

MICS Mobile Information and Communication Systems

Cross – Layer Design of Wireless MAC Protocol for Ad-Hoc Networks With Application to Low Power UWB

Jean-Yves Le Boudec

joint work with R. Merz, B. Radunovic, J. Widmer

Introduction

- Goal: design MAC and routing protocol for given network technology.
 - **Q1: Which performance objective to use ?**
 - **Q2: Which building blocks for MAC layer ?**

Rate Performance Objectives

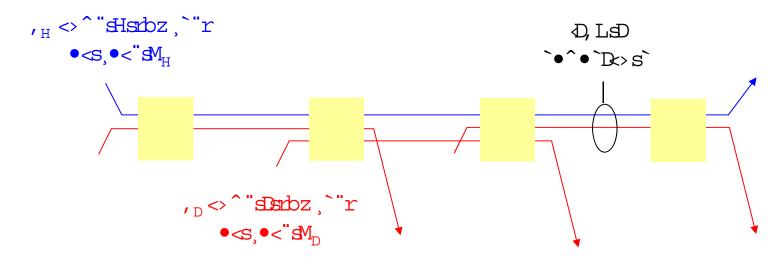
□ Performance objectives in multi-hop wireless networks:

- Rate based objectives (802.11, UWB, CDMA)
- Energy based objectives (sensor networks)
- Combined

□ We focus on rate-based objectives

Commonly Used Rate-based Performance Objectives

Total capacity: maximize sum of rates of all flows. Commonly used everywhere

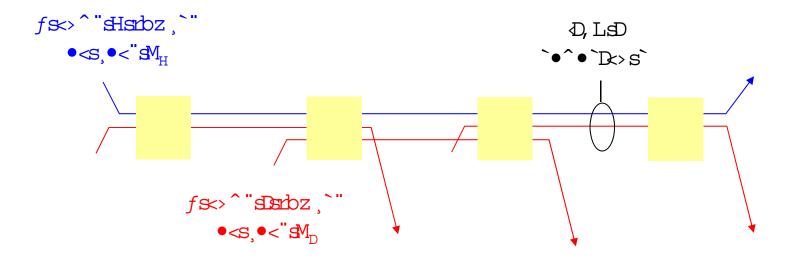

Max-min fairness: a rate of a flow cannot be increased at the expense of a flow with an already smaller rate. Commonly used in networking community

Proportional fairness: maximize sum of logs of rates of all flows. Based on human perception (Fechner's law) Close to TCP fairness

Transport rate of a flow = rate * distance
 All above metrics applicable to transport capacities
 Gupta and Kumar

Efficiency versus Fairness

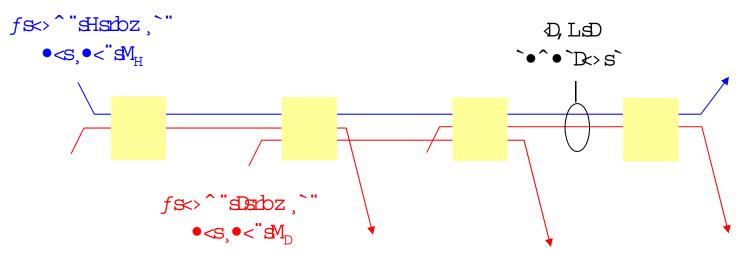
□ It is known from networking textbooks that maximizing capacity may be grossly unfair


- max capacity is for $x_0 = 0$
- □ In contrast, max-min fair allocation is considered « fairest »
 - max-min fair allocation

