that a better queuirdagt bound for flow; is:

LOEIED SR SR CE IO

i such that 1<:<T
e such that e€j v sue at 1si<I(e)
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Figure 6.6:Derivation of a backlog bound.

whereI(e) is the number of incident links at node NV;(e) is the number of flows entering nodeon link
iband N = > i= 11(6)]\@-(6). In other words, the end-to-end queuing delay is boundechéystim of
the minimum numbers of route interference units for all flatsll nodes along the path of a flow. For
asymmetric cases, this is less than the RIN of the flow.

6.6 EXERCISES

EXERCISE 6.1. Consider the same assumptions as in Section 6.4.1 but witlear Inetwork instead of a
ring. Thus noden feeds noden + 1 form =1, ..., M — 1; node1 receives only fresh traffic, whereas all
traffic exiting nodeM leaves the network. Assume that all service curves ard.sKid a bound which is

finite forv < 1. Compare to Theorem 6.4.1.

EXERCISE6.2. Consider the same assumptions as in Theorem 6.4.2. Shothéhatsy period duration is
bounded byV.

EXERCISE6.3. Consider the example of Figure 6.1. Apply the method of @e6ti3.2 but express now that
the fraction of input traffic to nodéthat originates from another node must have as an arrival curve .
What is the upper-bound on utilization factors for which aibd is obtained ?

EXERCISE6.4. Can you conclude anything an,; from Proposition 2.4.1 on Page 90 ?



CHAPTER 7

ADAPTIVE AND PACKET SCALE RATE
GUARANTEES

7.1 INTRODUCTION

In Chapter 1 we defined a number of service curve conceptsinmin service curve, maximum service
curve and strict service curves. In this chapter we go beyontidefine some concepts that more closely
capture the properties of generalized processor shariR$)G

We start by a motivating section, in which we analyze somtufea of service curves or Guaranteed Rate
node that do not match GPS. Then we provide the theoretiaadework of packet scale rate guarantee
(PSRG); it is a more complex node abstraction than GuardriRete, which better captures some of the
properties of GPS. A major difference is the possibility &side information on delay when the buffer size
is known — a property that is not possible with service cunvguaranteed rate. This is important for low
delay services in the internet. PSRG is used in the definitfdhe Internet Expedited Forwarding service.

Just like GR is the max-plus correspondant of the min-plusept of service curve, PSRG is the max-plus
correspondant adidaptive service curved hese were first proposed in Okino’s dissertation in [62] by
Agrawal, Cruz, Okino and Rajan in [1]. We explain the relasbip between the two and give practical
applications to the concatenation of PSRG nodes.

In the context of differentiated services, a flow is an agate@f a number of micro-flows that belong to the
same service class. Such an aggregate may join a routerfbyedif ports, and may follow different paths
inside the router. It follows that it can generally not beusssd that a router is FIFO per flow. This is why
the definition of PSRG (like GR) does not assume the FIFO ptape

In all of this chapter, we assume that flow functions aredefttinuous, unless stated otherwise.

7.2 LIMITATIONS OF THE SERVICE CURVE AND GR NODE ABSTRAC-
TIONS

The definition of service curve introduced in Section 1.3risahstraction of nodes such as GPS and its
practical implementations, as well as guaranteed delagsio@ihis abstraction is used in many situations,
described all along this book. However, it is not always sifit.

195
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Firstly, it does not provide a guarantee over any intervainsider for example a node offering to a flow
R(t) the service curve. AssumeR(t) = B fort > 0, so the flow has a very large burst at tilhand then
stops. A possible output is illustrated on Figure 7.1. Itdagfgctly possible that there is no output during the
time interval(0, Bge], even though there is a large backlog. This is because therggve a higher service
than the minimum required during some interval of time, dralgervice property allows it to be lazy after

that.

B R(1)
R*(1)

Ct

v

Figure 7.1:The service curve property is not sufficient.

Secondly, there are case where we would like to deduce a bmutite delay that a packet will suffer given
the backlog that we can measure in the node. This is used famaig bounds in FIFO systems with
aggregate scheduling. In Chapter 6 we use such a propertydonstant delay server with raf& given
that the backlog at timeis @, the last bit present at timewill depart before within a time o%. If we
assume instead that the server has a service eurythen we cannot draw such a conclusion. Consider for
example Figure 7.1: at time> 0, the backlogg, can be made arbitrily small, whereas the de@E —t

can be made arbitrarily large.

The same limitation applies to the concept of Guaranteeé Ratle. Indeed, the example in Figure 7.1
could very well be for GR node. The main issue here is that a G nlike a service curve element, may
serve packetsarlier than required.

A possible fix is the use dftrict service curveas defined in Definition 1.3.2 on Page 21. Indeed, it follows
from the next section (and can easily be shown independethiy if a FIFO node offers a strict service
curve 3, then the delay at timeis bounded by3~1(Q(t)), whereQ(t) is the backlog at time, andj3~! is

the pseudo-inverse (Definition 3.1.7 on Page 108).

We know that the GPS node offers to a flow a strict service cequeal of the form\z. However, we cannot
model delay nodes with a strict service curve. Consider fample a node with inpuk(t) = et, which
delays all bits by a constant timke Any interval [s, t] with s > d is within a busy period, thus if the node
offers a strict service curvg to the flow, we should havg(t — s)e(t — s), ande can be arbitrarily small.
Thus, the strict service curve does not make much sense torsdant delay node.

7.3 PACKET SCALE RATE GUARANTEE

7.3.1 DEFINITION OF PACKET SCALE RATE GUARANTEE

In Section 2.1.3 on Page 70 we have introduced the definitigquaranteed rate scheduler, which is the
practical application of rate latency service curves. @imrsa node where packets arrive at timgs>
0,as9, ... and leave at timedy, ds, .... A guaranteed rate scheduler, with ratand latencye requires that
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d; < f! + e, wheref! is defined iteratively by, = 0 and
l;

r

fz/ = max{aiv filfl} +

wherel; is the length of théth packet.

A packet scale rate guarantae similar, but avoids the limitations of the service curamcept discussed

in Section 7.2. To that end, we would like that the deadlifiés reduced whenever a packet happens to
be served early. This is done by replacifig, in the previous equation bwyin{f/,d;}. This gives the
following definition.

DEFINITION 7.3.1 (Packet Scale Rate Guarante@pnsider a node that serves a flow of packets numbered
1 =1,2,.... Call q;,d;, [; the arrival time, departure time, and length in bits for tik packet, in order of
arrival. Assumer; > 0.We say that the node offers to the flow a packet scale rateagtese with rate- and
latencye if the departure times satisfy

d; < fi+e

wheref; is defined by:

Jo=do=0
{ fi = max{a;, min (d;_1, fi—1)} + % foralls > 1 (7.1)
See Figure 7.2 and Figure 7.3 for an illustration of the dedini
f(n) = max{a(n), min[d(n-1), f(n-1)T}+ L(n)/r
L(n)/r T
| | ; ! >
f(n-1) d(n-1) a(n) f(n) d(n)
L(n)/r
— l I ! >
a(n) f(n-1) d(n-1) f(n) d(n)
L(n)/r
ly I
a(n)d(n-1) f(n-1) f(n) d(n) ]
Figure 7.2:Definition of PSRG.
THEOREM 7.3.1. A PSRG node with rateand latencye is GR(, e).
Proor: Follows immediately from the definition. O

Comment. It follows that a PSRG node enjoys all the properties of a G&endn particular:
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Packet Scale Rate Guarantee

f(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/r

L(n)/r

A\

¢
<

ly
a(n)'d(rl\-l) f(n-1) f(n) 'd(n)

v

Guaranteed Rate
f(n) = max{a(n), f(n-1)]}+ L(n)/r
| L(n)/r

ly | .
a(n)d(n-1) f(n-1) f(n) 'd(n)

A
A4

Figure 7.3:Difference between PSRG and GR when packet n — 1 leaves before f,,.

e Delay bounds for input traffic with arrival curves can be atd from Theorem 2.1.4.
e PSRG nodes have a rate latency service curve property (@medrl.3) that can be used for buffer
dimensioning.

We now obtain a characterization of packet scale rate gtedhat does not contain the virtual finish times
fn- Itis the basis for many results in this chapter. We starha&it expansion of the recursive definition of
packet scale rate guarantee,

LEmMmA 7.3.1 (Min-max expansion of PSRGL.onsider three arbitrary sequences of non-negative nusber
(an)n>1, (dp)n>0, @and(my)n>1, With dy = 0. Define the sequendg,,),>o, by

fo=0
{ frn = max [ay, min (dy,—1, fn_1)] + my forn > 1
Also define
A;?:aj+mj+...+mnfor1§j§n
D;‘:dj+mj+1—|—...+mnf0r0§j§n—1
For all n > 1, we have

fo=min [ max(Al A" | ..., A]),
max(Ap, Ay ..., Ay, D7),

n n n n
max(Ay, Ay _q..., Ajq, DY),

max(A4;, A, _1,D,_5),

n—1» ~'n—
max (A, Dy 1)
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The proof is long and is given in a separate section (Sectifn if is based on min-max algebra.

Comment: The expansion in Lemma 7.3.1 can be interpreted as follows fifst termmax(A}}, A7, ..., AT)
corresponds to the guaranteed rate clock recursion (sexdrhe2.1.2). The following terms have the effect

of reducingf,,, depending on the values df.

We now apply the previous lemma to packet scale rate guarame obtain the required characterization
without the virtual finish timeg,,:

THEOREM 7.3.2. Consider a system where packets are numbeéréd... in order of arrival. Calla,, d,
the arrival and departure times for packet andi,, the size of packet. Define by conventiod, = 0. The
packet scale rate guarantee with rateand latencye is equivalent to: For allz and all0 < j <n — 1, one
of the following holds

Livi+ . +1,
dngﬁdﬁ% (7.2)
or there is somé& € {j + 1,...,n} such that
e+ ... + 1y
dnge—i-ak—k% (7.3)

The proof is also given in Section 7.7. It is a straightfordvapplication of Lemma 7.3.1.

Comment 1: The original definition of EF in [42] was based on the infornméition that a node guarantees
to the EF aggregate a rate equal-taat all time scales (this informal definition was replacedA8RG).
Theorem 7.3.2 makes the link to the original intuition: arguarantee at all time scales means that either
(7.2) or (7.3) must hold. For a simple scheduler, the formeans that/;, d,, are in the same backlogged
period; the latter is for the opposite case, and hgras the beginning of the backlogged period. But
note that we do not assume that the PSRG node is a simple $eheitumentioned earlier, it may be any
complex, non work conserving node. It is a merit of the alostPSRG definition to avoid using the concept
of backlogged period, which is not meaningful for a compmaibde [13, 5].

Comment 2: In Theorem 2.1.2 we give a similar result for GR nodes. It &rimctive to compare both in
the case of a simple scheduler, where the interpretatioering of backlogged period can be made. Let us
assume the latency term(@sto make the comparison simple. For such a simple sched®®RG means
that duringanybacklogged period, the scheduler guarantees a rate atbpaesttor. In contrast, and again
for such simple schedulers, GR means that during the bagitbgeriod starting at the first packet arrival
that finds the system empty (this is called “busy period” iewujng theory), the average rate of service is
at leastr. GR allows the scheduler to serve some packets more quicély dt rate-, and take advantage
of this to serve other packets at a rate smaller thaas long as the overall average rate is at leaftSRG
does not allow such a behaviour.

A special case of interest is when= 0.

DEFINITION 7.3.2. We callminimum rate servewith rater, a PSRG node for with lateney= 0.

For a minimum rate server we have

{ do =0 (7.4)

d; < max {a;,d;—1} + l;’ foralli >1

Thus, roughly speaking, a minimum rate server guaranteggitiring any busy period, the instantaneous

output rate is at least A GPS node with total rat€’ and weightw; for flow i is a minimum rate server for

flow 4, with rater; = i"—g
7
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7.3.2 PBPRACTICAL REALIZATION OF PACKET SCALE RATE GUARANTEE

We show in this section that a wide variety of schedulers idmthe packet scale rate guarantee. More
schedulers can be obtained by using the concatenatiorethéarthe previous section.

A simple but important realization is the priority schedule

PrROPOSITION 7.3.1. Consider a non-preemptive priority scheduler in which alckets share a single
FIFO queue with total output rat€'. The high priority flow receives a packet scale rate guarantéh rate

C and latencye = lmﬁ wherel,,... is the maximum packet size of all low priority packets.

