THE SYSTEM THEORY OF NETWORK CALCULUS

J.-Y. Le Boudec EPFL WoNeCa, 2012 Mars 21

1

Contents

1. Network Calculus's System Theory and Two Simple Examples

2. More Examples

3. Time versus Space

The Shaper

shaper: forces output to be constrained by σ

<u>greedy</u> shaper stores data in a buffer only if needed examples:

- constant bit rate link (σ(t)=ct)
- ATM shaper; fluid leaky bucket controller
- Pb: find input/output relation

A Min-Plus Model of Shaper

Shaper Equations:

x ≤ x ⊗ σ
x ≤ R *R* and *x* are functions
σ is sub-additive
⊗ is min-plus convolution

Network Calculus's System Theory

- \square *G* = set of functions *Z* \rightarrow *R*⁺ that are wide-sense increasing
- Also works in continuous time, functions are leftcontinuous $R \rightarrow R^+$
- An operator П is a mapping : G -> G
- $\square \Pi \text{ is isotone if } x(t) \le y(t) \implies \Pi(x)(t) \le \Pi(y)(t)$
- Π is upper-semi continuous iff $\inf_i(\Pi(x_i)) = \Pi(\inf_i(x_i))$ for \downarrow sequences x_i

Min-Plus Linear Operators

Π is min-plus linear if

- ► for any constant K, $\Pi(x + K) = \Pi(x) + K$ $\Pi(x \land y) = \Pi(x) \land \Pi(y)$
- ► П is upper-semi continuous.
- Representation Theorem: Π is min-plus linear <=> there is a unique H: R x R $\rightarrow \underline{R}^+$, \uparrow in t and \downarrow in s, such that $\Pi(x)(t)=\inf_s[H(t,s)+x(s)]$
- min-plus linear => isotone and upper semi-continuous

Example: convolution operator

$$C_{\sigma}$$
: $x \mapsto \sigma \otimes x$

Example: $M \in G$ is given:

$$h_M: x \mapsto y \text{ s.t. } y(t) = \inf_{s \le t} (M(t) - M(s) + x(s))$$

Min-Plus Residuation Theorem

Theorem: ([L., Thiran 2001] thm 4.3.1., derived from Baccelli et al.,) Assume that П is *isotone* and *upper-semi-continuous*. The problem

 $x(t) \leq b(t) \wedge \Pi(x)(t)$

where $x \in G$ is the unknown function has one maximum solution in *G*, given by

 $x^*(t) = \underline{\Pi}(b)(t)$

(Definition of closure)

 $\underline{\Pi}(x) = \inf \{x, \Pi(x), \Pi \circ \Pi(x), \Pi \circ \Pi \circ \Pi(x), \dots \}$

in other words:

 x^0 = b ; x^i = Π ($x^{i\text{-}1}$) and x^* = inf { x^0 , x^1 , ..., x^i , ...}

Variable Capacity Node

 node has a time varying capacity µ(t) Define M(t) =∫₀^t µ(s) ds.
 the output satisfies R*(t) ≤ R(t) R*(t) -R*(s) ≤ M(t) -M(s) for all s ≤ t

and is "as large as possible"

Variable Capacity Node

Operator
$$h_M$$
: $x \mapsto y$ s.t.
 $y(t) = \inf_{s \le t} M(t) - M(s) + x(s)$

We have the problem R* ≤ R, R* ≤ h_M(R)
h_M ∘ h_M = h_M and the sub-additive closure of h_M is h_M
There is a maximum solution, R*(t) = inf (M(t) - M(s) + R(s))

2.

MORE EXAMPLES

A System with Loss [Chuang and Cheng 2000]

node with service curve β(t) and buffer of size X
when buffer is full incoming data is discarded
modelled by a virtual controller (*not* buffered)
fluid model or fixed sized packets
Pb: find loss ratio

A System with Loss

Assume *R* is α – smooth; if $X \ge v(\alpha, \beta)$ then no loss If $X < h(\alpha, \beta)$, what can we say ?

Thm [Chuang and Cheng 2000] Let r be the largest such that $X = v(r\alpha, \beta)$ i.e. $r = 1 \land \inf_{t>0} \left(\frac{\beta(t) + X}{\alpha(t)}\right)$ Then $\frac{L(t)}{R(t)} \le 1 - r$; it is the best possible bound.

t

Analysis of System with Loss

- 1. $R'(t) R'(s) \le R(t) R(s) \forall s \le t$ (splitter)
- 2. $R'(t) \Pi R'(t) \le X$ (buffer does not overflow) where Π is the transformation R' -> R, assumed isotone and usc (« physical assumptions »)
- There is a maximum solution and R' is the maximum solution

Analysis of System with Loss

1. $R'(t) - R'(s) \le R(t) - R(s) \forall s \le t$ (splitter) 2. $R'(t) - \Pi R'(t) \le X$ (buffer does not overflow) Loss L(t) fresh traffic R(t) $R'(t) \longrightarrow R'(t) = (\Pi R')(t)$ buffer X

Let x(t) = rR(t) with r given by thm.

