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The Shaper

shaper:	forces	output	to	be constrained by	
greedy shaper storesdata in	a	buffer	only if	needed
examples:	

constant	bit	rate	link ((t)=ct)
ATM	shaper;	fluid leaky bucket controller

Pb:	find input/output	relation
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A Min‐Plus Model of Shaper

Shaper	Equations:
(1) 	 ⊗
(2) 	

and	 are	functions
is sub‐additive

⊗ is min‐plus	convolution
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Network Calculus’s System Theory
=	set	of functions	 → that	are	wide‐sense	increasing

Also	works	in	continuous	time,	functions	are	left‐
continuous	 →
An	operator	Π is	a	mapping	G	‐>	G
 is	isotone if	x(t)  y(t) ⇒ (x)(t)	 (y)(t)
 is	upper‐semi	continuous iff
infi(xi	)	=		(infi(xi))	for	 sequences	xi	
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Min‐Plus Linear Operators
 is	min‐plus	linear if	

for	any	constant	K,	(x	+	K)	=	(x)	+	K	
(x	 y)	=	(x)	 (y)	

 is	upper‐semi	continuous.

Representation	Theorem is	min‐plus	linear	<=>
there	is	a	unique	H:	R	x	R		‐>	R+ ,	↑ in		 and	↓	in	 ,	such	that	
(x)(t)=infs[H(t,s)+x(s)]	
min‐plus	linear	=>	isotone	and	upper	semi‐continuous
Example:	convolution	operator	

C : 	 ↦ ⊗
Example:	 ∈ 	 is given:

: 		 ↦ 	s. t. inf
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Min‐Plus Residuation Theorem
Theorem:	([L.,	Thiran	2001] thm 4.3.1.,	derived	from	Baccelli
et	al.,	)	Assume	that	 is	isotone and	upper‐semi‐continuous.	
Theproblem	

x(t)  b(t)  (x)(t)
where		 ∈ 		 is	the	unknown	function

has	one	maximum	solution	in	 ,	given	by	
x*(t) =(b)(t)

(Definition	of	closure)	
 (x) =	inf {x,	(x),	(x),	(x),...}

in	other	words:	
x0 =	b	;	xi =	 (xi‐1)	and	x*	=	inf {x0,	x1,	...,	xi,	...}
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Application to Shaper

There	is a	maximum	solution	obtained by	iterating
x
x ⊗
x ⊗ ⊗ ⊗

because ⊗
Thus	 ∗ inf	 , , , … ⊗ 	
The	greedy shaper output	is R*=	R	

∘ ,	the	subadditive closure of	 	is	
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Variable Capacity Node

node has	a	time	varying capacity µ(t)
Define	M(t)	=0

t
(s)	ds.	

the	output	satisfies	
R*(t)		 R(t)
R*(t)	‐R*(s)		 M(t)	‐M(s)	for	all	s	 t

and	is	“as	large	as	possible”
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Variable Capacity Node

Operator	 :		 ↦ 	s.t.
inf
	 	
	

We have	the	problem ∗ , ∗

∘ and	the	sub‐additive	closure of	 is
There	is a	maximum	solution,	

∗ inf
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MORE EXAMPLES
2.	
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A System with Loss [Chuang and Cheng 2000]  

node	with	service	curve	(t) and	buffer	of	size	X
when	buffer	is	full	incoming	data	is	discarded	
modelled	by	a	virtual	controller			(not buffered)
fluid	model	or	fixed	sized	packets
Pb:	find	loss	ratio
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A System with Loss

Assume	 is	 	smooth;	if	 , then	no	loss
If	 , ,	what can we say ?
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Bound on Loss Ratio

Thm [Chuang and	Cheng	2000]	Let	 be the	largest such
that , i.e.					 1 ∧ inf 	

Then 1 ;		 it is the best	possible	bound.
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Analysis of System with Loss

1. 	∀	 	 (splitter)
2. Π (buffer	does not	overflow)	

where	Π is	the	transformation	R’	‐>	R,	assumed	
isotone	and	usc (« physical	assumptions »)	
There	is	a	maximum	solution	and	R’	is	the	maximum	
solution
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Analysis of System with Loss

