Understanding The Simulation Of Mobility Models with Palm Calculus

Jean-Yves Le Boudec EPFL

Milan Vojnović
Microsoft Research
Cambridge

UMD-ISR- February 2007

Resources

- Random trip model web page:

http://ica1www.epfl.ch/RandomTrip

- Links to slides, papers, perfect simulation software
- This tutorial is mainly based on:
[LV06] The Random Trip Model: Stability, Stationary Regime, and Perfect Simulation, J.-Y. Le Boudec and Milan Vojnović, ACM/IEEE Trans. on Networking, Dec 06
- Extended journal version of IEEE Infocom 2005 paper
- Technical report with proofs: MSR-TR-2006-26
[L04] Understanding the simulation of mobility models with Palm calculus, J.-Y. Le Boudec, Performance Evaluation, 2007

Outline

- Simulation Issues with mobility models
- Random trip basic constructs
- Palm calculus instant primer
- Stability condition for random trip
- Time-stationary distributions
- Perfect simulation

Appendix

- FAQ
- Harris recurrence

Simplest example: random waypoint (Johnson and Maltz` 96)

- Node:
- Picks next waypoint X_{n+1} uniformly in area
- Picks speed V_{n} uniformly in [$\mathrm{v}_{\text {min }} \mathrm{v}_{\text {max }}$]
- Moves to X_{n+1} with speed V_{n}

Already the simple model exhibits issues

- Distributions of node speed, position, distances, etc change with time
- Node speed:

Already the simple model exhibits issues (2)

- Distributions of node speed, position, distances, etc change with time
- Distribution of node position:

Time $=0 \mathrm{sec}$

Time $=2000 \mathrm{sec}$

Why does it matter ?

- A (true) example: Compare impact of mobility on a protocol:
- Experimenter places nodes uniformly for static case, according to random waypoint for mobile case
- Finds that static is better
- Q. Find the bug !
- A. In the mobile case, the nodes are more often towards the center, distance between nodes is shorter, performance is better
- The comparison is flawed. Should use for static case the same distribution of node location as random waypoint. Is there such a distribution to compare against ?

Issues with Mobility Models

- Is there a stable distribution of the simulation state (time-stationary distribution), reached if we run the simulation long enough ?
- If so:
- How long is long enough ?
- If it is too long, is there a way to get to the stable distribution without running long simulations (perfect simulation) ?

The Random trip model

- A broad model of independent node movements
- Including RWP, realistic city maps, etc
- Defined by a set of conditions on trip selection
- Conditions ensure issues mentioned above are under control
- Model stability (defined later)
- Model permits perfect simulation
- Algorithm in this slide deck
- Perfect simulation = distribution of node mobility is time-stationary throughout a simulation

Outline

Random trip basic constructs " Outline "

- Initially: a mobile picks a trip, i.e. a combination of 3 elements
- A path in a catalogue of paths
- A duration
- A phase
- A end of trip, mobile picks a new trip
- Using a trip selection rule
- Information required to sample next trip is entirely contained in path and phase of the trip that just finished (Markov property)

Illustration of basic constructs

- At end of ($n-1$)st trip, at time T_{n}, mobile picks
- Path P_{n}
- Duration $\mathrm{S}_{\mathrm{n}}=\mathrm{T}_{\mathrm{n}+1}-\mathrm{T}_{\mathrm{n}}$
- (also a phase - see later)
- This implicitly defines speed and location $\mathrm{X}(\mathrm{t})$ at $\mathrm{t} 5\left[\mathrm{~T}_{\mathrm{n}}, \mathrm{T}_{\mathrm{n}+1}\right]$

Random waypoint is a random trip model

- (Assume in this slide model without pause)
- At end of trip $n-1$, mobile is at location X_{n}
- Sample location X_{n+1} uniformly in area Path P_{n} is shortest path from X_{n} to $X_{n_{+1}}$

$$
P_{n}(u)=(1-u) X_{n}+u X_{n+1} \text { for } u[0,1]
$$

- Sample numerical speed V_{n} ¿ 0 from a given speed distribution

This defines duration:

$$
S_{n}=\left\|X_{n+1}-X_{n}\right\| / V_{n}
$$

- (Markov property): Information required to sample next trip (location X_{n}) is entirely contained in path and phase of previous trip

Random waypoint with pauses is a random trip model

- Phase I_{n} is either move or pause
- At end of trip $n-1$:

If phase I_{n-1} was pause then

- $I_{n}=$ move (next trip is a move)
- Sample X_{n+1} and V_{n} as on previous slide

Else

- $I_{n}=$ pause (next trip is a move)
- Path: $P_{n}(u)=X_{n}$ for $u 5[0,1]$
- Pick S_{n} from a given pause time distribution

$X_{n}=X_{n+1}$
\bullet
Pause time
S_{n}

- (Markov property): Information required to sample next trip (phase I_{n}, location X_{n}) is entirely contained in path and phase of previous trip

Catalogue of examples

- Random waypoint on general connected domains
- Swiss Flag
- City-section
- Restricted random waypoint
- Inter-city
- Space-graph
- Random walk on torus
- Billiards
- Stochastic billiards

Random waypoint on general connected domain

- Swiss Flag [LV05]
- Non convex domain

Random waypoint on general connected domain (2)

- City-section, Camp et al [CBD02]

Restricted random waypoint

- Inter-city, Blazevic et al [BGLO4]
- Stay in one subdomain for some time then move to other

Here phase is $\left(I_{n}, L_{n}, L_{n+1}, R_{n}\right)$
where
$I_{n}=$ pause or move
$L_{n}=$ current subdomain
$\mathrm{L}_{\mathrm{n}+1}=$ next
subdomain
$R_{n}=$ number of trips
in this visit to the
 current domain

Restricted random waypoint (2)

- Space-graph, Jardosh et al, ACM Mobicom 03 [JBAS03]

Road maps available from road-map databases

- Ex. US Bureau's TIGER database
- Houston section
- Used by PalChaudhuri et al [PLV05]

Random walk on torus

- [LV05]
- a.k.a. random direction with wrap around (Nain et al [NT+05])

Billiards

- [LV05]
- a.k.a. random direction with reflection (Nain et al [NT+05])

Stochastic billiards

- Random direction model, Royer et al [RMM01]
- See also survey [CBD02]

Random trip basic constructs " Summary "

- Trip is defined by phase, path, and duration
- The abstraction accommodates many examples
- Random waypoint on general connected domains
- Random walk with wrap around
- Billiards
- Stochastic billiards

Outline

- Simulation Issues with mobility models
- Random trip basic constructs
- Palm calculus instant primer
- Stability condition for random trip
- Time-stationary distributions
- Perfect simulation

Appendix

- FAO
- Harris recurrence

Palm Calculus

- Relates time averages versus event averages
- An old topic in queueing theory
- Now well understood by mathematicians under the name Palm Calculus

Palm Calculus Framework

- A stationary process (simulation) with state S_{t}.
- Some quantity X_{t} measured at time t. Assume that

$\left(S_{t} ; X_{t}\right)$ is jointly stationary

I.e., S_{t} is in a stationary regime and X_{t} depends on the past, present and future state of the simulation in a way that is invariant by shift of time origin.

- Examples
- $\mathrm{S}_{t}=$ current position of mobile, speed, and next waypoint
- Jointly stationary with S_{t} : $\mathrm{X}_{\mathrm{t}}=$ current speed at time t ; $X_{t}=$ time to be run until next waypoint
- Not jointly stationary with S_{t} : $\mathrm{X}_{\mathrm{t}}=$ time at which last waypoint occurred

Palm Expectation

- Consider some selected transitions of the simulation, occurring at times T_{n}.
- Example: $T_{n}=$ time of $n^{\text {th }}$ trip end
- Definition : the Palm Expectation is

$$
H^{t}\left(X_{t}\right)=H\left(X_{t} \mid \text { a selected transition occurred at time } t\right)
$$

- By stationarity:

$$
H^{t}\left(X_{t}\right)=H^{0}\left(X_{0}\right)
$$

- Example:
- $T_{n}=$ time of $\mathrm{n}^{\text {th }}$ trip end, $\mathrm{X}_{\mathrm{t}}=$ instant speed at time t
- $H^{t}\left(X_{t}\right)=H^{0}\left(X_{0}\right)=$ average speed observed at a waypoint

Event versus Time Averages

- $H\left(X_{t}\right)=H\left(X_{0}\right)$ expresses the time average viewpoint.
- $H^{\mathrm{t}}\left(\mathrm{X}_{\mathrm{t}}\right)=H^{0}\left(\mathrm{X}_{0}\right)$ expresses the event average viewpoint.
- Example:
- $T_{n}=$ time of $n^{\text {th }}$ trip end, $X_{t}=$ instant speed at time t
- $H^{t}\left(X_{t}\right)=H^{0}\left(X_{0}\right)=$ average speed observed at trip end
- $H\left(X_{t}\right)=H\left(X_{0}\right)=$ average speed observed at an arbitrary point in time

