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Resources
• Random trip model web page:

http://ica1www.epfl.ch/RandomTrip

– Links to slides, papers, perfect simulation software

• This tutorial is mainly based on:

[LV06] The Random Trip Model: Stability, Stationary Regime, and 
Perfect Simulation, J.-Y. Le Boudec and Milan Vojnović, ACM/IEEE 
Trans. on Networking, Dec 06

– Extended journal version of IEEE Infocom 2005 paper
– Technical report with proofs: MSR-TR-2006-26

[L04] Understanding the simulation of mobility models with Palm 
calculus, J.-Y. Le Boudec, Performance Evaluation, 2007
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Outline

• Simulation Issues with mobility models
• Random trip basic constructs
• Palm calculus instant primer
• Stability condition for random trip
• Time-stationary distributions 
• Perfect simulation
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• Harris recurrence
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Simplest example: random waypoint 
(Johnson and Maltz`96)

• Node:
– Picks next waypoint Xn+1 uniformly in area
– Picks speed Vn uniformly in [vmin,vmax]
– Moves to Xn+1 with speed Vn

Xn

Xn+1
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Already the simple model 
exhibits issues

• Distributions of node speed, position, distances, etc 
change with time
– Node speed:

100 users average

1 user

Time (s)

Sp
ee

d 
(m

/s
)
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Already the simple model 
exhibits issues (2)

• Distributions of node speed, position, distances, etc 
change with time
– Distribution of node position:

Time = 0 sec Time = 2000 sec
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Why does it matter ?
• A. In the mobile case, the nodes 

are more often towards the 
center, distance between nodes is 
shorter, performance is better

• The comparison is flawed. Should 
use for static case the same 
distribution of node location as 
random waypoint.  Is there such a 
distribution to compare against ?

Random waypoint

Static

• A (true) example: Compare impact 
of mobility on a protocol:
– Experimenter places nodes 

uniformly for static case, 
according to random waypoint 
for mobile case

– Finds that static is better
• Q. Find the bug ! 
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Issues with Mobility Models

• Is there a stable distribution of the simulation 
state (time-stationary distribution), reached if we 
run the simulation long enough ?

• If so: 

– How long is long enough ?

– If it is too long, is there a way to get to the 
stable distribution without running long 
simulations (perfect simulation) ?
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The Random trip model

• A broad model of independent node movements 
– Including RWP, realistic city maps, etc

• Defined by a set of conditions on trip selection

• Conditions ensure issues mentioned above are under control

– Model stability (defined later)

– Model permits perfect simulation 
• Algorithm in this slide deck 
• Perfect simulation = distribution of node mobility is 

time-stationary throughout a simulation 
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Random trip basic constructs
» Outline «

• Initially: a mobile picks a trip, i.e. a combination of 3 elements
– A path in a catalogue of paths
– A duration
– A phase

• A end of trip, mobile picks a new trip 
– Using a trip selection rule
– Information required to sample next trip is entirely contained 

in path and phase of the trip that just finished (Markov
property)
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Illustration of basic constructs
• At end of (n-1)st trip, at time Tn, mobile picks

– Path Pn

– Duration Sn =Tn+1-Tn

– (also a phase – see later )
– This implicitly defines speed and location X(t) at t ∈ [Tn, Tn+1]

Time Tn

Path Pn

Time Tn+1

X(t) = Pn((t – Tn)/Sn), Tn  t < Tn+1
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Random waypoint is a random trip model
• (Assume in this slide model without pause)

• At end of trip n-1, mobile is at location Xn

– Sample location Xn+1 uniformly in area

Path Pn is shortest path from Xn to Xn+1

Pn(u) = (1 - u) Xn + u Xn+1 for u ∈[0,1]

– Sample numerical speed Vn ≥ 0 from a 
given speed distribution  

This defines duration:
Sn = ||Xn+1 - Xn|| / Vn

• (Markov property): Information required to 
sample next trip (location Xn) is entirely 
contained in path and phase of previous trip