$$x_0 = \min\{\frac{c}{n_0 + n_i}\}$$
 $x_i = \frac{c - n_0 x_0}{n_i}$

Proportional Fairness

□ A middle ground that gives less to the rich and the dispendious

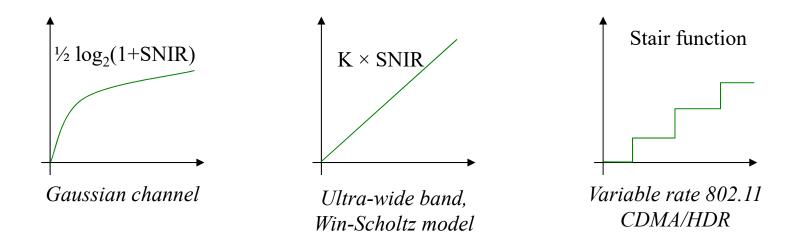

maximize sum of logs of rates

Туре	Capacity	Max-Min Fairness	Prop. Fairness
0	0	c / 2	c / 3
i	С	c / 2	2 c / 3

Transport Rates

□ Use of transport rates instead of rates accounts for expense

Туре	Capacity	Transport	Max-Min	Transport	Prop.
		Capacity		Max-Min	Fairness
0	0	C - X	c / 2	c / 4	c/3
i	С	×	c/2	3 c / 4	2 c / 3


Revisiting Fairness / Capacity for Ad-Hoc Wireless

□ We compute the allocations for a wireless ad-hoc network

□ The model is more complicated than for wired networks

Modelling the Physical Layer

- Assume a static but random placement of nodes
- Point-to-point links: no broadcast, relay channels or multi-user detection
- Channel state s is random, according to some stationary process, constant during packet transmission
- **D** Positive attenuation $h_{ij}(\mathbf{s})$ between any two points *i*, *j*
- □ Interference allowed, no collisions.
- □ Signal-to-noise and interference ratio at the receiver of a link : ratio of received power over white noise plus interference of other transmitters.
- □ Rate r(SNIR) is strictly increasing function.

Modelling the MAC Protocol

□ Schedule consists of several slots, each of length α_n . In each slot, nodes have different power allocations p_n .

$$\alpha_1, \mathbf{p}_1 \quad \alpha_2, \mathbf{p}_2 \quad \alpha_3, \mathbf{p}_3 \quad \alpha_4, \mathbf{p}_4 \quad \dots$$

□ In each slot, a link achieves rate x_n as a function of SNIR and corresponding coding.

□ Long term average rate is average rate over all slots

$$\bar{x} = \sum_{n} \alpha_n x_n$$

□ We assume ideal control plane – no protocol overhead

Routing Protocol and Traffic Flows

- Traffic demand is described by end-to-end flows.
- **Each flow is unicast or multicast.**
- Each flow is mapped to one path (single-path routing) or more paths (multi-path routing)
- □ Constraints on average rates:

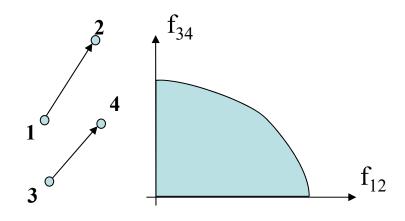
$$f = Fy, x \ge Ry$$

- **x** = vector of rates on links
- y = vector of rates on paths
- f = vector of flows

 $F_{f,p}$ = 1 if path *p* belongs to flow *f*, else 0 $R_{p,l}$ = 1 if path *p* uses link *l*, else 0

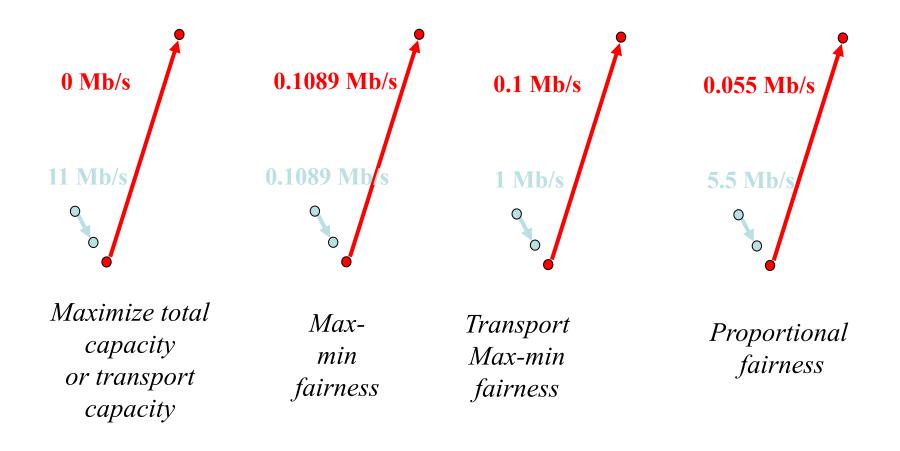
Power Constraint

- Peak power constraint: maximum power of a symbol in a codebook.
 Integrated in model trough rate function.
- □ **Transmission power constraint** P^{MAX}: average power of transmission in given slot. Corresponds to average power of codebook used.
- Long term average transmission power constraint P^{MAX}_{avg}: average power dissipated over the schedule.
 It corresponds to battery lifetime:

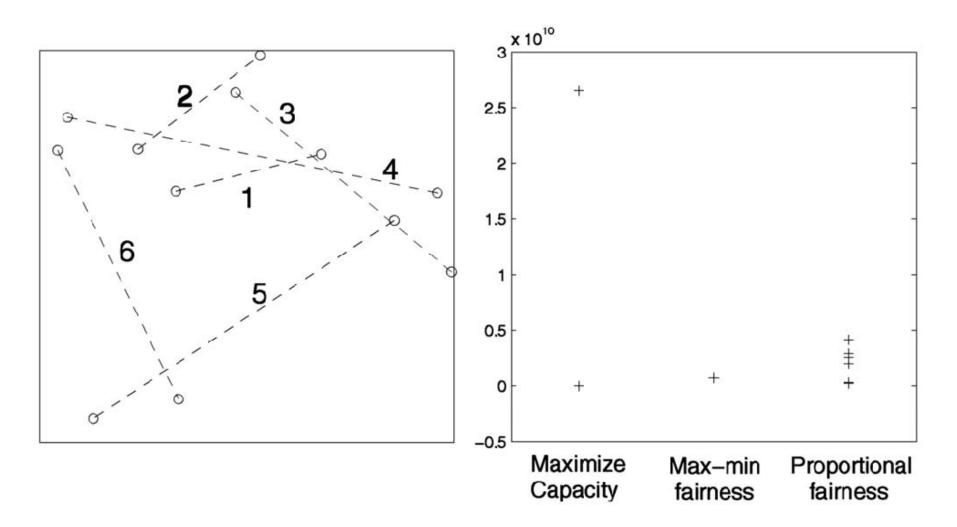

$$T_{\text{lifetime}} \ge E_{\text{battery}} / (P^{\text{MAX}}_{\text{avg}} \times U)$$

u - fraction of time node has data to send

Allocation is solved as an optimization problem


Constraints: flow, power

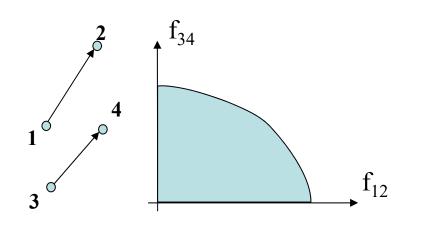
- □ Given network topology and traffic matrix, we have set of feasible rates and set of feasible transport rates.
 - Set of feasible rates is convex but only implicitly defined
 - problem with all variables is non convex
- □ Maximization problem
 - ∑ f (capacity),
 ∑ f § length of link (transport capacity)
 - iterative maximization (water filling): max-min fairness
 - Σ In f (prop fairness)



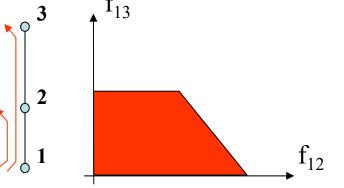
What we find

□ Numerical solution on random networks :

The pattern is quite general

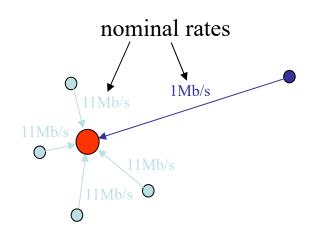

Max-min Fairness is always inefficient

Theorem [RL-TMC 2004]: Max-min fair rate allocation on arbitrary network, without battery lifetime constraint, has all rates equal