PrROOF: By Proposition 1.3.7, the high priority traffic receives adtservice curves, .. O

We have already introduced in Section 2.1.3 schedulersctimabe thought of as derived from GPS and we
have modeled their behaviour with a rate-latency serviceecun order to give a PSRG for such schedulers,
we need to define more.

DEeFINITION 7.3.3 (PSRG Accuracy of a scheduler with respect torrpteConsider a schedule$ and call
d; the time of the-th departure. We say that the PSRG accuracy afith respect to rate is (eq, ez) if
there is a minimum rate server with rateand departure timeg; such that for alk

gi—e1 <d;<gi+e (7.5)

We interpret this definition as a comparison to a hypothe@dS reference scheduler that would serve the
same flows. The term, determines the maximum per-hop delay bound, whetgdms an effect on the
jitter at the output of the scheduler. For example, it is show[6] that WFQ satisfies:; (WF?Q) = Lz /7,
e2(WF?Q) = l,nas/C, Wherel,,q. is maximum packet size ard is the total output rate. In contrast, for
PGPS [64]e2(PGPS = e3(WF?Q), while e; (PGPS is linear in the number of queues in the scheduler.
This illustrates that, while WA and PGPS have the same delay bounds, PGPS may result iargiatigt
burstier departure patterns.

THEOREM 7.3.3. If a scheduler satisfies (7.5), then it offers the packetescate guarantee with rate and
latencye = e; + es.

The proof is in Section 7.7.

7.3.3 [DELAY FROM BACKLOG

A main feature of the packet scale rate guarantee definisidhai it allows to bound delay from backlog.
For a FIFO node, it could be derived from Theorem 7.4.3 andfidra 7.4.5. But the important fact is that
the bound is the same, with or without FIFO assumption.

THEOREM 7.3.4. Consider a node offering the Packet Scale Rate Guarantéderatié» and latencye, not
necessarily FIFO. Call) the backlog at time. All packets that are in the system at timwill leave the
system no later than at timet+ Q/r + e,

The proof is in Section 7.7.

Application to Differentiated Services Consider a network of nodes offering the EF service, as in Sec
tion 2.4.1. Assume node is a PSRG node with ratg,, and latencye,,,. Assume the buffer size at node
is limited to B,,,. A bound.D on delay at noden follows directly

B
D=—"+¢,

T'm
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1
del
ay 0.8
0.67
h=10 1 MB
CZZMTU/I" 0.4+
r=150 Mb/s 0.4 MB
C=5R 0.2 .
A 0.1 MB
0.05 0.1 0.15 0.2 0.25 (x

Figure 7.4:End to end delay bound versus the utilization factor « for an infinite buffer (left curve) and buffers
sizes of 1IMB (top), 0.38MB (middle) and 0.1MB (bottom). There are & = 10 hops, e, = 24528, 5, = 100B
and p; = 32kb/s for all flows, r,, = 149.760Mb/s.

Compare to the bound in Theorem 2.4.1: this bound is validfiautilization levels and is independent of
traffic load. Figure 7.4 shows a numerical example.

However, forcing a small buffer size may cause some packst [bhe loss probability can be computed if
we assume in addition that the traffic at network edge is médeatonary, independent flows [58].

7.4 ADAPTIVE GUARANTEE

7.4.1 DEFINITION OF ADAPTIVE GUARANTEE

Much in the spirit of PSRG, we know introduce a stronger ssreurve concept, calletlaptive guarantee
that better captures the properties of GPS [62, 1], and Haddsg concatenation properties for PSRG.
Before giving the formula, we motivate it on three examples.

Example 1. Consider a node offering a strict service cupe Consider some fixed, but arbitrary times
s < t. Assume thap is continuous. Ifs, ] is within a busy period, we must have

R*(t) = R*(s) + B(t — s)
Else, callu the beginning of the busy periodatWe have

R*(t) > R(u) + B(t — u)
thus in all cases

RY(6) 2 (R°(s) + B(t = s)) A inf (R(w) + Bt~ w)) (7.6)

Example 2. Consider a node that guarantees a virtual delay If t — s < d then trivially

R*(t) = R*(s) + 0a(t — s)
and ift — s > d then the virtual delay property means that

R(t)> R(t —d) = inf (R(u)+ 04t —u))

u€ls,t]
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thus we have the same relation as in (7.6) with: d,.
Example 3. Consider a greedy shaper with shaping functidfassumed to be a good function). Then

R*(t) = inf[R(u) + o(t — u)]

u<t

Breaking the inf intau < s andu > s gives

R*(t) = inf[R(u) + o(t —uw)] A inf [R(u)+ o(t — u)] (7.7)

u<s u€ls,t]

Defines := c@o, namely,
a(u) = irgf[a(t +u) —o(u)] (7.8)

For example, for a piecewise linear concave arrival cureej(mction of leaky bucketsy;(t) = min;(r;u+
b;), we haves (u) = min; r;u. Back to (7.7), we have

ot—u)>o(s—u)+ao(t—s)

and finally
R*(t) > (R*(s) +a(t—s)) A inf (R(u)+o(t —u)) (7.9)

u€|s,t]
We see that these three cases fall under a common model:
DEFINITION 7.4.1 (Adaptive Service Curve).et 3, 8 be in F. Consider a syster§ and a flow through

S with input and output function& and R*. We say thatS offers theadaptive guarante@, B) if for any
s < tit holds:

R*(t) > (R*(s) v 30— s)> A inf [R(u) + Bt — )]

u€|s,t]

If 3 = 3 we say that the node offers the adaptive guarartee

The following proposition summarizes the examples disstisdove:

PrROPOSITION7.4.1. e If S offers to a flow a strict service curvg, then it also offers thedaptive
guarantees.
e If S guarantees a virtual delay bounded #ythen it also offers thadaptive guaranteg
e A greedy shaper with shaping curwe whereos is a good function, offers thadaptive guarantee
(6,0), with & defined in (7.8).

Similar to [62], we use the notatioR — (B, B) — R* to express that Definition 7.4.1 holds.Af= 3 we
write R — (8) — R*.

Assume thafR is left-continuous and is continuous. It follows from Theorem 3.1.8 on Page 115 that
adaptive guarantee is equivalent to saying that fos allt, we have either

R*(t) — R*(s) > B(t — s)

or
R*(t) > R(u) + B(t - u)

for someu € s, t].

7.4.2 PROPERTIES OF ADAPTIVE GUARANTEES

THEOREM7.4.1. LetR — (B, B) — R*. If 3 < B theng is a minimum service curve for the flow.
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PROOF:  Apply Definition 7.4.1 withs = 0 and use the fact that < 3. O
THEOREM 7.4.2 (Concatenation)lf R — (51, 31) — Ry andR; — (62, 82) — R* thenR — (53, ) —
R* with

B=(rem)nk
and

B=pB1® B3

The proof is in Section 7.7

COROLLARY 7.4.1. If R;_; — (B;,3;) — R; fori = 1tonthenRy — (53, 8) — R, with

B = (51®ﬁ2®...®ﬁn)/\<5~2®ﬁ3®...®5n)/\«-o/\<ﬁ~n—1®ﬁn)/\5~n

and

PrRoOOF: Apply Theorem 7.4.2 iteratively and use Rule 6 in Theorem53ch Page 111. O

THEOREM 7.4.3 (Delay from Backlog)If R — (B,ﬁ)~—> R*, then the virtual delay at timeis bounded
by 571(Q(t)), whereQ(t) is the backlog at time, and 3~ is the pseudo-inverse of(see Definition 3.1.7
on Page 108).

The proof is in Section 7.7. Note that if the node is FIFO, thenvirtual delay at time is the real delay
for a bit arriving at timet.

Consider a systenbit-by-bit systemwith L-packetized inpui? and bit-by-bit outputR*, which is then
L-packetized to produce a final packetized outfit We call combined systerthe system that map&
into R’. Assume both systems are first-in-first-out and losslessneRber from Theorem 1.7.1 that the
per-packet delay for the combined system is equal the maxiritiual delay for the bit-by-bit system.

THEOREM7.4.4 (Packetizer and Adaptive Guaranteié}he bit-by-bit system offers to the flow the adaptive
guarantee(3, 3), then the combined system offers to the flow the adaptiveagtese(3’, 3') with

B'(t) = [B(t) — lnax] ™

and
ﬁ,(t) = [B(t) - lmax]+

wherel,,.x is the maximum packet size for the flow.

The proof is in Section 7.7.

7.4.3 PSRGAND ADAPTIVE SERVICE CURVE

We now relate packet scale rate guarantee to an adaptivargear We cannot expect an exact equivalence,
since a packet scale rate guarantee does not specify whaertgpo bits at a time other than a packet
departure or arrival. However, the concept of packetiZemnal us to establish an equivalence.
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THEOREM7.4.5 (Equivalence with adaptive guarante€pnsider a nod& with L-packetized inpuk and
with outputR*.

1. If R — (B) — R*, whereg = 3, . is the rate-latency function with rateand latencye, and ifS is
FIFO, thenS offers to the flow the packet scale rate guarantee with radad latencye.

2. Conversely, if§ offers to the flow the packet scale rate guarantee with reded latencye and if R*
is L-packetized, the§ is the concatenation of a nod# offering the adaptive guarante®. . and the
L-packetizer. IfS is FIFO, then so isS’.

The proof is long and is given in a separate section (Sectidn Rote that the packet scale rate guarantee
does not mandate that the node be FIFO; it is possibledthatd; _; in some cases. However, part 1 of the
theorem requires the FIFO assumption in order for a conddioR, R* to be translated into a condition on
delays.

7.5 CONCATENATION OF PSRG NODES

7.5.1 CONCATENATION OF FIFO PSRG NODES

We have a simple concatenation result for FIFO systems:

THEOREM 7.5.1. Consider a concatenation of FIFO systems numbértmn. The output of systerin— 1
is the input of system for i > 1. Assume systeinoffers the packet scale rate guarantee with ratend
latencye;. The global system offers the packet scale rate guarantberater = min;—;,._, r; and latency

J— . Llnax
€= Zi:l,...,n € + Zizl,...,nfl r; "

PrROOF: By Theorem 7.4.5—(2), we can decompose systarto a concatenatios;, P;, whereS; offers
the adaptive guarante®, ., andP; is a packetizer.

Call S the concatenation
517 P1>S27 P27 ey 811717 Pnfla Sn

By Theorem 7.4.5—(2)S is FIFO. By Theorem 7.4.4, it provides the adaptive guaeapie. By Theo-
rem 7.4.5—(1), it also provides the packet scale rate gtegasith rater and latency. Now P,, does not
affect the finish time of the last bit of every packet.

O

A Composite NodeWe analyze in detail one specific example, which often atisggactice when mod-
elling a router. We consider a composite node, made of twopoments. The former (“variable delay
component”) imposes to packets a delay in the rdage. — 0, dmax]. The latter is FIFO and offers to its
input the packet scale rate guarantee, with rad@d latencye. We show that, if the variable delay compo-
nent is known to be FIFO, then we have a simple result. We fivstthe following lemma, which has some
interest of its own.

LEMMA 7.5.1 (Variable Delay as PSRGLonsider a node which is known to guarantee a detay,,.x.
The node need not be FIFO. Call;, the minimum packet size. For any> 0, the node offers the packet
scale rate guarantee with lateney= [0, — 2]+ and rater.

T

Proof. With the standard notation in this section, the hypothesjdies thatd,, < a, + dmax for alln > 1. Define
fn by (7.1). We havef,, > an + 12 > a, + 22in thusd, — fr < Smax — 222 < [Smax — i) T,




7.5. CONCATENATION OF PSRG NODES 205

O

We will now apply known results on the concatenation of FIH@rents and solve the case where the
variable delay component is FIFO.

THEOREM 7.5.2. (Composite Node with FIFO Variable Delay Comporjefitonsider the concatenation of
two nodes. The former imposes to packets a d€lady, ... The latter offers the packet scale rate guarantee
to its input, with rater and latencye. Both nodes are FIFO. The concatenation of the two nodeshyn a
order, offers the packet scale rate guarantee with ragand latencye’ = e + dppax.

Proof. Combine Theorem 7.4.2 with Lemma 7.5.1: for ady> r, the combined node offers the packet scale
guarantee with rate and latencye(r’) = e + dmax + lm‘”‘q# Define f,, for all n by (7.1). Consider some
fixed but arbitraryn. We haved, — f. < e(r’), and this is true for any’ > r. Letr’ — +occ and obtain
dn — fn <inf,rs,.e(r') = € 4 dmax as required.