Formal Definition

- In discrete time, we have an elementary conditional probability
 $T_{n}=t$)
- In continuous time, the definition is a little more sophisticated
- Similar to the definition of conditional density $f_{x}(x \mid Y=y)$ for continuous random variables with joint density - see the writeup [LO4] for details
- See [BaccelliBremaud87] for a formal treatment
- Palm probability is defined similarly
- $S^{t}\left(X_{t} 5 W\right)=H^{t}\left(1_{\text {Xt } 5} w\right)$

Ergodic Interpretation

- Assume simulation is stationary + ergodic, i.e. sample path averages converge to expectations; then we can estimate time and event averages by:

$$
\begin{aligned}
\mathbb{E}\left(X_{0}\right) & =\lim _{T \rightarrow+\infty} \frac{1}{T} \sum_{s=1}^{T} X_{s} \\
\mathbb{E}^{0}\left(X_{0}\right) & =\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{n=1}^{N} X_{T_{n}}
\end{aligned}
$$

- In terms of probabilities:
- Stationary probability: $\mathbb{P}\left(X_{t} \in W\right) \approx$ fraction of time that X_{t} is in some set W
- Palm probability:
$\mathbb{P}^{t}\left(X_{t} \in W\right) \approx$ fraction of selected transitions at which X_{t} is in W

Two Palm Calculus Formulas

- Intensity of selected transitions: $\lambda:=$ expected number of transitions per time unit
- Intensity Formula:

$$
\frac{1}{\lambda}=\mathbb{E}^{0}\left(T_{1}-T_{0}\right)=\mathbb{E}^{0}\left(T_{1}\right)
$$

where by convention $T_{0} \% 0<T_{1}$

- Inversion Formula

$$
\mathbb{E}\left(X_{t}\right)=\mathbb{E}\left(X_{0}\right)=\lambda \mathbb{E}^{0}\left(\int_{0}^{T_{1}} X_{s} d s\right)
$$

- The proofs are simple in discrete time - see [LO4]

A Classical Example

- At bus stop in average λ buses per hour. Inspector measures time between all bus inter-departures. Inspector estimates $\mathbb{E}^{0}\left(T_{1}-T_{0}\right)=\frac{1}{\lambda}$
- Joe arrives at time t and measures $X_{t}=($ time until next bus - time since last bus). Joe estimates
$\mathbb{E}\left(X_{0}\right)=\mathbb{E}\left(T_{1}-T_{0}\right)$
- Inversion formula:

$$
\mathbb{E}\left(T_{1}-T_{0}\right)=\lambda \mathbb{E}^{0}\left(\int_{0}^{T_{1}} X_{t} d t\right)=\lambda \mathbb{E}^{0}\left(T_{1}^{2}\right)=\frac{1}{\lambda}+\lambda \operatorname{var}^{0}\left(T_{1}-T_{0}\right)
$$

- Joe's estimate always larger than Inspector's (Feller's Paradox)

Outline

- Simulation Issues with mobility models
 - Random trip basic constructs

- Stability condition for random trip
- Time-stationary distributions
- Perfect simulation

Necessary Condition for Existence of a Stationary Regime

- Apply the intensity formula to $\mathrm{T}_{\mathrm{n}}=$ trip end times

$$
\frac{1}{\lambda}=\mathbb{E}^{0}\left(T_{1}-T_{0}\right)=\mathbb{E}^{0}\left(T_{1}\right)
$$

- Thus: if the random trip has a stationary regime it must be that the mean trip duration sampled at trip end times is finite

Formal Definition of Stability

- System state $\Phi(\mathrm{t})=\left(\mathrm{Y}(\mathrm{t}), \mathrm{S}(\mathrm{t}), \mathrm{S}^{-}(\mathrm{t})\right), \mathrm{t} \geq 0$

- $\Phi(\mathrm{t})$ has
- A unique time-stationary distribution π
- The distribution of $\Phi(\mathrm{t})$ converges to π as t goes to infinity

Necessary and Sufficient Condition Stability of random trip model [LV06]

- There exists a time-stationary distribution π for $\Phi(\mathrm{t})$ if and only if mean trip duration is finite (trip sampled at trip end times)
- Whenever π exists, it is unique
- Moreover, if mean trip duration is finite, from any initial state, the distribution of $\Phi(\mathrm{t})$ converges to π as t goes to infinity

Proof is based on Harris recurrence (see appendix)

Application to random waypoint

- Mean trip duration for a move
$=$ (mean trip distance) § mean of inverse of speed
- Mean trip duration for a pause = mean pause time
- Random waypoint is stable if both
- mean of inverse of speed
- mean pause time
are finite

A Random waypoint model that has no time-stationary distribution!