Xn

Xn+1

Speed Vn
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Random waypoint with pauses is a random 
trip model

• Phase In is either move or pause
• At end of trip n-1:

If phase In-1was pause then 
– In = move (next trip is a move) 
– Sample Xn+1 and Vn as on previous slide

Else
– In = pause (next trip is a move) 
– Path: Pn(u) = Xn for u ∈[0,1]
– Pick Sn from a given pause time 

distribution

• (Markov property): Information required to 
sample next trip (phase In, location Xn) is 
entirely contained in path and phase of 
previous trip

Xn

Xn+1

Speed Vn

Xn = Xn+1

Pause time Sn
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Catalogue of examples

• Random waypoint on general connected domains
– Swiss Flag
– City-section

• Restricted random waypoint
– Inter-city
– Space-graph

• Random walk on torus

• Billiards

• Stochastic billiards
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Path Pn

Xn

Xn+1

Random waypoint on general 
connected domain

• Swiss Flag [LV05]
• Non convex domain
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Random waypoint on general 
connected domain (2)

• City-section, 
Camp et al 
[CBD02]
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Restricted random waypoint
• Inter-city, Blazevic 

et al [BGL04]
• Stay in one 

subdomain for some 
time then move to 
other

Here phase is
(In, Ln, Ln+1, Rn)

where

In = pause or move
Ln = current sub-
domain
Ln+1 = next 
subdomain
Rn = number of trips 
in this visit to the 
current domain
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Restricted random waypoint (2)
• Space-graph, Jardosh et al, ACM Mobicom 03 [JBAS03]
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Road maps available from 
road-map databases

• Ex. US Bureau’s TIGER 
database
– Houston section
– Used by PalChaudhuri 

et al [PLV05]
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Random walk on torus
• [LV05]
• a.k.a. random 

direction with wrap 
around (Nain et al 
[NT+05])
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Billiards
• [LV05]
• a.k.a. random 

direction with 
reflection (Nain et al 
[NT+05])
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Stochastic billiards
• Random direction 

model, Royer et al 
[RMM01]

• See also survey 
[CBD02]
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Random trip basic constructs
» Summary «

• Trip is defined by phase, path, and duration

• The abstraction accommodates many examples

– Random waypoint on general connected domains
– Random walk with wrap around
– Billiards
– Stochastic billiards
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Palm Calculus

• Relates time averages versus event averages
– An old topic in queueing theory
– Now well understood by mathematicians under the 

name Palm Calculus
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Palm Calculus Framework
• A stationary process (simulation) with state St.
• Some quantity Xt measured at time t. Assume that

(St;Xt) is jointly stationary

I.e., St is in a stationary regime and Xt depends on the 
past, present and future state of the simulation in a way 
that is invariant by shift of time origin.

• Examples
– St = current position of mobile, speed, and next 

waypoint
– Jointly stationary with St: Xt = current speed at time t; 

Xt = time to be run until next waypoint
– Not jointly stationary with St: Xt = time at which last 

waypoint occurred
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Palm Expectation
• Consider some selected transitions of the simulation, 

occurring at times Tn.
– Example: Tn = time of nth trip end

• Definition : the Palm Expectation is

Et(Xt) = E(Xt | a selected transition occurred at time t)

• By stationarity: 

Et(Xt) = E0(X0) 

• Example: 
– Tn = time of nth trip end,  Xt = instant speed at time t
– Et(Xt) = E0(X0) = average speed observed at a waypoint
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Event versus Time Averages

• E(Xt) = E(X0) expresses the time average viewpoint.
• Et(Xt) = E0(X0) expresses the event average viewpoint.