7.5.2 CONCATENATION OF NON FIFO PSRG NODES

In general, we cannot say much about the concatenation ofife@ PSRG nodes. We analyze in detalil
composite node described above, but now the delay elemeahiBIFO. This is a frequent case in practice.
The results are of interest for modelling a router. The atsuesthe purpose of showing that the results in
Theorem 7.5.1 do not hold here.

To obtain a result, we need to an arrival curve for the incgntiaffic. This is because some packets may
take over some other packets in the non-FIFO delay elemaqnir@-7.5); an arrival curve puts a bound on
this.

THEOREM 7.5.3. (Composite Node with non-FIFO Variable Delay Compohe@bnsider the concatena-

tion of two nodes. The firstimposes to packets a delay in thgefd,,.x — J, dmax]. The second is FIFO and

offers the packet scale rate guarantee to its input, witle raaind latencye. The first node is not assumed
to be FIFO, so the order of packet arrivals at the second ned®i the order of packet arrivals at the first
one. Assume that the fresh input is constrained by a conismaaival curvea(-). The concatenation of the
two nodes, in this order, satisfies the packet scale rateantae with rate- and latency

= e + 6max+
min{supt>o[m —t], (7.10)
N 5 _ lmin
SUPg < S 2nn )

The proof is long, and is given in Section 7.7.

Figures 7.6 to 7.8 show numerical applications when thearcurve includes both peak rate and mean rate
constraints.

Special Case [Fora(t) = pt + o, a direct computation of the suprema in Theorem 7.5.3 gives:

if p<rthen € =e+ 0pax+ pI+0—lmin

IS
else 6,:€+6max_5+2®

The latency of the composite node has a discontinuity equal)/t atp = r. It may seem irrelevant to
consider the casg > r. However, PSRG gives a delay from backlog bound; there magabes where
the only information available on the aggregate input is @noloon sustainable rage with p > r. In such
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non FIEQ, delay &

a
: 1
|1 A
A p2 .
az
l A
43| |a3
: P4
a4
d1 =d
b3 =by 4 @)
P
dy=dg,
d3 :d(4)

Figure 7.5:Composite Node with non-FIFO Variable Delay Component. Packet n arrives at times a,, at
the first component, at time b,, at the second component, and leaves the system at time d,,. Since the first
component is not FIFO, overtaking may occur; (k) is the packet number of the kth packet arriving at the
second component.

sec
0. 05

0.04

50 100 150 200

Figure 7.6: Numerical Application of Theorem 7.5.3 and Theorem 2.1.7, showing the additional latency
e/ — e for a composite node, made of a variable delay element (6 = dax = 0.01s) followed by a PSRG
or GR component with rate » = 100Mb/s and latency e. The fresh traffic has arrival curve pt + o, with
o = 50KBytes. The figure shows ¢’ — e as a function of p, for I,,;, = 0. Top graph: delay element is
non-FIFO, second component is PSRG (Theorem 7.5.3); middle graph: delay element is non-FIFO, second
component is GR (Theorem 2.1.7); bottom line: delay element is FIFO, both cases (Theorem 7.5.2 and
Theorem 7.5.3). Top and middle graph coincide for p < r.
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sec sec
0.05 0.05
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
50 100 150 200 "PPS 50 100 150 200 "PPS

Figure 7.7:Same as Figure 7.6, but the fresh traffis has a peak rate limit. The arrival curve for the fresh
traffic is min(pt + MTU, pt + o), with MTU = 500B, p = 200Mb/s (top picture) or p = 2p (bottom picture).

Figure 7.8:Latency increase as a function of peak rate and mean rate. The parameters are the same as
for Figure 7.7.
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cases, there are probably other mechanisms (such as winalewdhtrol [47]) to prevent buffer overflow;
here, it is useful to be able to bouatdas in Theorem 7.5.3.

Comment 1 : We now justify why Theorem 7.5.3 is needed, in other wordswefrelax the FIFO as-
sumption for the variable delay component, then Theoren2 dées not hold any more. Intuitively, this is
because a tagged packet (day on Figure 7.5) may be delayed at the second stage by padkétsnthe
figure) that arrived later, but took over our tagged packdsoAthe service rate may appear to be reduced
by packets P1 on the figure) that had a long delay in the variable delay corapb Formally, we have:

PROPOSITION7.5.1 (Tightness).The bound in Theorem 7.5.3 is tight in the case of an arrivalewf the
forma(t) = pt + o and if lyax > 2lmin.

The proof is in Section 7.7.

The proposition shows that the concatenation of non-FIFER®8o0des does not follow the rule as for
FIFO nodes, which is recalled in the proof of Theorem 7.5.@teNhat if the conditiord,,.x > 21,,, iS not
satisfied then the bound in Theorem 7.5.3 is tight up to adales of2l,,;,, /7.

Comment 2 : (7.10) for the latency is the minimum of two terms. In the cage) = pt + o, for
p < r, the bound is equal to its former term, otherwise to its sdderm. For a general however, such a
simplification does not occur.

Comment 3: If «is not continuous (thus has jumps at some values), then ieahown that Theorem 7.5.3
still holds, with (7.10) replaced by

d= e + 5max+

min{supso[2E2 ],

SUPp<¢<s [M —t]}

with ag(u) = minfo(u+) — lyin, a(u)].

7.6 COMPARISON OF GR AND PSRG

First, we know that a PSRG node is GR with the same parameiengs can be used to obtain delay
and backlog bounds for arrival curve constrained inpufitrailCompare however Theorem 2.1.1 to The-
orem 7.3.3: the PSRG characterization has a larger lateticgn the GR characterization, so it is better
not to use the two characterizations separately: GR tomlkliay and backlog bounds, PSRG to obtain
delay-from-backlog bounds.

Second, we have shown that for GR there cannot exist a delaythacklog bound as in Theorem 7.3.4.

Third, there are similar concatenation results as for PSRGieorem 2.1.7. The value of latency increase
¢’ for the composite node is the same for PSRG and GR when thertotaming ratep is less than the
scheduler rate. However, the guarantee expressed by PSRG is strongertaiaoftGR. Thus the stronger
guarantee of PSRG comes at no cost, in that case.

7.7 PROOFS

7.7.1 RROOF OF LEMMA 7.3.1

In order to simplify the notation, we use, locally to this pfothe following convention: firsty has prece-
dence oven\; second, we denoté \V B with AB. Thus, in this proof only, the expression

ABANCD
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means
(AV B) A (CV D)

The reason for this convention is to simplify the use of thegrdbutivity of v with respect to\ [28], which
is here written as
A(BANC)=ABAAC

Our convention is typical of “min-max” algebra, whetén takes the role of addition andax the role of
multiplication. Armed with this facilitating notation, ¢hproof becomes simple, but lengthy, calculus. In the
rest of the proof we consider some fixe@nd drop superscript

For0 < j <n —1, define
F’]-:fj+mj+1—|—...—i—mn

and letF,, = f,. AlsoletDg =dy + m1 + ... + my, = mq + ... + mp,
First note that for alj > 1:
fi = (aj +my) V[(fi—1 +my) A(dj—1 4 my)]
then, by addingn ;1 + ... + m,, to all terms of the right hand side of this equation, we find
Fj=A;V (Fj-1 A Dj-1)

or, with our notation:
Fy=Aj(Fj-1 A Dj-1)

and by distributivity:
Fj = AjF; 1 NA;Dj (7.11)

Now we show by downwards induction gn=n — 1, ..., 0 that

fn= AnAnfl...AjJrl}?j
ApAn_q ...Aj+1Dj

AnAn—l---AkJrle

> > > > >

AnAn—an—Q
A ApDn_i (7.12)

wherek ranges frony ton — 1. Forj = n — 1, the property follows from (7.11) applied fgr= n. Assume
now that (7.12) holds for somge {1,...,n — 1}. By (7.11), we have

ApAp 1. Aj Fy =
AnAn_l...Aj+1(AjF}'_1 VAN Aij_l)
thus
ApAp 1. Aj Fy =
AnAnfl...Aj+1Aij71 VAN AnAnfl...Aj+1Aij71
which, combined with (7.12) fof shows the property fof — 1.
Now we apply (7.12) foy = 0 and find

fn=AA, 1. AixFo NALA, 1...A1Dg A ...
/\AnAnlean A Ananl
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First note thatF, = Dy so we can remove the first term in the right hand side of theiguevequation.
Second, it follows fronu; > 0 that Dy < A; thus

ApAn_1...A1Dy = AnAp_1... Aq
thus finally

fn=A A 1. AL NAZAL 1. AsD1 A ...
/\AnAnlen72 A Ananl

which is precisely the required formula.

7.7.2 RROOF OF THEOREM 7.3.2
First, assume that the packet scale rate guarantee holgéy Bgmma 7.3.1 withm,, = 17” It follows that,
fori1<j<n-—1.

n—1s -

fn < max [A}, A7 A?H,Dﬂ

thus f,, is bounded by one of the terms in the right hand side of theiguswequation. If it is the last term,

we have
lj+1 + ...+ ln

fnSD]n:dj‘F r

nowd, < f, + e, which shows (7.2). Otherwise, there is solne {j + 1, ...,n} such that

fnSAn:ak_’_lk—F...—{—ln

which shows (7.3). Fof = 0, Lemma 7.3.1 implies that
fn <max [A}, ALy, ..., AT

and the rest follows similarly.
Second, assume conversely that (7.2) or (7.3) holds. Censaine fixech, and defined?, D7, " as in
Lemma 7.3.1, withn,, = . Forl < j < n — 1, we have

dy, — e < max [A}, AT, ...,A?H,Dﬂ

and forj = 0:
d, — e < max [AZ, Al ...,Aﬂ

n—1

thusd,, — e is bounded by the minimum of all right-handsides in the twoatipns above, which, by
Lemma 7.3.1, is precisely,.

7.7.3 PROOF OF THEOREM 7.3.3

We first prove that for all > 0
fizgi—el (7.13)

wheref; is defined by (7.1). Indeed, if (7.13) holds, then by (7.5)):
di <git+e < fite +e

which means that the scheduler offers the packet scale natamgtee with rate and latencye = e; + es.
Now we prove (7.13) by induction. (7.13) trivially holds foe= 0.
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Suppose now that it holds fer— 1, namely,
Jic1 2 gi-1— e

By hypothesis, (7.5) holds:
di—1 > gi-1 — €1

thus
min{f;_1,di—1] > gi—1 — €1 (7.14)

Combining this with (7.1), we obtain
L(i)

iz gi-1—e+ = (7.15)
Again from (7.1) we have
fiz ait+h
" . 7.16
> a;—e+ 9 (7-19)
Now by (7.4)
l;
gi < maxla;, gi 1]+ — (7.17)
T

Combining (7.15)), (7.16)) and (7.17) gives

fizgi—e

7.7.4 PROOF OF THEOREM 7.3.4

Consider a fixed packet which is present at time. Call a; [resp. d;] the arrival [resp. departure] time of
packetj. Thusa, <t < d,. LetB be the set of packet numbers that are present in the systémedt in
other words:

B:{kZI‘akStSdk}

The backlog attime¢ is Q = ), z;. The absence of FIFO assumption means fhit not necessarily a
set of consecutive integers. However, defjras the minimum packet number such that the intelrvad] is
included inB. There is such @ because: € B. If j > 2thenj — 1isnotinB anda;_; < a, < tthus
necessarily

djfl <t (7.18)
If 7 = 1, (7.18) also holds with our conventiafy = 0. Now we apply the alternate characterization of
packet scale rate guarantee (Theorem 7.3.2)aad;j — 1. One of the two following equations must hold:

T

dy < e+dj_q+ (7.19)

or there exists & > 7, k < n with

L+ .+ 1y
dy<etap+ kot (7.20)
T

Assume that (7.19) holds. Singgn| C B, we haveR,, > [; + ... + ,. By (7.18) and (7.19) it follows that

dn§e+t+9
.

which shows the result in this case. Otherwise, use (7.20haveQ > I + ... + I, anday < ¢ thus

dn§e+t+9
.