□ Same for max-min fair transport rates

Equality of Max-Min fair rates is due to Solidarity Property

- □ A set has solidarity property if one can always trade value of one coordinate for some other coordinate.
- solidarity property of set , max-min rates are all equal
- □ Not all convex sets have solidarity property.
 - feasible set of rates for wireless network has
 - same for feasible set of transport rates



Example **with** solidarity property: Feasible set of wireless network

Example **without** solidarity property: Feasible set of wired network

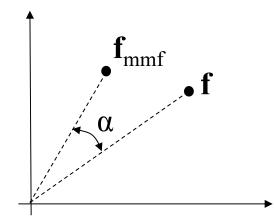
Application to 802.11 Network

Actual rates of all flows in the example: 1 Mb/s!

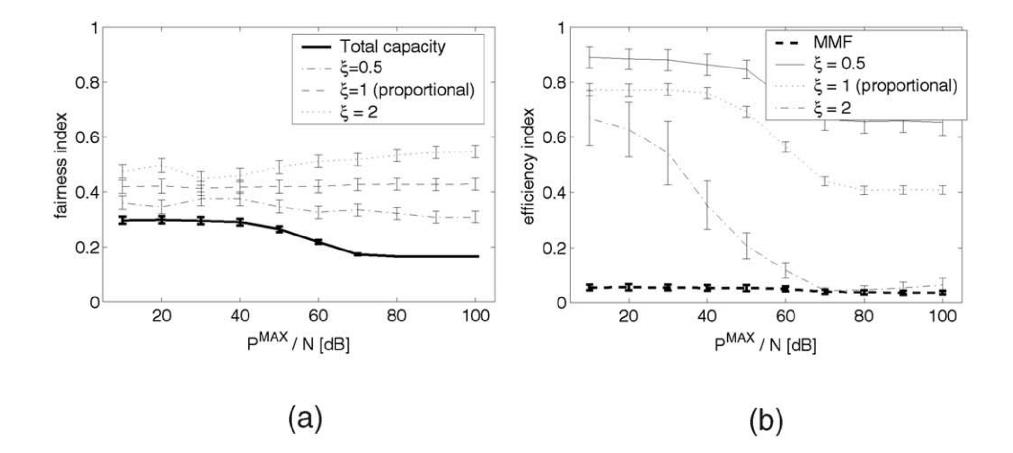
- All nodes have equal probability to gain access to channel
- All nodes have packets of equal sizes: slower nodes take more time to send packet.
- System is essentially max-min fair
- Conclusion: All nodes will have the same average rate, regardless of coding used
- First reported by Duda et al [Infocom 03]

Phenomenon is not due to physical layer choice, but due to choice of design objective.

Maximizing Total (Transport) Capacity is Grossly Inefficient


□ Theorem [RL-TMC 2004] : Asymptotic results on maximizing (transport) capacity, no fading

- when power constraint P^{MAX} goes to infinity, only the most efficient flows will have positive rate; the rates of other flows will be zero.
- The same hold for maximizing transport rates transport rates and rates of inefficient flows will be zero.


Evaluating Design Criteria

Q: How to quantify efficiency and fairness?

- □ *Efficiency index of rate allocation* **f**: Σ **f**_i / Σ **f**^{*}_i where **f**^{*} is rate allocation that maximizes total capacity.
- Fairness index of rate allocation f: cos²(α) where α is angle between f and max-min fair allocation f_{mmf} when MMF rates are equal, this coincides with Jain fairness index.

Proportional Fairness is a Good Compromise

21

Q1: Which performance objective to use ? Q2: Which building blocks for MAC layer ?