- Assume that at trip transitions, node speed is sampled uniformly on [$\mathrm{v}_{\text {min }}, \mathrm{v}_{\text {max }}$]
- Take $\mathrm{v}_{\text {min }}=0$ and $\mathrm{v}_{\text {max }}>0$ (common in practise)
- Mean trip duration $=($ mean trip distance $) \times \frac{1}{v_{\max }} \int_{0}^{v_{\max }} \frac{d v}{v}=+\infty$
- Mean trip duration is infinite !
- Speed decay: "considered harmful" [YLNO3]

Stability of random trip model "Summary "

- Random trip model is stable if mean trip duration is finite
- This ensures the model is stable
- Unique time-stationary distribution, and
- Convergence to this distribution from any initial state
- Didn't hold for a random waypoint used by many

Outline

Time-stationary distributions " Outline "

- Time-stationary distribution of node mobility state is the distribution of state in stationary regime, when it exists
- Should be used for fair comparison
- Can be obtained systematically by the Palm inversion formula

Example: Random Waypoint Distribution of Speed

- Assume stationary regime
- Apply inversion formula and obtain distribution of instantaneous speed $\mathrm{V}(\mathrm{t})$

$$
\begin{aligned}
\mathbb{E} & (\phi(V(t)))=\lambda \mathbb{E}^{0}\left(\int_{0}^{T_{1}} \phi(V(t)) d t\right) \\
& =\lambda \mathbb{E}^{0}\left(\phi\left(V_{0}\right) T_{1}\right) \\
& =\lambda \mathbb{E}^{0}\left(\phi\left(V_{0}\right) \frac{\left\|M_{1}-M_{0}\right\|}{V_{0}}\right) \\
& =\lambda \mathbb{E}^{0}\left(\left\|M_{1}-M_{0}\right\|\right) \mathbb{E}^{0}\left(\frac{\phi\left(V_{0}\right)}{V_{0}}\right) \\
& =C \int_{0}^{v_{\max }} \frac{\phi(v)}{v} f_{V_{0}}^{0}(v) d v
\end{aligned}
$$

Inversion Formula Gives Relation between Speed Distributions at Waypoint and at Arbitrary Point in Time

$$
f_{V(t)}(v) d v=\frac{C}{v} f_{V_{0}}^{0}(v) d v
$$

with: $f_{V(t)}(v)=$ stationary density of speed, $f_{V_{0}}^{0}(v)=$ Palm density of speed (i.e. uniform on $\left.\left[v_{\min }, v_{\max }\right]\right)$ and $C^{-1}=\mathbb{E}^{0}\left(\frac{1}{V_{0}}\right)$

Event Average

Time Average

Sampling bias is also for location

- Stationary distributions at arbitrary times and at trip end points are not necessarily the same
- Time-average vs event-average
- Ex. samples of node position for random waypoint
- Trip endpoints are uniformly distributed, time stationary distribution of mobile location is not

Approximate formulae for location

- Conventional approaches find that closed form expression for density is too difficult [Bettstetter04]
- Approximation of density in area [0; a] [0; a] [Bettstetter04]:

$$
f_{X, Y}(x, y) \approx \frac{36}{a^{2}} x(x-a) y(y-a)
$$

Inversion formula also gives stationary distribution of random waypoint location in closed form [LO4]