• Example: 
– Tn = time of nth trip end,  Xt = instant speed at time t
– Et(Xt) = E0(X0) = average speed observed at trip end
– E(Xt)=E(X0) = average speed observed at an arbitrary 

point in time
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Formal Definition
• In discrete time, we have an elementary conditional 

probability
– Et(Xt) = E(Xt 1 ∃ n ∈ Z such that Tn=t)  /  P(∃ n ∈ Z such that 

Tn=t)

• In continuous time, the definition is a little more 
sophisticated
– Similar to the definition of conditional density fX(x|Y=y)  

for continuous random variables with joint density – see 
the writeup [L04] for details

– See [BaccelliBremaud87] for a formal treatment 

• Palm probability is defined similarly
– Pt( Xt ∈ W) = Et(1Xt ∈ W)
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Ergodic Interpretation
• Assume simulation is stationary + ergodic, i.e. sample path 

averages converge to expectations; then we can estimate 
time and event averages by:

• In terms of  probabilities:
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Two Palm Calculus Formulas
• Intensity of selected transitions:  := expected number of 

transitions per time unit
• Intensity Formula:

where by convention T0 � 0 < T1

• Inversion Formula

• The proofs are simple in discrete time – see [L04]
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A Classical Example
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Necessary Condition for Existence of 
a Stationary Regime

• Apply the intensity formula to Tn = trip end times

• Thus: if the random trip has a stationary regime it must be 
that the mean trip duration sampled at trip end times is 
finite
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Formal Definition of Stability 
• System state     (t) = (Y(t), S(t), S-(t)),   t  0

• (t) has

– A unique time-stationary distribution 
– The distribution of (t) converges to  as t goes to infinity

time elapsed on current trip(phase, path)
duration of current trip

Sn

S-(t)

0
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Necessary and Sufficient Condition
Stability of random trip model [LV06]

• There exists a time-stationary distribution  for (t) if and 
only if mean trip duration is finite (trip sampled at trip end 
times)

• Whenever  exists, it is unique

• Moreover, if mean trip duration is finite, from any initial 
state, the distribution of (t) converges to  as t goes to 
infinity

Proof is based on Harris recurrence (see appendix)
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Application to random waypoint

• Mean trip duration for a move
= (mean trip distance) × mean of inverse of speed 

• Mean trip duration for a pause
= mean pause time

• Random waypoint is stable if both

– mean of inverse of speed
– mean pause time

are finite
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A Random waypoint model that has 
no time-stationary distribution !

• Assume that at trip transitions, node speed is sampled 
uniformly on [vmin,vmax]

• Take vmin = 0 and vmax > 0 (common in practise)

• Mean trip duration = (mean trip distance)   

• Mean trip duration is infinite !

• Speed decay: “considered harmful” [YLN03]

 
max

0max

1 v

v
dv

v
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Stability of random trip model
» Summary «

• Random trip model is stable if mean trip duration is finite

• This ensures the model is stable
– Unique time-stationary distribution, and
– Convergence to this distribution from any initial state

• Didn’t hold for a random waypoint used by many 
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Time-stationary distributions 
» Outline «

• Time-stationary distribution of node mobility state is the 
distribution of state in stationary regime, when it exists

• Should be used for fair comparison

• Can be obtained systematically by the Palm inversion 
formula
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Example: Random Waypoint
Distribution of Speed

• Assume stationary regime 
• Apply inversion formula and obtain distribution of 

instantaneous speed V(t)
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Inversion Formula Gives Relation between
Speed Distributions at Waypoint and at 

Arbitrary Point in Time
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Sampling bias is also for location
• Stationary distributions at arbitrary times and at trip end 

points are not necessarily the same
– Time-average vs event-average

• Ex. samples of node position for random waypoint
– Trip endpoints are uniformly distributed, time stationary 

distribution of mobile location is not
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Approximate formulae for location

• Conventional approaches find that closed form expression 
for density is too difficult [Bettstetter04]

• Approximation of density in area [0; a]  [0; a] 
[Bettstetter04]:
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Inversion formula also gives stationary 
distribution of random waypoint location in 

closed form [L04]