212 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

7.7.5 HROOF OF THEOREM 7.4.2
Consider some fixed but arbitrary times< ¢ and letu € [s,t]. We have

Ri(u) > [Rl(s) + Bu— s)] A inf [R(v) + Br(u — )]

vE[s,u]
thus .
Ri(u) + Bolt —u) > [Rl(s) + B(u— )+ Balt — u)] A
inf s [R(v) + B1(u —v) + Ba(t — u)]
and

inf [Ry(u)+ Ba(t —u)] >

u€|[s,t]

inf |Ry(s) 4 Bu — s) + Ba(t — u)

u€|[s,t]

A imf[R) 4 Bi(u—v) + Bolt — )]

u€[s,t],ve[s,u]

After re-arranging the infima, we find

inf [Ry(u) + Ba(t —u)] =

u€|s,t]

(Pa6o)+ i, [Blu= )+ e =] )

u€ls,t

inf (R(v) + inf [B1(u—v)+ Baolt — u)]>

vE[s,t] u€[v,t]

which can be rewritten as

inf [Ri(u) + fa(t —u)] >

u€|[s,t]
(Ri(s) + (B @ Bo)(t = 9)) A

vier[lsijﬂ [R(v) + B(t —v)]

Now by hypothesis we have

R*(t) > <R*(s) + Bolt — 5)) A inf [R(u) + Ba(t — u)]

u€ls,t]

Combining the two gives

)
(R'(5) + Balt = ) A (B (5)+ (Br @ Bt = 9))
A inf [R(v) + B(t — v)]

vE|[s,t]
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7.7.6 PROOF OF THEOREM 7.4.3

If the virtual delay at timé is larger thart + = for somer > 0, then we must have

R*(t+7) < R(t) (7.21)
By hypothesis
R*(t+7)> (R*(t) + 5(7)) ARG + B+ 7= ) (7.22)

now foru € [t,t + 7]
Ru)+ p(t+7—u)> R(t)+ 5(0) > R*(t + 1)

thus (7.22) implies that

Ri(t+7) 2 R*(t) + B(7)

combining with (7.21) gives .
Q(t) = R(t) — R*(t) = B(7)
thus the virtual delay is bounded byp{r : 3(7) > Q(t)} which is equal tg3~1(Q(%)). O

7.7.7 PROOF OF THEOREM 7.4.4

PrROOF: Lets < t. By hypothesis we have

R*(t) > (R*(s) . s)> A inf [R(uw) + Bt — )]

u€|[s,t]

We do the proof when thimf in the above formula is a minimum, and leave it to the alertieedo extend
it to the general case. Thus assume that for sogme [s, t]:

uier[lsft} [R(u) + B(t — u)] = R(uo) + Bt — uo)
it follows that either
R*(t) — R*(s) > B(t —3)

or
R*(t) > R(ug) + B(t — uo)

Consider the former case. We hal§t) > R*(t) — lmax andR'(s) < R*(s) thus
R'(t) > R*(t) — lyax > R'(s) + B(t — 8) — Liax

Now also obviouslyR'(t) > R/(s), thus finally
R'(t) > R'(s) + max[0, A(t — 8) — lnax] = R'(s) + F'(t — 5)
Consider now the latter case. A similar reasoning shows that
R'(t) > R(ug) + B(t — uo) — lmax

but also
R*(t) > R(uo)

now the input isL-packetized. Thus
R'(t) = PH(R*(t)) > P*(R(uo)) = R(up)
from which we conclude tha®’(¢t) > R(ug) + 8'(t — up).
Combining the two cases provides the required adaptiveagtee. O
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7.7.8 PROOF OF THEOREM 7.4.5

The first part uses the min-max expansion of packet scalgteantee in Lemma 7.3.1. The second part
relies on the reduction to the minimum rate server.
7

We use the same notation as in Definition 7.3.i) = . _, I; is the cumulative packet length.

ITEMm 1. Define the sequence of timgg by (7.1). Consider now some fixed but arbitrary packet index
n > 1. By the FIFO assumption, it is sufficient to show that

R*(t) > L(n) (7.23)

witht = f,, + e. By Lemma 7.3.1, there is some index< j < n such that

P (s LI - LG - 1)) i (ak L L) = Lk - 1)) (7.24)

r k=j+1 r

with

s = aj \/dj_l

and with the convention thaly = 0.
Let us now apply the definition of an adaptive guarantee tdithe interval|s, t|:

R*(t)> AANB

with

A:=R*(s)+r(t—s—e)t and B := iI[lf ]B(u)
ue|(s,t

where
B(u) := (R(u) +7r(t—u— e)Jr)

Firstly, sinces > d;_;, we haveR*(s) > L(j — 1). By (7.24), f, > s+ L)=LG=D) thyst > 5+

M + e. It follows that

n)—L
r

L(n) =L =1)

r

t—s—e>

and thus4 > L(n).

Secondly, we show tha® > L(n) as well. Consider some € [s,t]. If u > a,, thenR(u) > L(n) thus
B(u) > L(n). Otherwiseu < a,; sinces > a;, it follows thata,_; < v < aj for somek € {j+1,...,n}
andR(u) = L(k — 1). By (7.24),

L(n)—L(k—-1)

r

fnzak‘i‘

thus
L(n) — L(k—1)

r

t—u—e>

It follows that B(u) > L(n) also in that case. Thus we have shown tBat L(n).

Combining the two shows thdt*(¢) > L(n) as required.
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ITEM 2:  We use a reduction to a minimum rate server as follows.d.et min(d;, f;) for i > 0. By
(7.1) we have

l;
a; < d, < max(a;,d;_,) + = (7.25)

and
d, <d; <d+e (7.26)

The idea of the proof is now to interpréf as the output time for packetout of a virtual minimum rate
server.

Construct a virtual nod® as follows. The input is the original inpi(¢). The output is defined as follows.
The number of bits of packetthat are output up to timeis ;(¢), defined by

if ¢ > d then v;(t) = L(3)
clse if a; < t < d then 1;(t) = [L(i) — r(d, — t)]"
else ¥;(t) =0

so that the total output GR is Ry (t) = > ;1 1i(t).

The start time for packet is thusmax|[a;, d; — %’] and the finish time igl,. ThusR is causal (but not
necessarily FIFO, even if the original system would be FIR@ now show that during any busy period,
‘R has an output rate at least equatto

Lett be during a busy period. Consider now some tirdaring a busy period. There must exist sonsech
thata; < ¢ < d.. Leti be the smallest index such that this is truea,If> d;_, then by (7.25); — ¢ < 4
and thus).(t) = r wherey).. is the derivative of); to the right. Thus the service rate at timis at least-.

Otherwise,a; < d;_,. Necessarily (because we number packets in order of inogeags — this is not a
FIFO assumption);_; < a;; since: is the smallest index such that < ¢ < d, we must have > d._,.
But thend] — ¢ < % and the service rate at timiés at least-. Thus, nodeR offers the strict service curve
A, and

R— (\)— Ry (7.27)

Now define nodeD. Letd(i) := d; — d}, so thatd < 6(i) < E. The input ofD is the output ofR. The
output is as follows; let a bit of packetarrive at timet; we havet < d; < d;. The bit is output at time

t' = max[min|d;_1, d;], t + &;]. Thus all bits of packet are delayed irD by at most(¢), and ifd;—; < d;
they depart afterl;. It follows that the last bit of packetleavesD at timed;. Also, sincet’ > t, D is
causal. Lastly, if the original system is FIFO, thé&n; < d;, all bits of packet depart afted; _; and thus
the concatenation dR andD is FIFO. Note thatR is not necessarily FIFO, even if the original system is
FIFO.

The aggregate output @ is
Ro(t) > > it — 6(i) > Ra(t —e)
i>1
thus the virtual delay foP is bounded by and
R1 — ((Se) — R2 (728)

Now we plug the output g into anL-packetizer. Since the last bit of packd¢avesD at timed;, the final
output isR*. Now it follows from (7.27), (7.28) and Theorem 7.4.2 that

R— (A ®de) — Ry
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7.7.9 PROOF OF THEOREM 7.5.3

We first introduce some notation (see Figure 7.5). @glt> 0 the arrival times for the fresh input. Packets
are numbered in order of arrival, 80< a1 < as < .... Letl, be the size of packet. Call b, the arrival
time for packetn at the second componem; is not assumed to be monotonic withbut for alln:

anp <b, <a,+90 (7.29)

Also call d,, the departure time of packetfrom the second component. By conventiap,= dy = 0.
Then, define

t 0) — lmin
61 = €+ upux + Sup[u 4]
t>0 r
and
Oé(t) + 04(5) — lmin

ey = €+ Omax + sup | — ]

0<t<d

so thate’ = min[ey, e5]. It is sufficient to show that the combined node separatélgfis the packet scale
rate guarantee with rateand with latencieg; ande,. To see why, defing,, by (7.1). Ifd,, — f,, < e; and
dy, — fn < es for all n, thend,, — f,, < €.

Part 1: We show that the combined node satisfies the packet scalguatantee with rate and latency;.

An arrival curve for the input traffic to the second comporisntsy (t) = a(t + §). Thus, by Theorem 2.1.4,
d,, < b, + D, with

dn < bn+e+sup[a(t+5) — 1]
t>0 r
By (7.29): t45)
a(t +

dp — ap < e+ Omax + Sup[
t>0 r

_ t]
Now we apply Lemma 7.5.1 which ends the proof for this part.
Part 2: We show that the combined node satisfies the packet scalguatantee with rate and latencyes.

Let dmin = dmax — 0 the constant part of the delay. We do the proofdigs, = 0 since we can eliminate the
constant delay by observing packéts, time units after their arrival, and adding,;, to the overall delay.

Part 2A:

We assume in this part that there cannot be two arrivals atahe instant; in part 2B, we will show how to
relax this assumption.

For a time interval s, ¢] (resp.|s, t]), defineA(s, t] as the total number of bits at the fresh input during the
interval (s, t] (resp.[s, t]); similarly, defineB(s, t| and B[s, t] at the input of the second node. We have the
following relations:

A(s,t] = Z 1{s<an§t}}ln , Als, t] = Z l{sgangt}}ln

n>1 n>1
B(s,t] = > 1fsau<pln » Bls,t] =D 1iszp, <yl
n>1 n>1

Note that
n
A(a]—, an] = Z li
i=j+1
but, by lack of FIFO assumption, there is no such relationdor
By definition of an arrival curve, we havé(s, t] < a(t — s).
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LEMMA 7.7.1. For 0 < t,u and0 < v < ¢, if there is an arrival att, then A(¢, ¢ + u] < a(u) — lyin and
Alt —v,t) < a(v) = lnin

Proof. First note thatd[t, ¢ + u] < infcso A(t — €, + u] < infeso a(u + €) = a(u) (the last equality is because
« is continuous).

Second, let be the packet length for one packet arriving at tim&henA(t, ¢ + u] + 1 < A[t, t + u] < a(u) thus
A(t,t + u] < a(u) — 1 < a(u) — lmin. The same reasoning shows the second inequality in the lemma

O

Now we apply Theorem 7.3.2. Consider some fixed packets nigfibe ; < n. We have to show that one
of the following holds:

dp < eg+dj + Al an] (7.30)
or there is somé < {j + 1,...,n} such that

dn < ex+ay+ A[QRT’%] (7.31)
(Case 1:)Assume thab; > b,. Since the second node is FIFO, we have

d, < d,

and thus (7.30) trivially holds.
(Case 2:)Assume thab; < b,,. By Theorem 7.3.2 applied to the second node, we have

dy, <e+d;+ %B(bj, by (7.32)
or there exists some such thab; < b, < b, and

dp < e+ by, + %B[bk, by] (7.33)

(Case 2a: )Assume that (7.32) holds. By (7.29), any packet that arratesode 2 in the intervalb;, by,
must have arrived at nodein the interval(a; — 6, b,] C (a; — 0, a, + d]. Thus

B(bj, bn] < A(aj — (5, ap, + 5]
< A(aja an] + A[aj - 6’ aj) + A(ana an + 5]
< A(aj,an] + 2a(5) — 2lmin

the last part being due to Lemma 7.7.1. Thus

dy <e+5+ 240 5400
—i—%A(a]—,an] — 2l min
< ep +dj + 7 Alay, ay)

+d;

which shows (7.30).

(Case 2b: )Assume that (7.33) holds. Note that we do not know the ordérwith respect toj andn.
However, in all cases, by (7.29):
Blbg, by] < Albr, — 9, a, + 0] (7.34)

We further distinguish three cases.
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(Case 2bl: )k < j:
Define
u=a; —bp+46 (7.35)
By hypothesisg;, < a; andb, — ¢ < a;, so thatu > 0. Note also that;; < b; < by, and thusu < 6.
By (7.34):
Blby, by] < Albr, — 9, a;) + Alaj, an] + A(an, a, + 0]
Now by Lemma 7.7.14(ay,, an + 6] < a(d) andAfb, — d,a;) < o(u) — lmin. Thus

Blbg, by] < Alaj, an] + a(u) + a(d) — 2lmin

Combine with (7.33), (7.35) and obtain

which shows that (7.31) holds.
(Case 2b2:)j < k < n:
Defineu = § — by, + ay. By (7.34)

B[bk> bn] < A[aka an] + OZ(U) + 04(6) — 2lmin

which shows that .
dy, <eg+ap+ ;A[ak, an]

(Case 2b3: )k > n:

Defineu = 0 — by + an. By by < b, andb,, < a,, + 6 we haveu > 0. By b, > a; anday > a, we have
u < 4.