- Optimal Design of MAC for new physical layers
- Apply to Very Low Power Ultra-Wide Band Communication in ad-hoc mode

State of the Art

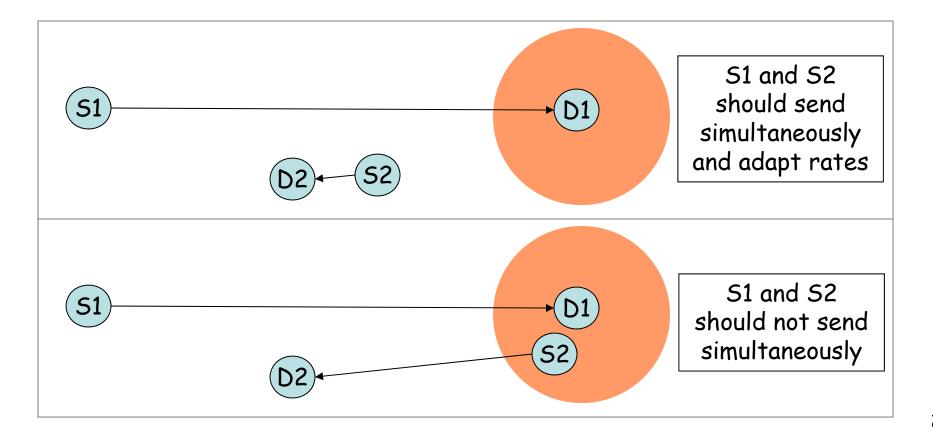
□ PHY and MAC are separated

- PHY provides a « channel »
- The goal of MAC is then « Mutual Exclusion »
 - TDMA (GSM), CSMA(WiFi) or combinations (Bluetooth, IEEE 802.15.3)
- Notable Exception
 - CDMA
 - allows interference
 - requires power control
- □ We want to exploit the following degrees of freedom
 - *coding*, thus channel rate can be variable packet per packet, or even block by block
 - interference may be allowed

□ No joint coding /decoding (simple senders/receivers)

Our Method

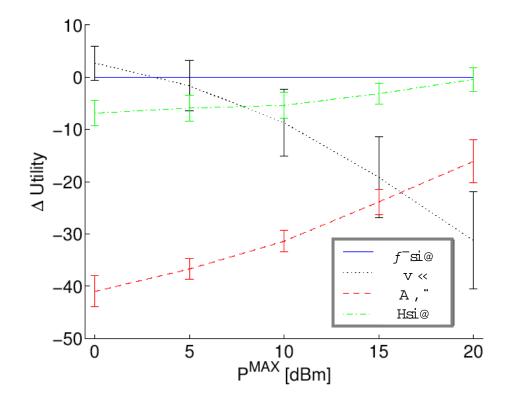
- 1. Search for optimal design, ignoring protocol overhead Look for patterns in optimal design
- 2. Apply patterns to practical protocol implementations Measure the results


Optimal Design

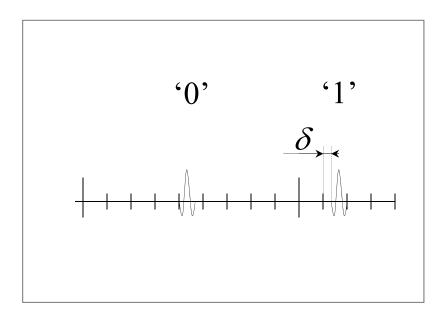
□ Model a general wireless ad-hoc network with

- variable coding rate
- arbitrary power allocations with peak (voltage) and average (battery) constraints
- random channel states (fading, mobility)
- arbitrary schedule (i.e. mutual exclusion in the time domain)
- arbitrary, possibly multipath, routing
- arbitrary orthogonality factors (CDMA)
- protocol overhead of exclusion not accounted for
- □ Numerically solve for proportional fairness

Finding 1: When Mutual Exclusion is not Optimal


- Interference should be allowed except when source is inside an « exclusion region » around a destination D1
 - size of exclusion region can be computed numerically based on characteristics of link S1-D1 and average power of interfering sources

Application to IEEE 802.11


□ IEEE 802.11 implements exclusion region by RTS/CTS

- RTS/CTS decoded when received with SNR 2 0 dB
- □ we find numerically that it is optimal to *reduce* the range of RTS/CTS
 - \blacksquare RTS/CTS decoded when received with SNR $_{\dot{c}}$ 17 dB
- □ i.e. more interferece could be allowed
 - increase total rate by 50%