Contour plots of density of stationary distribution
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Closed forms
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Previous and Next Trip Endpoints
Ex: random waypoint
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Inversion formula gives simple 
expression for time-sationary distribution 

of complete state

• Node speed at time t is independent of path and location
with density

• Path endpoints at time t, (P(t)(0),P(t)(1)) = (m0,m1) have 
a joint density:

• Conditional on (P(t)(0),P(t)(1))=(x,y), distribution of node 
position X(t) is uniform on the segment [x,y]

)(1 const)( 0 vf
v

vf V
V 

jijr AmmdK  i10 A)m,(m for    ),,( 10

(restricted) random waypoint on arbitrary area:
• Conditional on phase is (i, j, r, move) 

([NavidiCamp04] for rwp) 
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Stationary Distribution of Location

• Joint distribution of (Next, Prev) has density proportional to 
distance

• Given (Next, Prev), M is uniformly distributed
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A Fair Comparison
• If there is a stationary 

regime, we can compare 
different mobility patterns 
provided that
1. They are in the stationary 

regime
2. They have the same 

stationary distributions of 
locations 

• Example: we revisit the 
comparison by sampling the 
static case from the stationary 
regime of the random 
waypoint

Random waypoint

Static, from uniform

Static, same node location as RWP
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Representation of time-stationary distribution
(any random trip model)

• Phase: 

where                           , i.e. mean trip duration given 
that phase is i

• Path and duration, given the phase:

• Time elapsed on the current trip: S-(t) = S(t)U(t), 
where U(t) is uniform on [0,1]




j
j

i

j
iitIP



)(

)())(( 0

0

)|,( ))(|)(,)(( 000
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Models with Uniform Location

Random waypoint on sphere
• Time stationary distribution of 

location is uniform
• But trip endpoints are not

Billiards, Random waypoint on 
torus

• Time stationary distribution of 
location is uniform

• So are trip endpoints
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Time-stationary distributions
» Summary «

• Palm inversion yields representation of time-stationary 
distribution for any random trip model

• Representation can be used to derive closed form for 
location alone (painful and useless)

• Representation can be used to derive closed form for 
complete state (easy and useful) – see next section
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Perfect simulation
» Outline «

• Perfect simulation 
– Sample initial state from time-stationary distribution
– Then state is a time-stationary realization at any time

– If you know how to do perfect simulation, there is no 
transient
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Perfect simulation is highly desirable

• If model is stable and initial state is drawn from distribution 
other than time-stationary distribution
– The distribution of node state converges to the time-

stationary distribution

• Naïve: so, let’s simply truncate an initial simulation duration

• The problem is that initial transience can last very long

Example [space graph]: 
node speed = 1.25 m/s
bounding area = 1km x 1km
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Perfect simulation 
is highly desirable (2)

• Distribution of path:

Time = 
100s

Time = 
50s

Time = 
300s

Time = 
500s

Time = 
1000s

Time = 
2000s
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Perfect Simulation Based on the 
Representation of Stationary Distributions

• Question: how to sample (M0,  M1) 
when we know joint pdf is

f (M0,  M1) (m0,m1) = K g (m0,m1)

g() easy to compute

• Answer: rejection sampling

do
sample m0,m1 ~ unif(A)
sample V ~ unif([0, ]))

until V  < g(m0,m1)

with  upper bound on g 

Time-stationary distribution fo
(restricted) random waypoint

• Node speed at time t is independent of path and locat
with density

• Path endpoints at time t, (P(t)(0),P(t)(1)) = (m0,m1) h
a joint density:

• Conditional on (P(t)(0),P(t)(1))=(x,y), distribution of 
position X(t) is uniform on the segment [x,y]

)(1 const)( 0 vf
v

vf V
V 

jijr AmmdK  i10 A)m,(m for    ),,( 10

• Conditional on phase is (i, j, r, move)

• A similar formula exists for the general random trip m
(next slide)

Time-stationary distribution fo
(restricted) random waypoint

• Node speed at time t is independent of path and locat
with density

• Path endpoints at time t, (P(t)(0),P(t)(1)) = (m0,m1) h
a joint density:

• Conditional on (P(t)(0),P(t)(1))=(x,y), distribution of 
position X(t) is uniform on the segment [x,y]

)(1 const)( 0 vf
v

vf V
V 

jijr AmmdK  i10 A)m,(m for    ),,( 10

• Conditional on phase is (i, j, r, move)

• A similar formula exists for the general random trip m
(next slide)
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Perfect sampling algorithm for 
random waypoint

Input: A, 
Output: X0, X, X1

1. Do 
sample X0,X1, iid, ~ Unif(A)

sample V ~ Unif[0, ]

until V < ||X1 - X0||

2. Draw U ~ Unif[0,1]

3. X = (1-U) X0 + U X1

Input: A = domain,  = upper bound on the diameter of A

Similar algo exists for any random trip model
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Example: random waypoint
No speed decay

• Standard simulation • Perfect simulation

Sp
ee

d 
(m

/s
)

Sp
ee

d 
(m

/s
)

Time (sec) Time (sec)
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Perfect simulation software

• Developed by Santashil PalChaudhuri
– see the random trip web page

• Scripts to use as front-end to ns-2
– Output is ns-2 compatible format to use as input to ns-2

• Supported models:
– Random waypoint on general connected domain
– Restricted random waypoint
– Random walk with wrapping
– Billiards
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Perfect simulation
» Summary «

• Random trip model can be perfectly simulated
– Node mobility state is a time-stationary realization 

throughout a simulation

• Perfect simulation by rejection sampling
– It alleviates knowing geometric constants
– Bound on the trip length is sufficient
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Concluding remarks

• Random trip model covers a broad set of models of 
independent node movements

– All presented in the catalogue of this slide deck

• Defined by a set of stability conditions

• Time-stationary distributions specified by Palm inversion 

• Sampling algorithm for perfect simulation
– No initial transience
– Not necessary to know geometric constants 
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Future work

• Realistic mobility models ?

• Real-life invariants of node mobility ? 
– Human-carried devices, vehicles, …

• What extent of modelling detail is enough ?

• Scalable simulations ?

• Algorithmic implications ?

• Scalable simulations ? 

• Statistically dependent node movements 
– Application scenarios, models ?
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Appendix 1:
Frequently Asked Questions

• Does model accommodate power-law 
inter-contact times ?

• Does model accommodate heavy-tailed 
trip durations ?

• Can model produce a given time-
stationary distribution of node position ?

• What are mobility data resources ?
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Frequently Asked Questions

• Does model accommodate power-law 
inter-contact times ?

• Does model accommodate heavy-tailed 
trip durations ?

• Can model produce a given time-
stationary distribution of node position ?

• What are mobility data resources ?
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Power-law evidence
• Chaintreau et al 2006 [CHC+06]: distribution of inter-

contact times of human carried devices (iMote/PDA) is well 
approximated by a power law

• Source [CHC+06] with permission from authors

P(
T 

> 
n)

P(
T 

> 
n)

Inter-contact time n Inter-contact time n
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Power-law inter-contact times 
(cont’d) 

• Implications on packet-forwarding delay ([CHC+06])

Can random trip model accommodate power-law node 
inter-contacts ?

– Yes ! (see next example)

?
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Example: random walk on torus
• Discrete-time, discrete-space of M sites

• T = inter-contact time, E(T) = M

0
1

2

M-1
contact

3

4

5

M-2
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Example: random walk on torus (2) 

• Let first M   (infinite lattice)

P(T > n) ~ const / n1/2,  large n

– Holds for any aperiodic recurrent random walk with finite 
variance on infinite 1dim lattice, Spitzer [S64]

• If M is fixed, tail is exponentially bounded

• If n and M scale simultaneously ? (see next)

power-law
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Example: random walk on torus (3)
M = 50 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-5

100

Inter-contact time

C
C

D
F

100 101 102 103 104
10-5

100

Inter-contact time

C
C

D
F

P(
T 

> 
n)

