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The Shaper

fresh traffic | shaped traffic
‘ c-smooth
R R*

B shaper: forces output to be constrained by ¢
B greedy shaper stores data in a buffer only if needed

B examples:
» constant bit rate link (o(t)=ct)
» ATM shaper; fluid leaky bucket controller

B Pb: find input/output relation



A Min-Plus Model of Shaper

fresh traffic | shaped traffic
‘ c-smooth
R X

B Shaper Equations:
(1) x<xQ®o
(2) x<R

B R and x are functions
B o is sub-additive
B X is min-plus convolution



Network Calculus’s System Theory

B G =set of functions Z —» R* that are wide-sense increasing

B Also works in continuous time, functions are left-
continuous R = R™

B An operator Il is a mapping : G -> G
B Ilisisotoneifx(t) <y(t) = II(x)(t)<II(y)(t)
M I1is upper-semi continuous iff

inf,(I1(x,)) = I1(inf,(x,)) for ¥ sequences x;



Min-Plus Linear Operators

M 11 is min-plus linear if

» for any constant K, II(x + K) =TI(x) + K
I[I(x Ay)=T11(x) AI1(y)
» [1is upper-semi continuous.

B Representation Theorem: ITis min-plus linear <=>
there is a unique H: RxR ->R*, Tin t and ! in s, such that

[T(x)(t)=infJH(t,s)+x(s)]
B min-plus linear => isotone and upper semi-continuous

B Example: convolution operator
Coix—oQQx

B Example: M € ( is given:
hy: x> ys.t.y(t) = intf(M(t) — M(s) + x(s))
S<



Min-Plus Residuation Theorem

Theorem: (|L., Thiran 2001] thm 4.3.1., derived from Baccelli
et al,, ) Assume that I1is isotone and upper-semi-continuous.
The problem

x(t) <b(t) AT1(x)(t)

where x € G is the unknown function
has one maximum solution in G, given by

x*(t) = I(b)(¥)

B (Definition of closure)

IT (x) = inf {x, I1(x), [ToI1(x), ITolTolI(x),...}

B in other words:

X0 =b;x! =I1 (x'1) and x* = inf {x°, X1, .., X}, ...}




(1) x<x®c Application to Shaper
(2) x<R

fresh traffic

. shaped traffic
c-smooth

R R*

B There is a maximum solution obtained by iterating
x(0) = R
xXV=RRao
XD =(RRo)Rc=RRQo
because g @ 0 = o
Thus R* = inf (x(o),x(l),x(z), ) =RQ®oc

B The greedy shaper outputis R*=R® o
M (C,o(C, =C(C,,the subadditive closure of C, is C,



Variable Capacity Node

fresh traffic (1)

|| :j TIQ*_.

R

M node hasa timetvarying capacity pu(t)
Define M(t) =IO u(s) ds.

B the output satisfies
R*(t) < R(t)
R*(t) -R*(s) < M(t) -M(s) foralls<t

and is “as large as possible”



Variable Capacity Node

R*(t) < R(t) fresh traffic (1)
R*(t) -R*(s) < M(t) -M(s) L‘_. -
forall s <t 2 j P+

B Operator hy: x = ys.t.
y(t) = in{ M(t) — M(s) + x(s)
S<

B We have the problem R* < R,R* < hy(R)
M 1, o hy; = hy, and the sub-additive closure of hy; is hy,

B There is a maximum solution,
R*(t) = inf (M(t) — M(s) + R(s))
S<
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MORE EXAMPLES
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A System with Loss [Chuang and Cheng 2000]

Loss L(t)

fresh traffic =L >

buffer X

B node with service curve f(t) and buffer of size X
B when buffer is full incoming data is discarded

B modelled by a virtual controller (not buffered)
B fluid model or fixed sized packets

B Pb: find loss ratio
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A System with Loss

Loss L(t)

fresh traffic =¢ >

buffer X

B Assume R is @ — smooth; if X = v(a, f) then no loss
B IfX < h(a,B),what can we say ?
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Bound on Loss Ratio

Loss L(t)

fresh traffic > > @
*
R(1) R(t) R*(t)
buffer X

B Thm [Chuang and Cheng 2000] Let r be the largest such

B _ B _ Bt)+X
thatX =v(ra,f)ie. r=1A %Qg( a(t) )

Then Lg 1 —r; itisthe best possible bound.

a(t)
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Analysis of System with Loss

Loss L(t)

fresh traffic > >
R(t) R’(t) j @ R*(t)=(ITR") (%)
buffer X

M~

R'(t) —R'(s) < R(t) —R(s) Vs <t (splitter)

2. R'(t) —IIR'(t) < X (buffer does not overflow)
where Il is the transformation R’ -> R, assumed
isotone and usc (« physical assumptions »)

B There is a maximum solution and R’ is the maximum
solution
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Analysis of System with Loss

1. R'(t) —R'(s) < R(t)— R(s) Vs <t (splitter)

2. R'(t) —TIR'(t) < X (buffer does not overflow)
Loss L(t)

fresh traffic

@ R*(t)=(ITR") (t)
buffer X

B Let x(t) = rR(t) with r given by thm.
B Eqn 1 is satisfied

B x is ra — smooth, thus required buffer < X and Egn 2 is
satisfied

B Thus R'(t) = x(t) and
L(t) —1_ R'(t) < x(t)
R(t) R(t) R(t)

R(t) ' R’(t)
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E)tlmal Smoothing [L.,Verscheure 2000]

server Smoother Network ;i::::y

R(t) R’(t) R*(t) — R(t-D)
‘ I B | B(®) _Q @

B Network + end-client offer a service curve fto flow R'(t)

B Smoother delivers a flow R’(t) conforming to an arrival
curve o.

B Video stream is stored in the client buffer, read after a
playback delay D.