Application to Impulse Radio Ultra Wide Band Communication

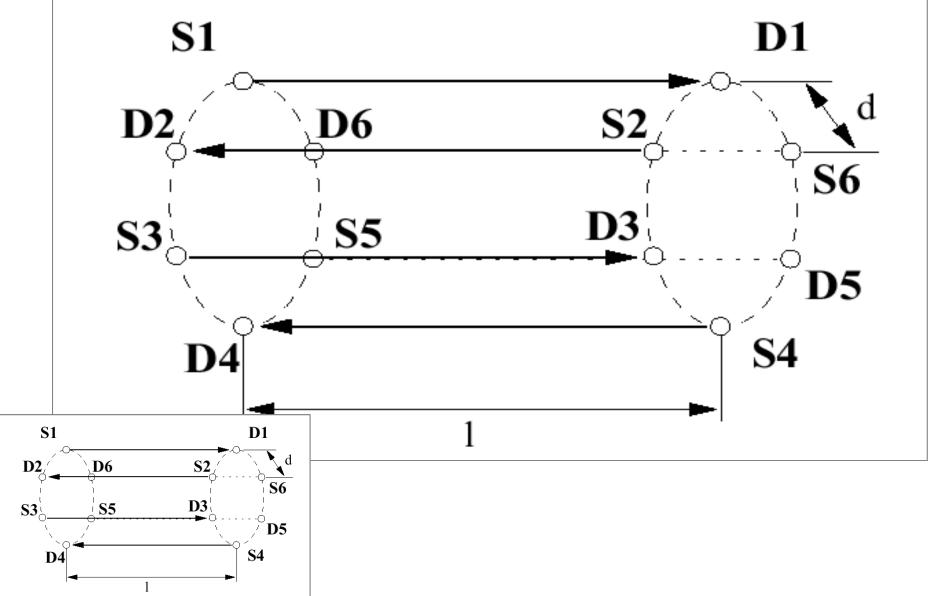
- □ Radio Transmission Technology, very low energy in all frequency bands
- Unlicensed
- □ Impulse radio = short pulses
 - in discussion at IEEE 802.15.4a very low power
 - other, non impulsive UWB : IEEE 802.15.3 frequency hopping (higher power)
- □ Example: [WinScholtz2000] pulse position modulation

Very Low Power UWB

- □ UWB has the potential to use very low power
- □ Our focus: reduced *emitted* power
 - environmental concern
 - pervasive computing
- **Our threshold** : order of microwatt emitted power
 - Maximum : 18 Mb/s for one user with line of sight
 - depends on noise and attenuation
 - 30 meters, maximum is 6 Mb/s for one user
 - in practice much less due to noise and interference

Finding 2 : On-Off Power

□ Optimal power control is On-Off


formally true in the linear regime rate = K × SNIR

Theorem 2 in [RadunovicL:05]

numerically true, with confidence intervals, in other cases

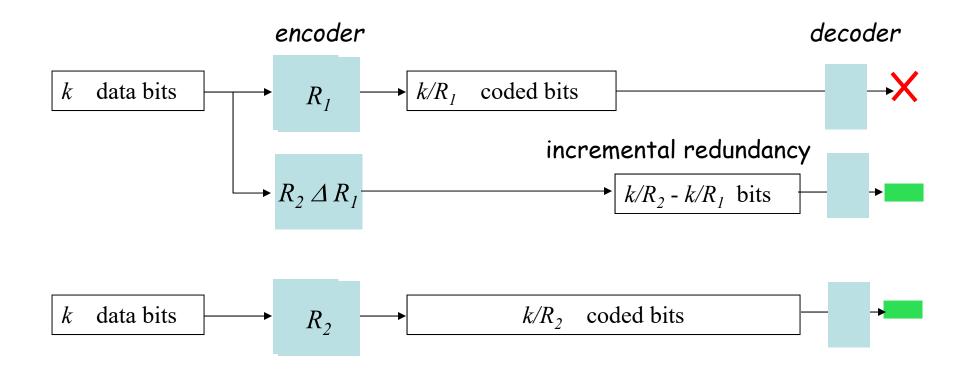
- □ Any other policy is not optimal
- □ Contrast with CDMA design