Now by (7.33):
1 1
d, < e—l—bk—k;B[bk,bn] :e+5—u+an+;B[bk,bn]

By (7.34)
Blbg, b,] < Alay, — u, a, + 0]
= Alan, — u,an) + by, + A(an, an + 9]
< a(u) + 1, + a(0) — 2lmin

which shows that
Ly
d, <es+ay,+ o

Part 2B: Now it remains to handle the case where packet arrivalstegreibomponent may be simultaneous.
We assume that packets are ordered at component 2 in ordeival,avith some unspecified mechanism
for breaking ties. Packets also have a label which is theiemof arrival at the first component; we cél)
the label of thekth packet in this order (see Figure 7.5 for an illustration).

Call S the original system. Fix some arbitrary integér Consider the truncated syste$?’ that is derived
from the original system by ignoring all packets that ari@ehe first component after timey + 6. Call
aly, bl dN | N the values of arrival, departure, and virtual finish timegHa truncated system (virtual
finish times are defined by (7.1)). Packets with numbersV are not affected by our truncation, thus
a = a,,bY = b,,dY = d,, fN = f, forn < N. Now the number of arrival events at either component
1 or 2 in the truncated system is finite; thus we can find a pesitumbem which separates arrival events.
Formally: for anym,n < N:

U, = Ay OT |Gy, — Ay | >
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and
by = by or |by, — by > 1

Lete < . We define a new system, call&d’<, which is derived fromS™ as follows.
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e We can find some sequence of numbegsc (0,¢), n < N such that: (1) they are all distinct; (2)
if the packet labeledn is ordered before the packet labeledn the order of arrival at the second
component, them,, < x,. Building such a sequence is easy, and any sequence sai¢tyiand (2)
will do. For example, take:,, = NL—HG wherek is the order of arrival of packet (in other words,

(k) = n).

e Define the new arrival and departure times by

ay, =an+x,, by, =by +x,, d, =d, + 2z,

It follows from our construction that all§, are distinct forn < IV, and the same holds féf,. Also,

the arrival order of packets at the second component is the sa in the original system.

Thus we have built a new systefi’:€ where all arrivals times are distinct, the order of packeteesecond
component is the same as§®’, arrival and departure times are no earlier thag§n and differ by at most

€.

Fork < N, call F the virtual finish times at the second component. By definitio

Fy =0
F(fk)l — max [bgk), min (dg,H), F(Ekfl)ﬂ
—|—% fork>1

and a similar definition holds fak7;, by droppinge. It follows by induction that
oy = Flwy

thus
dfk)gdk—kege—kF(k)§6+F(€k)+e

Similarly, b5, < aj, + 6. This shows thas™V¢ satisfies the assumptions of the theorem, witeplaced by

e+ e

Thus the conclusion of Part 2A holds f6f<. Define nowf< by (7.1) applied ta:, andd:,. We have:

d, < fr+ex+e
It also follows by induction that
frEL < fn +e€
Now d,, < d, thus
dn—fngd;—fri_{'e
Combining with (7.36) gives:
dp, — fn < eg+2e

Now e can be arbitrarily small, thus we have shown that fonaft V:

dn_fn§€2

SinceN is arbitrary, the above is true for ail

(7.36)
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7.7.10 HROOF OF PROPOSITION 7.5.2

Proof. Casep < r: Assume that the source is greedy from time 0, with paeket 1, of sizeli = lmin,

a1 = 0, b1 = dmax. Assume all subsequent packets have a delay in the first cenpequal t®max — §. We

can build an example where pacKets overtaken by packets = 2, ..., n; that arrive in the interva{0, 4], with

lo+ ...+ 1n, = pd+ o — 1. Assume that packdtundergoes the maximum delay allowed by PSRG at the second
component. It follows after some algebra that= e + dmax + @ Now f1 = l";‘“ thusd; — f1 = ¢’ and the
characterization is tight.

Casep > r: We build a worst case scenario as follows. Weslet 0, without loss of generality (add a delay element
to this example and obtain the general case). The pringgtfirst build a maximum size burst which is overtaken
by a tagged packet Later, a tagged packet is overtaken by a second maximum size burst. Between the two,
packets arrive at a data ratethe second burst is possible becatise p anda,, — a; is long enough. Details are in
Figure 7.9 and Table 7.1. We find finally, — f,. = 2(pd + 0 — lmin)/r Which shows that the bound is achieved.

non Way& FIFO,PSRG
—{ @

C

o[ P,
J
Py
5 Pj+1
8
Pn Pn+1
an un
7an+8 Pml a,+98 Pn
Qg bk

Figure 7.9:Worst-case example for Theorem 7.5.3. All packets have 0 delay through the first component
except packets 1...; — 1 and n.

7.8 BIBLIOGRAPHIC NOTES

The concept of adaptive service curve was introduced in @kidissertation in [62] and was published
by Agrawal, Cruz, Okino and Rajan in [1], which contains maestults in Section 7.4.2, as well as an
application to a window flow control problem that extends t®ec4.3.2 on Page 147. They callan
“adaptive service curve” and a “partial service curve”.

The packet scale rate guarantee was first defined indepgnaérdaptive service guarantees in [4]. It
serves as a basis for the definition of the Expedited Forwgrdapability of the Internet.

7.9 EXERCISES

EXERCISE7.1. Assume thaRk — (53, 5) — R*.
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ko ag i by Tk dy;
1 0 0 — lmin ot not relevant dj+1/r
la/p Iy 5t not relevant dj + (li + 1) /r
Jj—1 ) i1 ot not relevant dj + A
j o lmin 0 Z o + lmin/r 0 + lmin/r
j+1 0 + lin/7 Imin @41 0 + 2lmin /7 fiy1+A
n—1 o+ (n_] - l)lmin/r lmin Qn—1 0+ (n_j)lmin/r fn—l + A
n d+ (n— J)lmin/T Imin an + 0 S+ (n—J+ lmin/r fn+2A
n+1 a’ 0 — lin Ani1 not relevant foc1+ A+ (00— lnin)/7
n-+2 an + a9 Iy A2 not relevant frn—1+ A+ (0= lpin +12)/r
n+j—1 (an+9)~ li—1 (an +9)~ not relevant fno1+2A
Notes: A = (pd + 0 — lin) /7
(4,12, ...,1j—1) isasolution tdy + ... + 1j_1 = pd, SCla,...,1;—1 € [lmin, lmax]|. FOr example, lej = 2 + LZ—I%J,
ly = p5 — (] — 3)lmin7 13 =..= lj_l = lmin. We havelg < lmax becausémax > 2l min

Table 7.1:Details for Figure 7.9. Assume for this table that o — I, < Imax, Otherwise replace packets 1
and n + 1 by a number of smaller packets arriving in batch.

1. Show that the node offers to the flow a strict service cugualeto 5 ® 3, wheref is the sub-additive
closure ofg.
2. If 8 = g is a rate-latency function, what is the value obtained far $krict service curve ?

EXERCISE7.2. Consider a system with inpiit and outputR*. We call “input flow restarted at timé&' the
flow R; defined foru > 0 by

Ri(u) = R(t +u) — R*(t) = R(t,u] + Q(t)

whereQ(t) := R(t) — R*(t) is the backlog at time. Similarly, let the“output flow restarted at timé be
the flowR; defined foru > 0 by
Ri(u) = R*(t +u) — R*(t)

Assume that the node guarantees a service ctreeall couples of input, output flowd?;, R;). Show that
R— (B) —» R".



222 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES



CHAPTER 8

TIME VARYING SHAPERS

8.1 INTRODUCTION

Throughout the book we usually assume that systems aretititee). This is not a limitation for systems
that have a renewal property, namely, which visit the idkesinfinitely often — for such systems we choose
the time origin as one such instant.

There are cases however where we are interested in the effidctet of non zero initial conditions. This
occurs for example for re-negotiable services, where #féidicontract is changed at periodic renegotiation
moments. An example for this service is the Integrated Serof the IETF with the Resource reSerVation
Protocol (RSVP), where the negotiated contract may be neoliferiodically [33]. A similar service is the
ATM Available Bit Rate service (ABR). With a renegotiablergee, the shaper employed by the source
is time-varying. With ATM, this corresponds to the conceptDynamic Generic Cell Rate Algorithm
(DGCRA).. At renegotiation moments, the system cannot igaiiyebe assumed to be idle. This motivates
the need for explicit formulae that describe the transiéfieteof non-zero initial condition.

In Section 8.2 we define time varying shapers. In generatetienot much we can say apart from a
direct application of the fundamental min-plus theoremSégtion 4.3. In contrast, for shapers made of a
conjunction of leaky buckets, we can find some explicit folasu In Section 8.3.1 we derive the equations
describing a shaper with non-zero initial buffer. In Sect®3.2 we add the constraint that the shaper has
some history. Lastly, in Section 8.4, we apply this to analfre case where the parameters of a shaper are
periodically modified.

This chapter also provides an example of the use of timarsdpift

8.2 TIME VARYING SHAPERS

We define a time varying shaper as follows.

DEFINITION 8.2.1. Consider a flowR(¢). Given a function of two time variableg (¢, s), a time varying
shapeiforces the outpuR*(¢) to satisfy the condition

R*(t) < H(t,s) + R*(s)
forall s < t, possibly at the expense of buffering some data. An optimeltarying shaper, or greedy time
varying shaper, is one that maximizes its output among asitde shapers.

223



224 CHAPTER 8. TIME VARYING SHAPERS

The existence of a greedy time varying shaper follows froenfetlowing proposition.

PROPOSITIONS.2.1. For an input flowR(¢) and a function of two time variabled (¢, s), among all flows
R* < R satisfying
R*(t) < H(t,s) + R*(s)

there is one flow that upper bounds all. It is given by

R*(t) = inf [H(t,s) + R(s)] (8.1)

s>0

whereH is the min-plus closure off, defined in (4.10) on Page 142.

ProoOF: The condition defining a shaper can be expressed as
R* < Ly(R*)
R*<R

where L is the min-plus linear operator whose impulse respondé {§heorem 4.1.1). The existence
of a maximum solution follows from Theorem 4.3.1 and from fhet that, being min-plus lineag z is
upper-semi-continuous. The rest of the proposition foldwm Theorem 4.2.1 and Theorem 4.3.1. [J

The output of the greedy shaper is given by (8.1). A time iiardrshaper is a special case; it corresponds
to H(s,t) = o(t — s), whereo is the shaping curve. In that case we find the well-known tésurheo-
rem1.5.1.

In general, Proposition 8.2.1 does not help much. In theaksiis chapter, we specialize to the class of
concave piecewise linear time varying shapers.

PROPOSITIONS.2.2. Consider a set of leaky buckets with time varying rates(t) and bucket sizes;(¢).
At time0, all buckets are empty. A flow(¢) satisfies the conjunction of theleaky bucket constraints if
and only if forall0 < s < ¢:

R(t) < H(t,s) + R(s)

with .
H(t.s) = min {b;(0) + / ()} (8.2)

PrRoOOF:  Consider the level of thgth bucket. It is the backlog of the variable capacity nodec{Se
tion 1.3.2) with cumulative function

t
M;(t) = / rj(u)du
0
We know from Chapter 4 that the output of the variable capamtle is given by
/ e . _ .
Rj(t) = nggt{MJ (t) M; (s) + R(s)}
The jth leaky bucket constraint is
R(t) — Rj(t) < b;(t)
Combining the two expresses tlig constraint as
R(t) — R(s) < M;(t) — M;(s) + b;(t)
for all 0 < s < t. The conjunction of all these constraints gives (8.2).

In the rest of this chapter, we give a practical and explisinputation ofH for H given in (8.2), when the
functionsr;(¢) andb;(t) are piecewise constant.
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8.3 TIME INVARIANT SHAPER WITH NON-ZERO INITIAL CONDITIONS

We consider in this section some time invariant shapers. t&Wewsith a general shaper with shaping curve
o, whose buffer is not assumed to be initially empty. Then wkapply this to analyze leaky bucket shapers
with non-empty initial buckets.