B Pb: which smoothing strategy minimizes D?
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Optimal Smoothing, System Equations

id
100 Video
display

server Smoother Network
R(t) R’(t) R*(t) — ] R(t-D)
R e )
G

B (1) R is o-smooth
(2) (R® B)(t) = R(t-D)

B Use deconvolution (a @ b)(t) =sup (a(t+s) — b(s)

s=0

X <y® B <=> x@OP <y
B system becomes
(1)R">2R'®oc
(2)R'2(R@ B )(t-D)
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Ogtimal Smoothing, System Equations

deo Vid
server Smoother Network di;p‘;“:y
R(t) R’(t) R*(t) — R(t-D)
= a0

(@)
()R >R @o

(2)R'>2(R@B)(t-D)

B This is a max-plus linear problem, it has a minimum
solution R’ given by the iterations:

x©O() = (R @ B)(t—D)
xD () =xD Qo (t) =(R0 (0 B))(t-D)
x@ (t) = xW(t) becausec P o =0

B ThusR'(t) = (R © (6 ® B))(t-D)
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Example

‘ a possible R’(t) "

" R@(c®p)(t-D)., R(t-D)
- | //® B(t)
By | | | | | | : |
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Minimum Playback Delay

B D must satisfy :
Ro(B®c)(-D)=0

M this is equivalent to
D>h(R, B ® o)
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(o ® B)(D)

(c ® B)(H)



The Perfect Battery

u(t) — (u(t) —£(2)*

o N B
Load L(t) = 20 (_*_? G_)(U-(t) < g(t)
Battery B(t)

(((t) — u(t))* (ult) - ()

B Battery may be charged (u(t) > ¢(t))or discharged
(u(t) <£(1))
B Load #(t) is given

B Problem is to determine a power schedule u(t), subject to
0 < u(t) < g(t) and within battery constraints
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System Equations for the Perfect Battery

u(t) — (u(t) — ((8))*

o B
Load L(t) = £{t) {+? G_}U—(t) < g(t)
Battery B(t)=

(£(t) — u(t))™ (u(t) — €(2))"

1. L(t) < By + U(t) no underflow
2. U(t) — L(t) + By < Bnooverflow
3 U()—U(s) <G(t) —G(s),Vs < t power constraint

where U(t), L(t), G(t) are cumulative functions such as
Ut) = [ u(s)ds
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u(t) — (u(t) — ()"
System ¢

Equations = ¢
1. L(t) < By + U(t) no underflow =
2. U(t) — L(t) + By < B no overflow
3 Ult)—U()<G(t)—G(s),Vs<t

B Relax (eq 1):
U(t) < (B =By + L())1esg
Ut < he(U)(Y)
There is a maximum solution,
U*(t) = G(t) /\SirSlI;(G(t) —G(s)+ L(s) + B —By)
U* is causal
The problem is feasible iff U*satisfies (eq 1), i.e.

( By = sup (L(t) — G(1))
13 > sup (L(t) — L(s) — G(b) + G(s))
0<s<t
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System | u(t) — (u(t) — €(t)*

Eq uations o L”(ﬂ O <9t
Battery B(t)

(€(t) — u(t))” (u(t) — €(t)"
1. L(t) < By + U(t) no underflow
2. U(t) — L(t) + By < B no overflow
3 Ult)—U(s)<G(t)—G(s),Vs<t

B Relax (eq 2):
U(t) = max(0,—By + L(t))
U(s) =sup (G(s) —G(t) + U(1))

T=S
There is a minimum solution,

U,(t) =0V sup(G(t) —G(r) + L(t) — By)
T2t
U, is non-causal
The problem is feasible iff U, satisfies (eq 2)

This gives the same conditions
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TIME VERSUS SPACE
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The Residuation Theorem is a Space
Method

B The maximum solution x™ to the problem

x<bh
x < Ilx
is given by iterates over the entire trajectory
x(©) = p
*@D = 1150
@) = 1D
etc

B When time is discrete there may be another way to
compute x* by time recursion
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(1) x=<x®c | The Shaper, Time Method
(2) x<R

fresh traffic

. shaped traffic
c-smooth

R R*

B Time is discretet = 0,1,2, ...
B Define R’ by:
R'(0)=R(0) =0
R'(t)=R(t)A inf (o(t—u)+ R'(u))

Osust-—1

B R’ is solution
B For any other solution x, x(t) < R'(t) [induction]
M R’ is the maximal solution, i.e. R’ = R*.

B Note the difference in representation:
R*(t) =R() A inf (a(t—u)+R(w))

O<ust-1
29



The Time Method for Linear Problems

M [L., Thiran 2001] Thm 4.4.1: the problem in discrete time
x(t) < b(t)
x(t) < inf (H(t, s) + x(s))
S

where H: N XN - R* Tin tandlins
has a maximal solution x™ given by

x*(0) = b(0)
x*(t) =x(t) A inf (H(t, u) + x*(u))

Osust—1

B This is a second, alternative representation for x*
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Pe rfe ct ¢ u(t) — (u(t) — £(t)*

((t) ~ u(t) < g(t)
Load L(t) G‘ =
Batter @E
y Battery B(t)=

(((t) — u(t))* (u(t) — €(t)*

There is a maximum solution,
U*(t) =G(t) A inft(G(t) —G(s)+ L(s)+ B —By)
S <

[t can be computed by the time method:

u*(t) = min (g(t),B — B(t) + £(t))

The minimum schedule is anti-causal and can be computed
with time reversal
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Conclusion

B Min-plus and max-plus system theory contains a central
result : residuation theorem ( = fixed point theorem)
Establishes existence of maximum (resp. minimum)
solutions
and provides a representation

B Space and Time methods give different representations
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Thank You...
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