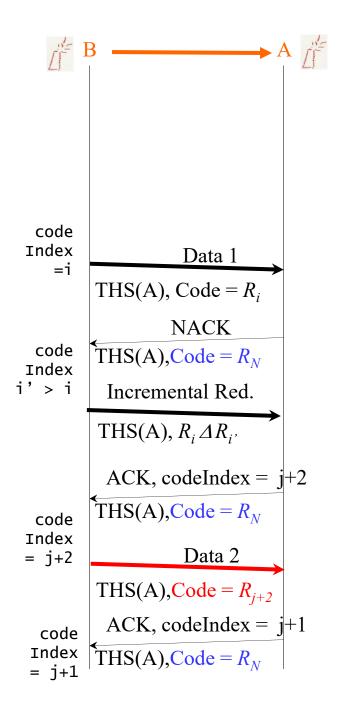
Finding 3 : Mutual Exclusion is not Optimal in Low Power Regime

What this tells us

- Suggested MAC design for very low power with interference mitigation
 - 1. allow interference,
 - 2. no power control
 - 3. adapt the code rate to the level of interference

Our Concrete Protocol Dynamic Channel Coding MAC Protocol

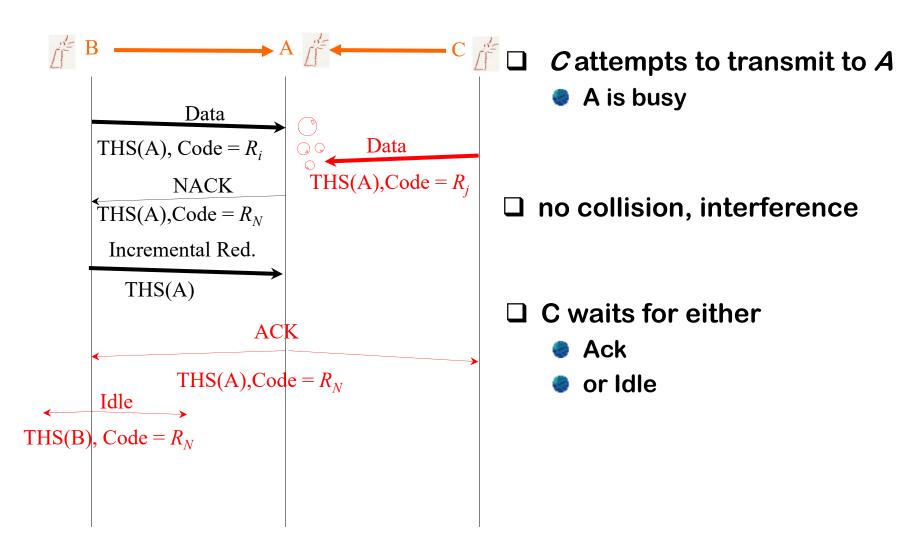

Based on our theretical results


- allow interference
- adapt code
- □ It remains to solve
 - the « Private MAC Problem »: several sources send to same destination
 - carrier sensing not possible