8.3.1 SHAPER WITH NON-EMPTY INITIAL BUFFER

ProPOSITION8.3.1 (Shaper with non-zero initial bufferiConsider a shaper system with shaping cusve
Assume that is a good function. Assume that the initial buffer contentyis Then the outpuRR* for a
given inputR is

R*(t) =o(t) A inf {R(s)+wo+o(t—s)} forallt>0 (8.3)

0<s<t

PrROOF: First we derive the constraints on the output of the shaperthe shaping function thus, for all
t>s>0
R*(t) < R*(s) +o(t —s)

and given that the bucket at time zero is not empty, fortanry0, we have that
R*(t) < R(t) +wo
At time s = 0, no data has left the system; this is expressed with

R*(t) < do(t)

The output is thus constrained by
R* < (0 ® R") A (R +wo) A o

where® is the min-plus convolution operation, defined gy® ¢)(t) = infs f(s) + g(t — s). Since the
shaper is an optimal shaper, the output is the maximum fomatatisfying this inequality. We know from
Lemma 1.5.1 that

R* =0® [(R+ wo) A o)
= [J@(R+w0)] A [O’®60]
=[c®@ (R+wy)| Ao
which after some expansion gives the formula in the projoosit 0.

Another way to look at the proposition consists in saying tha initial buffer content is represented by an
instantaneous burst at tinde

The following is an immediate consequence.

CoROLLARY 8.3.1 (Backlog for a shaper with non-zero initial buffefjhe backlog of the shaper buffer
with the initial buffer contentu is given by

w(t) = (R(t) —o(t) +wo) V sup {R(t) — R(s) —o(t —s)} (8.4)

0<s<t

8.3.2 LEAKY BUCKET SHAPERS WITH NON-ZERO INITIAL BUCKET LEVEL

Now we characterize a leaky-bucket shaper system with Bom4nitial bucket levels.
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PROPOSITIONS.3.2 (Compliance withy leaky buckets with non-zero initial bucket levelg).flow S(t) is
compliant with.J leaky buckets with leaky bucket specificatigns b;), j = 1,2...J and initial bucket
levelqf if and only if

S(t)—5S(s) < min [rj- (t—s)+b;] forall0<s<t

YA .
< 1 . . Y >
S(8) < min [rj - £ +bj — qj] for all t > 0
ProoOF:  Apply Section 8.3.1 to each of the buckets. O

PropPOSITIONS.3.3 (Leaky-Bucket Shaper with non-zero initial buckeels). Consider a greedy shaper
system defined by the conjunctionJjofeaky bucketsr;, b;), with j = 1,2....J. Assume that the initial
bucket level of the j-th bucket«j@. The initial level of the shaping buffer is zero. The outputfor a given
input R is

R*(t) = min[o?(t), (c ® R)(t)] forallt >0 (8.5)

whereo is the shaping function

o(u) = min {o;(w)} = min {1y -u b}
ando? is defined as

0 . 0
= . bi — O
o (u) 1I§11j1£J{7'J U+ 05 q]}

PrRoOOF: By Corollary 8.3.2 applied t& = R*, the condition that the output is compliant with thie
leaky buckets is

R*(t) — R*(s) <o(t—s) forall0<s<t

R*(t) < o(t) for all t > 0

Sinceo’(u) < o(u) we can extend the validity of the first equationste= 0. Thus we have the following
constraint:
R'(t) < [(0 @ R*) A (RN a”)](2)

Given that the system is a greedy shag#f(-) is the maximal solution satisfying those constraints. gsin
the same min-plus result as in Proposition 8.3.1, we obtain:

R*=0®(RAN)=(0c®@R)A (0 ®c")

As o0 < &, we obtain
R*=(c®@R) A’

We can now obtain the characterization of a leaky-buckgbeshaith non-zero initial conditions.

THEOREM 8.3.1 (Leaky-Bucket Shaper with non-zero initial condigd. Consider a shaper defined by
leaky bucketgr;, b;), withj = 1,2... J (leaky-bucket shaper). Assume that the initial bufferlle¥és w,
and the initial level of theth bucket isq?. The outputR* for a given inputR is

R*(t) = min{o?(t), wo + llLI;f('){R(u) +o(t—w)}} forallt>0 (8.6)

with

O(y) = mi . 40
o (u) = 121;;}(@ u+bj —qj)
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PrROOF:  Apply Proposition 8.3.3 to the input’ = (R + wg) A dp and observe that’ < o. O

An interpretation of (8.6) is that the output of the shapeahwion-zero initial conditions is either the output
of the ordinary leaky-bucket shaper, taking into accoustitfitial level of the buffer, or, if smaller, the
output imposed by the initial conditions, independent efitiput.

8.4 TIME VARYING LEAKY-BUCKET SHAPER

We consider now time varying leaky-bucket shapers that eeewise constant. The shaper is defined by
a fixed numbetJ of leaky buckets, whose parameters change at timdsort € [t;,t; 1) := I;, we have
thus ' '

rj(t) =7 and b;(t) = b;
Attimest;, where the leaky bucket parameters are changed, we keegattyeducket leve];(¢;) unchanged.
We say that;(u) := minlng{T;-u + b;i} is the value of the time varying shaping curve during intedya
With the notation in Section 8.2, we have

H(t,ti) = O’Z‘(t — ti) ift el

We can now use the results in the previous section.

PROPOSITION8.4.1 (Bucket Level).Consider a piecewise constant time varying leaky-buckaspeshwith
output R*. The bucket leve);(t) of the j-th bucket is, fot € I;:

0t) = [R7() = R (t) = v} (t —t) +q;(t)| v

)=y A (8.7)
supy, <<t {R*(t) = R*(s) =1} - (t —s)}

PrRooF: We use a time shift, defined as follows. Consider a fixed ialelvand define
(1) == R*(t; + 7) — R*(t;)

Observe thag;(t; + 7) is the backlog at time (call it w(7) at the shaper with shaping curw¢r) = r§ -,
fed with flow z*, and with an initial buffer levef;(¢;). By Chapter 8.3.1 we have

w(r) = [w*(T) - 7"§ ST+ qj(ti)} V OEEET{JU*(T) —x*(s') — 70;'. (r =8}

which after re-introducing?* gives (8.7) O

THEOREM8.4.1 (Time Varying Leaky-Bucket Shapers}onsider a piecewise constant time varying leaky-
bucket shaper with time varying shaping curwgin the interval I;. The outputR* for a given inputR
is

R*(t) = min {a?(t —t;) + R*(ti),t inf<t{az~(t — )+ R(s)}} (8.8)
i <8<
with 0¥ is defined by
O e ] Z . _‘ — . .
of(u) = min [r} -+ b~ g(t0)]
andg;(t;) is defined recursively by (8.7). The backlog at tinedefined recursively by
sup {R(t) — R(s) — ou(t — 5)},
w(t) = max | t;<s<t tel; (8.9)
R(t) — R(t;) — o (t — t) + w(ts)
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PrROOF: Use the same notation as in the proof of Proposition 8.4.1dafide in addition

x(1) == R(t; + 7) — R(t;)

We can now apply Theorem 8.3.1, with initial bucket levelsiado ¢;(¢;) as given in (8.7) and with an
initial buffer level equal tav(¢;). The input-output characterization of this system is gibgi8.6), thus

z*(1) = a7 (1) A foi ® 2'](7)

where
() = { z(t)+w(t;)) T>0

(7) 7 <0
Hence, re-introducing the original notation, we obtain

R*(t) — R*(t;) = [a?(t —ti) A inf {oy(t — s) + R(s) — R(t;) + w(t;)}

t;<s<t

which gives (8.8).
The backlog at time follows immediately. O

Note that Theorem 8.4.1 provides a representatioA oHowever, the representation is recursive: in order
to computeR*(¢), we need to comput&*(¢;) for all t; < t.

8.5 BIBLIOGRAPHIC NOTES

[71] illustrates how the formulas in Section 8.4 form theibder defining a renegotiable VBR service.

It also illustrates that, if some inconsistency exists leatwnetwork and user sides whether leaky buckets
should be reset or not at every renegotiation step, thernmhig result in inacceptable losses (or service
degradation) due to policing.

[12] analyzes the general concept of time varying shapers.



CHAPTER 9

SYSTEMS WITH LOSSES

All chapters have dealt up to now with lossless systems. diapter shows that network calculus can also
be applied to lossy systems, if we model them as a losslessnsyseceded by a ‘clipper’ [17, 18], which
is a controller dropping some data when a buffer is full, oewla delay constraint would otherwise be
violated. By applying once again Theorem 4.3.1, we obtaipaasentation formula for losses. We use this
formula to compute various bounds. The first one is a bounderass rate in an element when both an
arrival curve of the incoming traffic and a minimum serviceveuof the element are known. We use it next
to bound losses in a complex with a complex service curve,(¥BR shapers) by means of losses with
simpler service curves (e.g., CBR shapers). Finally, werekthe clipper, which models data drops due to
buffer overflow, to a ‘compensator’, which models data aaktta prevent buffer underflow, and use it to
compute explicit solutions to Skorokhod reflection mapgingpblem with two boundaries.

9.1 A REPRESENTATION FORMULA FOR LOSSES

9.1.1 LOSSES IN AFINITE STORAGE ELEMENT

We consider a network element offering a service cutvand having a finite storage capacity (bufféf)
We denote by: the incoming traffic.

We suppose that the buffer is not large enough to avoid Idssedl possible input traffic patterns, and we
would like to compute the amount of data lost at titneith the convention that the system is empty at time
t = 0. We model losses as shown in Figure 9.1, wheftg is the data that has actually entered the system
in the time interval0, ¢]. The amount of data lost during the same period is therdfdte= a(t) — x(¢).

The model of Figure 9.1 replaces the original lossy elemlentan equivalent concatenation a controller
or regulator that separates the incoming flewn two separate flowsy and L., and that we caltlipper,
following the denomination introduced in [18], togetheitiwihe original system, which is now lossless for
flow .

The amount of datdz(t) — z(s)) that actually entered the system in any time intersak] is always
bounded above by the total amount of d&i@) — a(s)) that has arrived in the system during the same
period. Therefore, forany < s < t, z(t) < x(s) + a(t) — a(s) or equivalently, using the linear idempotent
operator introduced by Definition 4.1.5,

z(t) < inf {a(t) —a(s) + x(s)} = hq(x)(t). (9.1)

T 0<s<t
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Cipper

) = T (O v(1)
v

L(t)

Figure 9.1:System with losses

On the other handy is the part ofa that does actually enter the system.ylflenotes its output, there is
no loss forzx if z(t) — y(t) < X for anyt. We do not know the exact mapping= II(z) realized by the
system, but we assume tHatis isotone. So at any time

z(t) <y(t)+ X =1(z)(t) + X 9.2)

The datar that actually enters the system is therefore the maximuntisalto (9.1) and (9.2), which we
can recast as
r < aA{Il(x)+ X} A hq(x), (9.3)

and which is precisely the same equation as (4.33) Wite= X andM = a. Its maximal solution is given
by

x=({II+ X} Ahy)(a),
or equivalently, after applying Corollary 4.2.1, by

r= (e @ X o) (@) = (e T+ 30) (0 ©4)

where the last equality follows froif, (a) = a.
We do not know the exact mappiig but we know thall > Cg. We have thus that

z > (ha o Caix)(a). (9.5)
The amount of lost data in the interval ¢] is therefore given by

L(t) = a(t) — x(t)
= alt) = ha o {Carx Ha)(t) = a(t) = inf {(hy 0 Carx)™ } (@)(t)

neN
— sup {a(t) — (hg 0 Caix)™ (a)(t)}
neN
= ig%{a(t) - 035%3.1.%22913{@@) —a(s1) + B(s1 —s2) + X
+a(sa) — ... +a(s2,)}}
—sup{  sup  {a(s1) - Bls1 — s2) —als2)

neN 0<s9,<...<s9<s1<t
+...—a(s2,) —nX}}

Consequently, the loss process can be represented by liheifig formula:

L(t) <
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sup { sup {Z la(s2i-1) — a(s2i) — B(s2i-1 — 52;) — X] }} (9.6)

neN | 0<s9,<...<52<51<t =1

If the network element is a greedy shaper, with shaping carwenII(x) = Cg, and the inequalities in
(9.5) and (9.6) become equalities.