Eqn 1 is satisfied

■ x is $r\alpha$ — smooth, thus required buffer $\leq X$ and Eqn 2 is satisfied

Thus
$$R'(t) \ge x(t)$$
 and
 $\frac{L(t)}{R(t)} = 1 - \frac{R'(t)}{R(t)} \le 1 - \frac{x(t)}{R(t)} = 1 - r$

Network + end-client offer a service curve β to flow R'(t)

- Smoother delivers a flow *R'(t)* conforming to an arrival curve *σ*.
- Video stream is stored in the client buffer, read after a playback delay *D*.
- Pb: which smoothing strategy minimizes D?

(1) R' is σ -smooth (2) (R' \otimes β)(t) \geq R(t-D)

Use deconvolution $(a \oslash b)(t) = \sup_{s \ge 0} (a(t+s) - b(s))$

 $x \le y \otimes \beta \iff x \oslash \beta \le y$ system becomes (1) R' \ge R' \O \sigma (2) R' \ge (R \O \beta)(t-D)

This is a max-plus linear problem, it has a minimum solution R' given by the iterations: $x^{(0)}(t) = (R \oslash \beta)(t - D)$ $x^{(1)}(t) = x^{(0)} \oslash \sigma(t) = (R \oslash (\sigma \bigotimes \beta))(t-D)$ $x^{(2)}(t) = x^{(1)}(t)$ because $\sigma \oplus \sigma = \sigma$

Thus $R'(t) = (R \oslash (\sigma \bigotimes \beta))(t-D)$

Minimum Playback Delay

D must satisfy : $R \oslash (\beta \otimes \sigma) (-D) \ge 0$ this is equivalent to $D \ge h(R, \beta \otimes \sigma)$

The Perfect Battery

- Battery may be charged $(u(t) > \ell(t))$ or discharged $(u(t) < \ell(t))$
- Load $\ell(t)$ is given
- Problem is to determine a power schedule u(t), subject to $0 \le u(t) \le g(t)$ and within battery constraints

System Equations for the Perfect Battery

1.
$$L(t) \le B_0 + U(t)$$
 no underflow
2. $U(t) - L(t) + B_0 \le B$ no overflow
3. $U(t) - U(s) \le G(t) - G(s), \forall s \le t$ power constraint

where U(t), L(t), G(t) are cumulative functions such as $U(t) = \int_0^t u(s) ds$

Relax (eq 1): $U(t) \le (B - B_0 + L(t)) \mathbb{1}_{t>0}$ $U(t \le h_G(U)(t)$

There is a maximum solution,

$$U^{*}(t) = G(t) \wedge \inf_{s \leq t} (G(t) - G(s) + L(s) + B - B_{0})$$

 U^* is causal

The problem is feasible iff U^* satisfies (eq 1), i.e.

$$\begin{cases} B_0 \ge \sup_t \left(L(t) - G(t) \right) \\ B \ge \sup_{0 \le s \le t} \left(L(t) - L(s) - G(t) + G(s) \right) \end{cases}$$

- *1.* $L(t) \leq B_0 + U(t)$ no underflow
- 2. $U(t) L(t) + B_0 \leq B$ no overflow
- 3. $U(t) U(s) \le G(t) G(s), \forall s \le t$

Relax (eq 2): $U(t) \ge \max(0, -B_0 + L(t))$ $U(s) \ge \sup_{\tau \ge s} (G(s) - G(\tau) + U(\tau))$ There is a minimum solution, $U_*(t) = 0 \lor \sup_{\tau \ge t} (G(t) - G(\tau) + L(\tau) - B_0)$ $U_* \text{ is non-causal}$ The problem is feasible iff *U*, satisfies (eq 2)

The problem is feasible iff U_* satisfies (eq 2) This gives the same conditions

3.

TIME VERSUS SPACE

The Residuation Theorem is a Space Method

The maximum solution x^* to the problem $x \le b$ $x \le \Pi x$ is given by iterates over the entire trajectory $x^{(0)} = b$ $x^{(1)} = \Pi x^{(0)}$ $x^{(2)} = \Pi x^{(1)}$ *etc*

When time is discrete there may be another way to

compute x^* by time recursion

The Time Method for Linear Problems

[L., Thiran 2001] Thm 4.4.1: the problem in discrete time $x(t) \le b(t)$ $x(t) \le \inf_{s} (H(t,s) + x(s))$ where $H: N \times N \to R^+$, \uparrow in t and \downarrow in s

has a maximal solution x^* given by $x^*(0) = b(0)$ $x^*(t) = x(t) \wedge \inf_{0 \le u \le t-1} (H(t, u) + x^*(u))$

This is a second, alternative representation for x^*

There is a maximum solution, $U^*(t) = G(t) \wedge \inf_{s \le t} (G(t) - G(s) + L(s) + B - B_0)$

It can be computed by the time method:

$$u^{*}(t) = \min(g(t), B - B(t) + \ell(t))$$

The minimum schedule is anti-causal and can be computed with time reversal

Conclusion

- Min-plus and max-plus system theory contains a central result : residuation theorem (= fixed point theorem) Establishes existence of maximum (resp. minimum) solutions and provides a representation
- Space and Time methods give different representations

Thank You...