Let	 with given by	thm.
Eqn 1	is satisfied
is	 smooth,	thus	required	buffer	 and	Eqn 2	is	

satisfied
Thus	 and

1 1 1
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Optimal Smoothing [L.,Verscheure 2000]

Network	+	end‐client	offer	a	service	curve	 to	flow	R’(t)
Smoother	delivers	a	flow	R’(t) conforming	to	an	arrival	
curve	.
Video	stream	is	stored	in	the	client	buffer,	read	after	a	
playback	delay	D.
Pb:	which	smoothing	strategy	minimizes	D?
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Optimal Smoothing, System Equations

(1)		R’	is	‐smooth
(2)		(R’(t)	 R(t‐D)
Use	deconvolution ⊘ ) =	sup

	
	

x			 y	  <=>		 x	⊘	  y
system	becomes

(1)	R’	 R’	⊘ 
(2) R’	 (R	⊘  )(t‐D)
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Optimal Smoothing, System Equations

This	is	a	max‐plus	linear	problem,	it	has	a	minimum	
solution	 ′ given	by	the	iterations:

⊘
	 ⊘ (R	⊘ ( ⊗	 ))(t‐D)
	 because	 ⊕

Thus	 (R	 ⊘ 	( ⊗ 	))(t−D)
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Example
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Minimum Playback Delay
D	must	satisfy :

R	⊘ ( )	(‐D)	 0
this is equivalent to

D	 h(R,	 )
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The Perfect Battery

Battery	may be charged ( ℓ )or	discharged
( ℓ )
Load ℓ is given
Problem is to	determine a	power	schedule	 ,	subject to	
0 and	within battery constraints
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System Equations for the Perfect Battery

1. no	underflow
2. 	 no	overflow
3. , ∀ power	constraint

where , , are	cumulative	functions such as	
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System 
Equations
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Relax	(eq 1):
1

There	is a	maximum	solution,	
∗ ∧ inf

	 	
∗ is causal

The	problem is feasible iff ∗satisfies (eq 1),	i.e.	
sup	

sup	
		

1. no	underflow
2. 	 no	overflow
3. , ∀



System 
Equations
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Relax	(eq 2):
max 0, 	
sup

	
	 	

There	is a	minimum	solution,	
∗ 0 ∨ 	 sup

	 		
∗ is non‐causal

The	problem is feasible iff ∗ satisfies (eq 2)
This	gives the	same conditions

1. no	underflow
2. 	 no	overflow
3. , ∀



TIME VERSUS SPACE
3.	
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The Residuation Theorem is a Space
Method

The	maximum	solution	 ∗ to	the	problem

Π
is given by	iterates over	the	entire trajectory

Π
Π

When time	is discrete there may be another way to	
compute ∗ by	time	recursion
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The Shaper, Time Method

Time	is discrete 0,1,2, …
Define ’	by:

0 0 0
∧ inf 	

′ is solution	
For	any other solution	 ,	 ′ induction
′ is the	maximal	solution,	i.e.	 ∗.

Note	the	difference in	representation:	
∗ ∧ inf
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The Time Method for Linear Problems
[L.,	Thiran	2001]	Thm 4.4.1:	the	problem in	discrete time

inf	
	

,
where ∶ → , ↑ in		 and	↓	in	

has	a	maximal	solution	 ∗ given by
∗ 0 0
∗ 	 ∧ inf , ∗

This	is a	second,	alternative	representation for	 ∗
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Perfect
Battery
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There	is a	maximum	solution,	
∗ ∧ inf

	 	

It	can be computed by	the	time	method:

∗ min	 , ℓ 	

The	minimum	schedule is anti‐causal	and	can be computed
with time	reversal



Conclusion
Min‐plus	and	max‐plus	system	theory contains a	central	
result :	residuation theorem (	=	fixed point	theorem)
Establishes existence	of	maximum	(resp.	minimum)	
solutions
and	provides a	representation

Space and	Time	methods give different representations
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Thank You…
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