P(
T 

> 
n)

Inter-contact time n

Inter-contact time n

M = 50

M = 50
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0 1 2 3 4 5 6 7 8 9

x 104

10-4

10-2

100

Inter-contact time

C
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D
F

100 101 102 103 104 105
10-4

10-2

100

Inter-contact time

C
C

D
F

Example: random walk on torus (4)
M = 500 

P(
T 

> 
n)

P(
T 

> 
n)

Inter-contact time n

Inter-contact time n

M = 500

M = 500
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C
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Example: random walk on torus (4)
M = 1000 

P(
T 

> 
n)

P(
T 

> 
n)

Inter-contact time n

Inter-contact time n

M = 1000

M = 1000
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What if random walk is 
on a 2dim torus ?

• Manhattan grid
• Ex [M87], [SMS06]
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What if random walk is 
on a 2dim torus ? (2)

• Finite torus: 500 x 500 (20M walk steps)

0 1 2 3 4 5 6 7

x 105

10-3

10-2

10-1

100

Inter-contact time
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100 101 102 103 104 105 106
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E
C

D
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T 

> 
n)

P(
T 

> 
n)

Inter-contact time n

Inter-contact time n
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Frequently Asked Questions

• Does model accommodate power-law 
inter-contact times ?

• Does model accommodate heavy-tailed 
trip durations ?

• Can model produce a given time-
stationary distribution of node position ?

• What are mobility data resources ?
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Heavy-tailed trip times

Can trip duration be heavy-tailed ? 
– Yes.

• Common in nature

– Albatross search, spider 
monkeys [KS05], 
jackals [ARMA02]

– Model: random walk with 
heavy-tailed trip distance 
(Levy flights) 

Levy flight (source [FZK93])

?
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Heavy-tailed trip times (2)

• Ex 1: random walk on torus or billiards

– Take a heavy-tailed distribution for trip duration with finite 
mean

– Ex. Pareto: P0(Sn > s) = (b/s)a,  b > 0, 1 < a < 2

• Ex 2: Random waypoint

– Take fV0(v) = K v1/2 1(0  v vmax)
– E0(Sn) < , E0(Sn

2) = 



85

Frequently Asked Questions

• Does model accommodate power-law 
inter-contact times ?

• Does model accommodate heavy-tailed 
trip durations ?

• Can model produce a given time-
stationary distribution of node position ?

• What are mobility data resources ?
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Given time-stationary 
distribution of node position

• Given is a random trip model with time-stationary density 
of node position aX(x)

Can one configure the model so that time-stationary 
density of node position is a given bX(x) ?

– Yes. Twist speed as described next

Remarks:
– Speed twisting applies to random trip model, in general
– See [GL06], for random direction model

?
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Speed twist

• Twist function         ?

1

0
0

t = time elapsed on trip

A: original model

1

0
0

,     = fraction of traversed trip length

B: twisted model
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(constant speed)
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Speed twist (2)

• Palm inversion formula: the twist function is given by 
differential equation:

with boundary values un(0) = 0, un(Sn
B) = 1

and w(x) := aX(x) / bX(x)

• Trip duration may change but its mean remains same:
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Speed twist (3)
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node location at time t

A: original modelB: twisted model
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• At location x, speed is inversely proportional to the 
target density bX(x) of location x
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Frequently Asked Questions

• Does model accommodate power-law 
inter-contact times ?

• Does model accommodate heavy-tailed 
trip durations ?

• Can model produce a given time-
stationary distribution of node position ?