What the formula says is that losses up to titnare obtained by summing the losses over all intervals
[s2i—1, s2;], wheresy; marks the end of an overflow period, and wherg ; is the last time befores; when

the buffer was empty. These intervals are therefore latgar the congestion intervals, and their number
is smaller or egaul to the number of congestion intervalguie 9.2 shows an example where= 2 and
where there are three congestion periods.

x(t)
a(t)

Figure 9.2:Losses in a constant rate shaper (3 = \¢). Fresh traffic a is represented with a thin, solid line;
accepted traffic x is represented by a bold, solid line; the output process y is represented by a bold, dashed
line.

We will see in the next sections how the losses representaiimula (9.6), can help us to obtain determin-
istic bounds on the loss process in some systems.

9.1.2 LOSSES IN ABOUNDED DELAY ELEMENT

Before moving to these applications, we first derive a repregion formula for a similar problem, where
data are discarded not because of a finite buffer limit, buabse of a delay constraint: any entering data
must have exited the system after at mosinit of time, otherwise it is discarded. Such discarded data
called losses due to a delay constraintdime units.

As above, letr be the part ofz that does actually enter the system, andyldéte its output. All the data
z(t) that has entered the system durildgt] must therefore have left at time+ d at the latest, so that
x(t) — y(t + d) < 0foranyt. Thus

z(t) <yt +d) = M(z)(t +d) = (S—q o I)(z)(t), (9.7)

whereS_; is the shift operator (with forward shift aftime units) given by Definition 4.1.7.
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On the other hand, as in the previous example, the amounttafd@) — x(s)) that actually entered the
system in any time intervals, ¢] is always bounded above by the total amount of data) — a(s)) that
has arrived in the system during the same period. Theref@relatar that actually enters the system is
therefore the maximum solution to

r<aA(S_goll)(x) A hg(z), (9.8)

which is

x=({S_qoIl} Ahy)(a),
or equivalently, after applying Corollary 4.2.1, by

z = (ha o ({S_qoll]) o ha) (a) = (ha 0 S_g o TT) (a). (9.9)

Sincell > Cg, we also have,
x> (haoS_q0Cg) (a). (9.10)

The amount of lost data in the interval ¢] is therefore given by

L(t) < sup {a(t) = (ha oS40 Co)™ (a)(t) }
neN
which can be developed as
L(t) <

sup { sup {Z [a(s2i—1) — a(s2;) — B(s2i—1 + d — s2;)] }} (9.11)

neN | 0<s2,<...<s9<s1<t i—1
Once again, il = Cs, then (9.11) becomes an equality.

We can also combine a delay constraint with a buffer comgfrand repeat the same reasoning, starting
from
r<aA{Il(z) + X} A (S_qoIl)(z) A he(z). (9.12)

to obtain

n

L(t) < sup{ sup {Z[a(sm_l)—a(sm)
neN 0<szp<...<s2<s1<t ;5

—(B(s2i—1 +d — s2;) N{B(s2i—1 — 52:) + X})]} }- (9.13)

This can be recast as a recursion on timedf N, following the time method to solve (9.12) instead of the
space method. This recurstion is established in [17].

9.2 APPLICATION 1: BOUND ON LOSSRATE

Let us return to the case of losses due to buffer overflow, apgase that in this section fresh traffids
constrained by an arrival curve

The following theorem provide a bound on the loss fatg= L(t)/a(t), and is a direct consequence of the
loss representation (9.6).

THEOREM9.2.1 (Bound on loss rate)Consider a system with storage capaciy offering a service curve
(3 to a flow constrained by an arrival curve. Then the loss ratgt) = L(t)/a(t) is bounded above by

I(t) = |1 — inf Bls) + X +.

0<s<t  a(s)

(9.14)
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PROOF:  With [(¢) defined by (9.14), we have that for aby< u < v < t,

i e BOEX _Bo-w X B -w+ X

o<s<t «afs) —  alv—u) T alv)—a(u)

because(v) — a(u) < a(v — u) by definition of an arrival curve. Therefore, for aby< u < v < ¢,

a(v) — a(u) — Bv —u) — X <I(t) - [a(v) — a(u)].
For anyn € Ny = {1,2,3,...}, and any sequences; }1<k<an, With 0 < s9, < ... < 51 < ¢, setting
v = S9;_1 andu = so; in the previous equation, and summing ovare obtain

n n

Z a(s2i—1) — a(s2;) — B(s2i—1 — s2:) — X] < {(t) - Z la(s2i—1) — a(s2)] -

i=1 =1

Because the,. are increasing witlk, the right hand side of this inequality is always less tharequal to,
I(t) - a(t). Therefore we have

L(t) < sup { sup {Z [a(s2i—1) — a(s2i) — B(s2i—-1 — s2i) — X]}}

neN | 0<s2, <...<51<¢ i—1
< () - a(t),
which shows thak(t) > I(t) = L(t)/a(t). O
To have a bound independent of tihave take the sup over allof (9.14), to get

+
[ =supl(t) = {1 — inf M} )
>0

>0 aft) (9.15)

and retrieve the result of Chuang [16].
A similar result for losses due to delay constraipinstead of finite buffeX’, can beeasily obtained too:

L L Bls+d)]T

Ity = [1 — ogfgt o(s) ] (9.16)
- B+ d)]”
I = [1—&15 ol) ] . (9.17)

9.3 APPLICATION 2: BOUND ON LOSSES INCOMPLEX SYSTEMS

As a particular application of the loss representation fdar(9.6), we show how it is possible to bound
the losses in a system offering a somewhat complex service ¢ by losses in simpler systems. The
first application is the bound on the losses in a shaper by terayhat segregates the resources (buffer,
bandwidth) between a storage system and a policer. Thedepmtication deals with a VBR shaper, which
is compared with two CBR shapers. For both applications|dbses in the original system are bounded
along every sample path by the losses in the simpler systéfos.congestion times however, the same
conclusion does not always hold.

9.3.1 BOUND ON LOSSES BYSEGREGATION BETWEEN BUFFER AND POLICER

We will first compare the losses in two systems, having theesaput flowa(t).



234 CHAPTER 9. SYSTEMS WITH LOSSES

The first system is the one of Figure 9.1 with service cuhand bufferX, whose losse&(t) are therefore
given by (9.6).

The second system is made of two parts, as shown in Figura)9.Bie first part is a system with storage
capacityX, that realizes some mappiif of the input that is not explicitly given, but that is assunede
isotone, and not smaller thah(IT" > II). We also know that a first clipper discards data as soon dstiile
backlogged data in this system exceéds This operation is calleduffer discard The amount of buffer
discarded data ifD, ¢] is denoted byL.g(t). The second part is a policer without buffer, whose output is
the min-plus convolution of the accepted input traffic by plodicer by 3. A second clipper discards data
as soon as the total output flow of the storage system exckedsaximum input allowed by the policer.
This operation is callegolicing discard The amount of discarded data by policing[¢] is denoted by

LPol(t)'

Buffer Policer
Clipper Clipper
System with
—>
a(t) x(t) buffer X y(t)
LBuf(t) LPol(t)
(a)
Buffer Virtual segregated system
Clipper — — — — —
| Policer

— (t) | .
\ X yi Clipper
ay(t) x{) ———
a0 o, —2— ) alt)|

Lgut) Lpoi(t)
(b)

Figure 9.3:A storage/policer system with separation between losses due to buffer discard and to policing
discard (a) A virtual segregated system for 2 classes of traffic, with buffer discard and policing discard, as
used by Lo Presti et al [56] (b)

THEOREM 9.3.1. Let L(t) be the amount of lost data in the original system, with sendarve/ and
buffer X

Let Lpue(t) (resp. Lpoi(t)) be the amount of data lost in the time interf@l¢] by buffer (resp. policing)
discard, as defined above.

ThenL(t) < LBuf(t) + Lpol(t).
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ProOOF: Letz andy denote respectively the admitted and output flows of thesbedf part of the second
system. Then the policer implies that 5 ® x, and any times we have

a(s) — Lput(s) — X =x(s) — X < y(s) < z(s) = a(s) — Lput(s).
which implies that for any < u < v <,
y(v) —y(u) = Blv — u)
(

> (a(v) = Lpu(v) — X) = (a(u) — Lpui(u)) — B(v — u)
a(v) —a(u) — B(v —u) — X — (Lpus(v) — Lput(w)).
We use the same reasoning as in the proof of Theorem 9.2.1:ickeapy n € Ny and any increasing

sequence sy bi<k<on, With 0 < s9, < ... < 51 < t. Then we sev = s;_; andu = sy; in the previous
inequality, and we sum oveéy to obtain

Z [y(s2i-1) — y(s2i) — B(s2i-1 — 52:)] >

i=1
Z [a(s2i-1) — a(s2;) — B(s2i-1 — 52i) — X]
i—1
- Z [(LBut(52i-1) — LBut(52i))] -

i=1

By taking the supremum over all and all sequence§sy }1<x<2,, the left hand side is equal tbp (),
because of (9.6) (we can replace the inequality in (9.6) bgauality, because the output of the policer is
y = B ® x). Since{s} is a wide-sense increasing sequence, and singe is a wide-sense increasing
function, we obtain therefore

LPOI (t) >

sup { sup la(s2i-1) — a(s2i) — B(s2i-1 — 52;) — X]} — Lpyue(t)

neN (0<s2,<...<s1<t

= L(t) — LBuf(t),

which completes the proof. O

Such a separation of resources between the “buffered syatalripolicing system” is used in the estimation
of loss probability for devising statistical CAC (Call Aqaence Control) algorithms as proposed by Elwalid
et al [27], Lo Presti et al. [56]. The incoming traffic is segi@d in two classes. All variables relating to
the first (resp. second) class are marked with an index 1.(r@gpso thata(t) = a1(t) + a2(t). The
original system is a CBR shapef (= \¢) and the storage system is a virtually segregated system as i
Figure 9.3(b), made of 2 shapers with ras and C'y and buffersX} and X3. The virtual shapers are
large enough to ensure that no loss occurs for all possibieabfunctionsa;(t) anday(t). The total
buffer space (resp. bandwidth) is larger than the origindlie space (resp. bandwidth)X{ + X3 > X
(CY + €3 > C). However, the buffer controller discards data as soon @sdfal backlogged data in the
virtual system exceed¥ and the policer controller discards data as soon as thedatplt rate of the
virtual system exceeds.

9.3.2 BOUND ON LOSSES IN AVBR SHAPER

In this second example, we consider of a “buffered leaky btickhaper [54] with buffetX, whose output
must conform to a VBR shaping curve with peak rétesustainable raté/ and burst toleranc® so that
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Clipper

a(t) —»Dﬂ» X [P)—»
v

Lepr(t)

Clipper

a(t) —» Foerel) X+B (M)—>
v

Legr-(t)
(a)
Clipper Clipper
Xepr (D)
w o P s B
+ Yepr(t) +
Legr(t) Legr-(t)

(b)

Figure 9.4:Two CBR shapers in parallel (a) and in tandem (b).

here the mapping of the elementlis= Cgz with 3 = Ap A yas,5. We will consider two systems to bound
these losses: first two CBR shapers in parallel (Figure 9.4{ad second two CBR shapers in tandem
(Figure 9.4(b)). Similar results also holds for losses dua tlelay constraint [52].

We will first show that theamount of losseduring [0, ¢] in this system is bounded by the sum of losses
in two CBR shapers in parallel, as shown in Figure 9.4(a):fitls¢ one has buffer of siz& and rateP,
whereas the second one has buffer of size B and ratelM . Both receive the same arriving traffias the
original VBR shaper.

THEOREM 9.3.2. Let Lygx(t) be the amount of lost data in the time intery@l¢] in a VBR shaper with
buffer X and shaping curvé = Ap A var, 5, When the data that has arrived [, ¢] is a(t).

Let Legr (t) (resp. Legrr (t)) be the amount of lost data duriri@, ¢] in a CBR shaper with buffek (resp.
(X + B)) and shaping curve p (resp.A,s) with the same incoming traffig(¢).

