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1. Goal of our research

O Design a multi-user access protocol for UWB that is
® self-organized
® for very low emitted power



2. What is Ultra Wide Band ?

0 Radio Transmission Technology, very low energy in all frequency
bands

d Unlicensed
O Short pulses
O Example: [WinScholtz2000] pulse position modulation




Very Low Power UWB

[ UWB has the potential to use very low power
0 Our focus: reduced emitted power

@ environmental concern
® pervasive computing

[ Our threshold : 1 microwatt emitted power

® Maximum : 18 Mb/s for one user with line of sight

® depends on noise and attenuation
¢ 30 meters, maximum is 6 Mb/s for one user
e in practice much less due to noise and interference



3. Our Research is: self-organized
Multiple Access for UWB

O State of the art:

® existing protocols designed for narrowband are retrofitted WiFi,
TDMA (GSM), HiperLan

® 802.15.3: UWB is just another physical layer
d This is not possible for very low power:

® medium is shared too thinly

® example: 6 Mb/s for all users together

® very far from the optimal



Our Approach: Consider the Global
Problem

O Accept all degrees of freedom together
@® power control
@® coding rate
@® exclusion (protocol)
[ Traditional approaches in wireless LANs are based on
«mutual exclusion »
® only one source can send at a time in the channel or in a given sub-channel
® TDMA, CSMA/CA, MACA efc.
® used in WiFi, BlueTooth
® interference is either below a noise threshold or is banned

[ There are unexploited dimensions
® interference can often be allowed
e example CA/CDMA [Muqgattash-Krunz2003]
® coding can be adaptive

e adapt to channel variation at the time scale of a packet, including interference
-



Searching For Optimal Design

O Model a general wireless ad-hoc network with
@® variable coding rate
® exclusion (i.e. scheduling in the time domain)
@® arbitrary, possibly multipath, routing
@® protocol overhead of exclusion not accounted for
O Numerically solve for the allocation of powers and schedules that achieves
proportional fairness
® other objectives are known to be buggy [Radunovic Infocom2004]
® random and symmetric networks up to 60 nodes
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Finding 1: On-Off Power

O Optimal power control is On-Off
O Any other policy is not optimal
0 Contrast with CDMA design



Finding 2:
Mutual Exclusion is not Optimal

Nominal rate 11 Mb/s

Mutual Exclusion Allow Interference

@ 5.5 Mb/s @ @ 6 Mb/s @
02- 52 b2- 52

5 5 Mb/s 10.4 Mb/s




Mutual Exclusion is not Optimal
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What this tells us

0 Suggested MAC design for very low power with interference
mitigation
® 1. allow interference,
® 2. no power control
® 3. adapt the code rate to the level of interference
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4. Our Concrete Proposal
Dynamic Channel Coding MAC Protocol

O Based on our theretical results
@ allow interference
@® adapt code

O It remains to solve

® the « Private MAC Problem »:
several sources send to same destination

@ carrier sensing not possible
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We Use Incremental Redundancy
Codes

0 A family of codes that cover rates from 1 1o 1/10
O No penalty for sending incremental bits later

encoder
k data bits > R,
k data bits

coded bits

decoder

—X

incremental redundancy

>| k/R, - k/R, bits

— >

coded bits
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code
Index

code
Index
=i’ > i

Data 1

. NALK
THS(A),Code = R,

THS(A), Code = R,
NACK

Incremental Red.

THS(A), R, AR,

Dynamic Channel Coding

O Goal: use the most
economical code

® set for every packet
® avoid hard failure
O Source keeps estimate of

code to use in
codeIndex (say 1)

O If destination cannot
decode (hard failure)
® NACK sent to source

@® source increments
codeIndex so that rate is
divided by 2 until min rate

® source sends incremental
redundancy
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code
Index

code
Index

i’ o> 1

code
Index
= j+2

code
Index
= Jj+1

Data 1

THS(A), Code = R,
NACK

. NAbk
THS(A),Code = R,

Incremental Red.

THS(A), R, AR,

ACK, codelndex = j

Pl sl
THS(A),Code = R,

Data 2

THS(A),Code =R,
ACK, codelndex = j

Pttt
THS(A),Code = R,

+2

+1

0 A safety margin of 2 indices is
kept
O If destination can decode, it
can also compute the most
economical code index j that
would have been sufficient
@® returns j+2 in ACK
® (gradual increase):

if j+2 >i source does
codeindex=j+2

else codeindex=i-1

3 This avoids most hard failures
and adapts to varying channel
(mobility, fading, interference)

O Acks / Nacks sent on lowest
rate code in the reverse
direction
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Concurrent Access

O Concurrent access to different destinations occurs without direct
coordination

® dynamic channel coding adapts automatically

O Access to same destination requires a mutual exclusion protocol
® between competing sources
® to arbitrate between sending and receiving

O Our "private MAC" protocol is a combination of invitation and receiver based
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Concurrent Sources Do Not Collide

};— B > A ’,t < C 4
Data o
THS(A), Code =R, | ©© Data
NACK THS(A),Code = Rj

. NAbk
THS(A),Code = R,

Incremental Red.

THS(B)

| Idle

THS(A)

«—————————

THS(A),Cod

, Code =Ry,

AC

€=Ry

'O Cattempts to transmit to A

® A is busy

d no collision, interference

O C waits for either
® Ack
® or Idle

18



In ad-hoc network, interplay between

sending / receiving requires careful

S2

Data 2 to D via 51

Send
Timer

Wait for
Idle

Backoffi
Timer

Data 2, THS(S1)

tuning
S1 D
Data 1to D d S2 has data to D via S1
\ , \) ® send attempt by S2 fails
Data 2, THS(S1) @g Data 1, THS(D) .
pnererence G- [ TIdle/Busy in acks and Idle
P m signal are used to avoid failed
attempts
[ | Tl TS ® node must send Idle after
) : sending
Backof ® node may send Idle or Busy
] \ (in ack) after receiving

d Examples

® Sl sends Idle after sending
Data 1 - frees S2

® D sends idle in ack
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S2

S1

D

® Sources sends busy in ack
- allows sending a queued

packet
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Simulation Results: No Collapse for
Many Users

d We implemented the Dynamic Channel Coding MAC in ns2, based on tables
computed in Matlab

@® we redesigned ns2 PHY to support interference /collision during a transmission
0 We compared the performance to
® mutual exclusion (TDMA, Random Access); power control
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Fig. 7. Throughput on the multi-hop network for UDP (left graph) and TCP (right graph).

We show throughput vs. number of hops. There is almost no drop in throughput for the
DCC-MAC as the number of hops increases.




Conclusion

[ We have designed a multiple access protocol for very low power UWB
[ Design is joint with Physical Layer

0 Uses other ingredient than classical MAC protocols

[ Enables very low power UWB
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