• What are mobility data resources ?
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Resources

• Partial list:

– CRAWDAD (crawdad.cs.dartmouth.edu)

– Haggle (www.haggleproject.org)

– MobiLib (nile.usc.edu/MobiLib)

– Street maps: 
• U.S. Census Bureau TIGER database 

(www2.census.gov/geo/tiger)
• Mapinfo (www.mapinfo.com)
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Frequently Asked Questions
» Summary «

• Power-law inter-contact times are captured by some 
random trip models

• Trip duration can be heavy tailed

• Given time-stationary distribution of node position can be 
achieved
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Outline

• Simulation Issues with mobility models

• Random trip basic constructs

• A technical condition: Positive Harris recurrence

• Stability of random trip model 

• Palm calculus instant primer

• Time-stationary distributions

• Perfect simulation

• FAQ
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Appendix 2: An additional condition 

• We introduce an additional condition that is needed for 
stability result of random trip to be valid
– Positive Harris recurrence

• Yn = (In, Pn) (phase, path) is a Markov chain by 
construction of the random trip model

– In general, on general state space ! 

– Not necessarily bounded or countable

• We assume that Yn is positive Harris recurrent

• We check the condition for our catalogue of models
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Positive Harris recurrence
• If the state space for the Markov chain of phases and paths 

sampled at trip endtimes would be countable (not true in 
general), this would mean
– Any state can be reached
– No escape to infinity

• A natural condition if we want the mobility state to have a 
stationary regime 

• On a general state space, the definition is more evolved. It is true 
for all the models in the catalog before, assuming common sense 
assumptions:
– The underlying graphs are fully connected. 
– Expected number of consecutive visits in a subdomain if finite
– For billiards, assume density of speed vector is completely 

symmetric
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Harris recurrence

• It means that there exists a set R that is visited by Yn from 
any initial state in some given number of transitions

• The set R is “recurrent”

I  P

R y

Yn

plus …
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Harris recurrence (2)

• Probability that Yn hits a set B starting from R in some given 
number of transitions is lower bounded by  (B) 
–  is a number in (0,1),  is a probability measure on I x P

• The set R is “regenerative” 

I  P

R
y B
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Positive Harris recurrence

• Yn Harris recurrent implies that Yn has a stationary 
measure0 on I  P

– It may be 0(I  P) = +

• We need 0(I  P) < + so that Yn has a stationary 
probability distribution

• We assume that Yn is positive Harris recurrent

– It means Harris recurrent plus that the return time to 
set R has a finite expectation
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Check the condition for random 
waypoint 

• For this model, it is easy

• It suffices to consider RWP with no pauses

• Note that any two paths Pn, Pm such that |n - m| > 1 are 
independent

• Hence

P(Pn  A1 x A2 | P0 = p) = |A1|  |A2|, for all n > 1

• Take as the recurrent set R A x A
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Check condition for 
restricted random waypoint

The condition is true if

• In addition to assumptions for random waypoint, it holds

– The Markov walk on sub-domains is irreducible 
– And the mean number of trips within a sub-domain is 

finite

• Proof follows from well known stability results for Markov 
chains on finite state spaces
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Check condition for 
random walk on torus

The condition is true if

• The speed vector has a density in R2

• And, trip duration has a density, conditional on either phase 
is move or pause
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Check condition for 
random walk on torus(2)

• Main thing to prove is that node position at trip transitions, 
Xn, is Harris recurrent

• Fact: the distribution of Xn started from any given initial 
point, converges to uniform distribution, provided only that 
node speed has a density

• Harris recurrence follows by the latter fact, Erdos-Turan-
Koksma inequality, and Fourier analysis
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Check condition for 
billiards

The condition is true if

• The speed vector has a density in R2 that is completely 
symmetric

• And, trip duration has a density, conditional on either phase 
is move or pause

• Proof by reduction to random walk (see [LV06])

• Def. A random vector (X,Y) is said to have a completely symmetric 
distribution iff (-X,Y) and (X,-Y) have the same distribution as 
(X,Y)



104

To be complete …

• We also need to assume:

(a) Trip duration Sn is strictly positive
(b) Distribution of trip duration Sn is non-arithmetic

arithmetic = on a lattice

• These are minor conditions, can in practice be assumed to hold
– (a) is common sense
– (b) is true in particular if Sn has a density