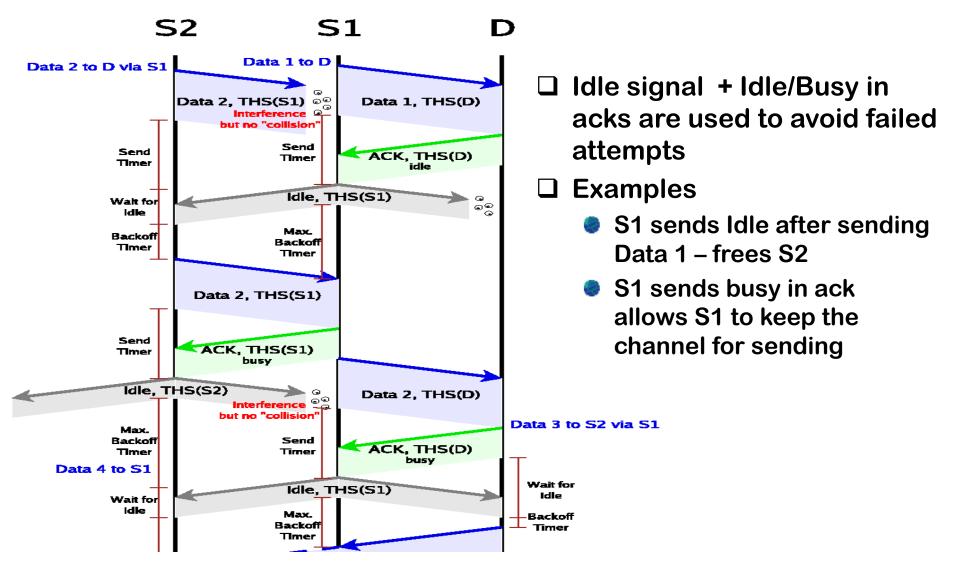
We Use Incremental Redundancy Codes

□ A family of codes that cover rates from 1 to 1/32

□ No penalty for sending incremental bits later


Dynamic Channel Coding

- Goal: use the most economical code
 - set for every packet
 - avoid hard failure
- Source keeps estimate of code to use with a safety margin
- Rate is adapted by an adaptation protocol at the MAC layer
 - no channel estimation


Concurrent Access is managed by « Private MAC »

- Concurrent access to different destinations occurs without direct coordination
 - dynamic channel coding adapts automatically
- Access to same destination requires a mutual exclusion protocol
 - between competing sources
 - to arbitrate between sending and receiving
- Our "private MAC" protocol is a combination of invitation and receiver based

Concurrent Sources Do Not Collide

In ad-hoc network, interplay between sending / receiving requires careful tuning

Simulation Results: No Collapse for Many Users

- We implemented the Dynamic Channel Coding MAC in ns2, based on tables computed in Matlab
 - we redesigned ns2 PHY to support interference /collision during a transmission
- □ We compared the performance to
 - mutual exclusion (TDMA, Random Access); power control

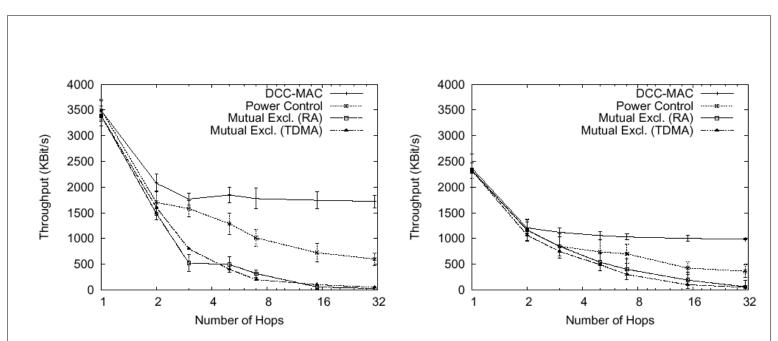


Fig. 7. Throughput on the multi-hop network for UDP (left graph) and TCP (right graph). We show throughput vs. number of hops. There is almost no drop in throughput for the DCC-MAC as the number of hops increases.

Conclusion

- □ A fundamental reflection, based on modelling, on how to organize the MAC leads to different approaches
 - the optimization criterion is important
 - interference is not collision
 - power control not always a good idea

More Information

- [RL-TMC 2004] B. Radunovic, J. Y. Le Boudec
 "Rate Performance Objectives of Multihop Wireless Networks"
 In *IEEE Transactions on Mobile Computing*, October 2004, Vol. 3
 No. 4, 334-349
- R. Merz, J. Widmer, J. Y. Le Boudec, B. Radunovic
 "A Joint PHY/MAC Architecture for Low-Radiated Power TH-UWB Wireless Ad-Hoc Networks"
 In Wireless Communications and Mobile Computing Journal, Special Issue on Ultrawideband (UWB) Communications, to appear
- 3. B. Radunovic and J.-Y. Le Boudec "Optimal Power Control, Scheduling and Routing in UWB Networks" *IEEE Journal on Selected Areas in Communications, 2004*
- 4. [RadunovicL:05] B. Radunovic and J.-Y. Le Boudec "Power Control is Not Required for Wireless Networks in the Linear Regime "

Proceedings of IEEE WoWMoM, Taormina, Italy, June 2005