ThenLVBR(t) S LCBF\’ (t) + LCBF\‘” (t)

PROOF:  The proof is again a direct application of (9.6). Pick @y u < v < t. Since = Ap Ay, B,

a(v) —a(u) — v —u) — X =
{a(v) —a(u) — P(v —u) — X} V{a(v) —a(u) = M(v —u) — B — X}
Pick anyn € Ny and any increasing sequent®, }1<x<a,, With 0 < s9, < ... < 51 < t. Setv = s9;_1
andu = so; in the previous equation, and sum ovgto obtain

n

Z la(s2i—1) — a(s2i) — B(s2i—1 — 52;) — X]

=1
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= Z[{G(SQi—l) —a(s2;) — P(s2i—1 — s2;) — X}
i=1

V{CL(SQZ',l) — CL(SQZ') — M(SQZ',l — 521') — B - X}
Z [a(s2i—1) — a(s2i) — P(s2i—1 — 52;) — X]

i=1

IN

+ Z la(s2i—1) — a(s2i) — M(s2;-1 — s2;) — B — X]
i—1
< LCBR’(t) + LCBR”(t)>

because of (9.6). By taking the supremum overnadhd all sequencels;, }1<x<2,, in the previous inequal-
ity, we get the desired result. O

A similar exercise shows that the amount of losses dufing in the VBR system is also bounded above by
the sum of losses in two CBR shapers in cascade as shown ireFgl(b): the first one has buffer of size
X and rateP, and receives the same arriving traflias the original VBR shaper, whereas its output is fed
into the second one with buffer of siZeand rate)M .

THEOREM 9.3.3. Let Lygx(t) be the amount of lost data in the time intery@l¢] in a VBR shaper with
buffer X and shaping curves = Ap A 7,5, When the data that has arrived [, ¢] is a(t).

Let Legr (t) (resp. Legre (t)) be the amount of lost data duriri@, ¢t] in a CBR shaper with buffeX (resp.
B) and shaping curve\p (resp. A,s) with the same incoming traffig(¢) (resp. the output traffic of the first
CBR shaper).

ThenLVBR(t) S LCBR’ (t) + LCBN’ (t).

The proof is left as an exercise.

Neither of the two systems in Figure 9.4 gives the better ddanany arbitrary traffic pattern. For example,
suppose that the VBR system parametersfare 4, M = 1, B = 12 and X = 4, and that the traffic is a
single burst of data sent at raleduring four time units, so that

() = R-t if 0<t<4

PZV4ar i t>4

If R = 5, both the VBR system and the parallel set of the @R’ and CBR” systems are lossless,
whereas the amount of lost data after five units of time in &melém of the twd’BR’ andCBR/” systems
is equal to three.

On the other hand, iR = 6, the amount of lost data after five units of time in the VBR eystthe parallel
system CBR’ andCBR”) and the tandem systel@BR’ andCBR’”) are respectively equal to four, eight
and seven.

Interestingly enough, whereas both systems of Figure 9ldwaind theamount of losses in the original
systemit is no longer so for theongestion periodd.e. the time intervals during which losses occur. The
tandem system does not offer a bound on the congestion pedodtrary to the parallel system [52].

9.4 SOLUTION TO SKOHORKHOD 'S REFLECTION PROBLEM WITH TwO
BOUNDARIES

To obtain the model of Figure 9.1, we have added a regulat@ledxclipper — before the system itself,
whose inpute is the maximal input ensuring a lossless service, giveni@fatorage capacity . The clipper
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eliminates the fraction of fresh trafficthat exceeds.. We now generalize this model by adding a second
regulatorafter the lossless system, whose output is denoted witts shown on Figure 9.5. This regulator
complementg, so that the output of the full process is now a given functian 7. The resulting process
N =y — bis the amount of traffic that needs to be fed to prevent thegtsystem to enter in starvation.
N compensates for possible buffer underflows, hence we namsdtond regulatarompensataor

Clipper (t)Compensator
x(t) y
alt) —>D—> Storage g | b0

+

L(t) N(t)

Figure 9.5:A storage system representing the variables used to solve Skorokhod’s reflection problem with
two boundaries

We can explicitly compute the loss procdsand the “compensation” proceds, from the arrival process
a and the departure procelsausing, once again, Theorem 4.3.1. We are looking for theimmabsolution

x(t) < Oiggf%t{a(t) —a(s)+x(s)} (9.18)
z(t) < ylt)+X (9.19)
y(t) < (1) (9.20)
W) < [0~ b6) + 9(s)) (9.21)

The two first inequalities are identical to (9.1) and to (9®)e two last inequalities are the dual constraints
ony. We can therefore recast this system as

a A hg(x) Ny + X} (9.22)
bAx A hy(zx). (9.23)

This is a system of min-plus linear inequalities, whose tsaruis
7 =L (d) = Lz(@).
whereH anda are defined as
a(t) = la(t) ()"

a(t) —a(s) odo(t—s)+ X
H9) = | 5e—s)  bie) - b(s)

forall 0 < s < t. Instead of computingZ, we go faster by first computing the maximal solution of (9.23
Using properties of the linear idempotent operator, we get

Yy = Eb(.%' N b) = hb(m AN b) = hb(x) AN hb(b) = hb(x)
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Next we replacey by h,(x) in (9.22), and we compute its maximal solution, which is
z = ha Ay, + X} (a).
We work out the sub-additive closure using Corollary 4.2rid we obtain
x = (hgo{hy +X})(a) (9.24)

and thus
y = (hb ofgo Uy + X}> (a). (9.25)

After some manipulations, we get

= b(t)
+
sup { sup Z b(sz))} - nX} (9.26)

neN | 0<s2,+1<...<52<51<t

= —l‘ =

2n
su su “ 1) als) — bls)) S —n ' .
neg{OSSangzgslgt{;( 1) (a(si) — b z))} X} (9.27)

Interestingly enough, these two functions are the solutibthe so-called Skorokhod reflection problem
with two fixed boundaries [74, 38].

Let us describe this reflection mapping problem following #xposition of [46]. We are given a lower
boundary that will be taken here as the origin, an upper baynd > 0, and afree procesg(t) € R such
that0 < z(0—) < X. Skorokhod’s reflection problem looks for function§¢) (lower boundary proce3s
andL(t) (upper boundary proceysuch that

1. Thereflected process
W(t) ==z(t)+ N(t) — L(t) (9.28)
isin [0, X] forall ¢ > 0.
2. BothN(t) and L(t) are non decreasing witN (0—) = L(0—) = 0, andN(¢) (resp. L(t)) increases
only whenW (t) = 0 (resp.W (t) = X), i.e., with14 denoting the indicator function of

/0 I{W(t)>0}dN(t) =0 (9.29)

The solution to this problem exists and is unique [38]. Whely one boundary is present, explicit formulas
are available. For instance, ¥ — oo, then there is only one lower boundary, and the solution sdyea
found to be
N = — inf
Q ot A7)}

L(t) = o

If X < oo, then the solution can be constructed by successive appatioins but, to our knowledge, no
solution has been explicitly obtained. The following therargives such explicit solutions for a continuous
VF function z(¢). A VF function (VF standing for Variation Finie [38, 70})¢) on R* is a function such

that for allt > 0
sup sup {Z |z(si) — sl+1)\} < 0.

neNg 0=sp<sp—1<...<s1<sp=t

VF functions have the following property [70}(t) is a VF function oriR™ if and only if it can be written
as the difference of two wide-sense increasing function®on
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THEOREM 9.4.1 (Skorokhod’s reflection mappingl.et the free process(t) be a continuous VF function
onRR™. Then the solution to Skorokhod’s reflection problem®X | is

2n+1 '
N(t) = sup { sup { Z (—1)%(5@-)} - nX} (9.31)

neN | 0<s2p41<...<s52<51<¢ i=1

2n
L(t) = sup { sup {Z(—l)”lz(si)} - nX} . (9.32)

neN | 0<s2,<...<s2<s1<t =1

PROOF:  As z(t) is a VF function on0, co), there exist two increasing functions$t) andb(t) such that
z(t) = a(t) — b(t) forall t > 0. Asz(0) > 0, we can takeé)(0) = 0 anda(0) = z(0). Note thata, b € F.

We will show now thatl, = ¢ — . and N = b — y, wherez andy are the maximal solutions of (9.22) and
(9.23), are the solutions of Skorokhod’s reflection problem

First note that

W(t) = =(t) + N(t) = L(t) = (a(t) = b(t)) + (b(t) — y(1)) — (a(t) — 2(t)) = x(t) — y(t)

isin [0, X] for all t > 0 because of (9.19) and (9.20).

Second, because of (9.21), note that0) = b(0) — y(0) = 0 and that for any > 0 and0 < s < t,
N(t) — N(s) = b(t) — b(s) + y(s) — y(t) > 0, which shows thatV(¢) is non decreasing. The same
properties can be deduced fbft) from (9.18).

Finally, if W (t) = z(t) — y(t) > 0, there is some* € [0, ¢] such thaty(t)

= y(s*) + b(t) — b(s*) because
y is the maximal solution satisfying (9.20) and (9.21). There for all s € [s*

1,
0 < N(t) = N(s) < N(t) = N(s%) = b(t) — b(s*) + y(s*) — y(t) = 0

which shows thatV(t) — N(s) = 0 and so thatV (¢) is non increasing it (¢) > 0. A similar reasoning
shows that’.(¢) is non increasing itV (¢) < X.

ConsequentlyN (t) and L(t) are the lower and upper reflected processes that we are ¢pfikinWe have
already computed them: they are given by (9.26) and (9.2&pldRinga(s;) —b(s;) in these two expressions
by z(s;), we establish (9.31) and (9.32). O

9.5 BIBLIOGRAPHIC NOTES

The clipper was introduced by Cruz and Tenaja, and was eatetwlget the loss representation formula
presented in this chapter in [17, 52]. Explicit expressist@n operatofl is a general, time-varying oper-
ator, can be found in [17]. We expect results of this chamdotm a starting point for obtaining bounds
on probabilities of loss or congestion for lossy shapers witmplex shaping functions; the method would
consist in applying known bounds to virtual systems and thkeminimum over a set of virtual systems.
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Ca (Vector min-plus convolution), 134 bivariate function, 132

C, (Min-plus convolution), 133 burst delay function, 105

D, (Min-plus deconvolution), 133

P, (Packetization), 133 caching, 168

L5 (Min-plus linear operator), 136 causal, 139

N, 4 CDVT (cell delay variation tolerance), 13
Np, 233 concave function, 109

IT (Max-plus operator), 133 controlled Ior_;ld service, 75

II (Min-plus operator), 133 convex function, 109

RT. 4 convex set, 109

Critical Load Factor, 182

rate-latency function), 106
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g (set of W|de-sense.|ncreasmg functions), 105 damping tolerance, 93
o (burst delay function), 105 Delay Based Scheduler, 80
7 (affine function), 106 DGCRA, 223
h (horizontal deviation), 128 dioid, 104
he (Linear idempotent operator), 134
Ar (peak rate function), 105 Earliest Deadline First (EDF) scheduler, 80
Veriy 182 EDF see Earliest Deadline First, 80
@ (min-plus deconvolution), 122 EF, 87
@ (max-plus deconvolution), 129 epigraph, 109
® (min-plus convolution), 110 Expedited Forwarding, 87
® (max-plus convolution), 129
7 (sub-additive closure of), 118 FIFO, 5
F (Set of wide-sense increasing bivariate functiondjinite lifetime, 125

132

GCRA (Generic Cell Rate Algorithm
definition, 11

Good function, 14

GPS (generalized processor sharing, 18

GR, 70

greedy shaper, 30

greedy source, 16

guaranteed delay node, 20

Guaranteed Rate node, 70

ur - (staircase function), 106
vr (step function), 106

v (vertical deviation), 128

V (max or sup), 122

A (min or inf), 103

Lexpr(Indicator function), 40

ABR, 223 .

adaptive guarantee, 202 guaranteed service, 75

AF, 87 horizontal deviation, 128
affine function, 106

arrival curve, 7 idempotent, 141

Assured Forwarding, 87 impulse response, 136, 139
Available Bit Rate, 223 infimum, 103
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limit from the right, 6

linear idempotent operator, 134
look ahead delay, 155

lower semi-continuous, 135

max-plus convolution, 129
max-plus deconvolution, 129
maximum, 129

min-plus convolution, 110
min-plus deconvolution, 122
Min-plus linear, 136, 139
minimum, 103

minimum rate server, 199

Packet Scale Rate Guarantee, 197

Packetizer, 41
peak rate function, 105

PGPS: packet generalized processor sharing, 68

P, 41

playback buffer, 155
playback delay, 155

policer, 30

Priority Node, 20, 176
pseudo-inverse function, 106

rate-latency function, 106
Re-negotiable service, 223
RSVP, 76

SCED, 80
shaper, 30
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shift invariant, 140
Shift matrix, 136

smooth ¢-smooth for some function(t), 7

smoothing, 155

staircase function, 106
star-shaped function, 109
step function, 106

strict service curve, 22
sub-additive closure, 118
sub-additive fucntion, 116
supremum, 129

T-SPEC (traffic specification), 13
time varying shaper, 223

upper semi-continuous, 134

variable capacity node, 22
vertical deviation, 128
Very good function, 16
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