Contour plots of density of stationary distribution

(a) Node Location

(b) Next Waypoint

Closed forms

$$
\left\{\begin{array}{l}
f_{M(t)}(x, y)=f_{M(t)}(|x|,|y|) \\
\text { if }|x|<|y| \text { then } f_{M(t)}(x, y)=f_{M(t)}(|y|,|x|) \\
\text { if } 0 \leq y \leq x \text { then } f_{M(t)}(x, y)=\frac{15}{32(\sqrt{2}+2+5 \ln (1+\sqrt{2}))} F(x, y)
\end{array}\right.
$$

with $F(x, y)=$

$$
\begin{array}{lrrrrr}
& (1-x)(2+x)(1-y) & \sqrt{1+\frac{(1-y)^{2}}{(1+x)^{2}}} & + & (1-x)(1-y)(2+y) & \sqrt{1+\frac{(1-x)^{2}}{(1+y)^{2}}} \\
+ & (1-x)(2+x)(1+y) & \sqrt{1+\frac{(1+y)^{2}}{(1+x)^{2}}} & + & (1-x)(1+y)(2-y) & \sqrt{1+\frac{(1-x)^{2}}{(1-y)^{2}}} \\
- & \frac{(1-x)^{2}(1-y)^{2}}{1+x} & \sqrt{1+\frac{(1+x)^{2}}{(1-y)^{2}}} & - & \frac{(1-x)^{2}(1-y)^{2}}{1+y} & \sqrt{1+\frac{(1+y)^{2}}{(1-x)^{2}}} \\
- & \frac{(1-x)^{2}(1+y)^{2}}{1+x} & \sqrt{1+\frac{(1+x)^{2}}{(1+y)^{2}}} & - & \frac{(1-x)^{2}(1+y)^{2}}{1-y} & \sqrt{1+\frac{(1-y)^{2}}{(1-x)^{2}}} \\
+ & (1-x)\left[1+x-(1-y)^{2}\right] & \sinh ^{-1}\left(\frac{1-y}{1+x}\right) & + & (1-y)\left[1+y-(1-x)^{2}\right] & \sinh ^{-1}\left(\frac{1-x}{1+y}\right) \tag{14}\\
+ & (1-x)\left[1+x-(1+y)^{2}\right] & \sinh ^{-1}\left(\frac{1+y}{1+x}\right) & + & (1+y)\left[1-y-(1-x)^{2}\right] & \sinh ^{-1}\left(\frac{1-x}{1-y}\right) \\
+ & (1-x)^{2}(1-y) & \sinh ^{-1}\left(\frac{1+x}{1-y}\right) & + & (1-x)(1-y)^{2} & \sinh ^{-1}\left(\frac{1+y}{1-x}\right) \\
+ & (1-x)^{2}(1+y) & \sinh ^{-1}\left(\frac{1+x}{1+y}\right) & + & (1-x)(1+y)^{2} & \sinh ^{-1}\left(\frac{1-y}{1-x}\right)
\end{array}
$$

where $\sinh ^{-1}(t)=\ln \left(t+\sqrt{1+t^{2}}\right)$ (inverse hyperbolic sine).

Previous and Next Trip Endpoints

Ex: random waypoint

- Let $M(t)$: position at time t
- Let $\operatorname{Prev}(t), N e x t(t)$: previous and next waypoints

A No. But $\operatorname{Prev}(t)$ and $N e x t(t)$ have same (non uniform) distribution.

Inversion formula gives simple expression for time-sationary distributioz of complete state

(restricted) random waypoint on arbitrary area:

- Conditional on phase is ($i, j, r, m o v e$) ([NavidiCamp04] for rwp)
- Node speed at time t is independent of path and location with density

$$
f_{v}(v)=\text { const } \frac{1}{v} f_{0}^{v}(v)
$$

- Path endpoints at time $t,(P(t)(0), P(t)(1))=\left(m_{0}, m_{1}\right)$ have a joint density:

$$
=K_{i j r} d\left(m_{0}, m_{1}\right), \quad \text { for }\left(m_{0}, m_{1}\right) \in \mathrm{A}_{i} \times A_{j}
$$

- Conditional on $(P(t)(0), P(t)(1))=(x, y)$, distribution of node position $X(t)$ is uniform on the segment $[x, y]$

Stationary Distribution of Location

- Joint distribution of (Next, Prev) has density proportional to distance
- Given (Next, Prev), M is uniformly distributed

A Fair Comparison

- If there is a stationary regime, we can compare different mobility patterns provided that

1. They are in the stationary regime
2. They have the same stationary distributions of locations

- Example: we revisit the comparison by sampling the static case from the stationary regime of the random waypoint

Representation of time-stationary distribution (any random trip model)

- Phase:

$$
P(I(t)=i)=\frac{\pi^{0}(j) \tau_{i}}{\sum_{j} \pi^{0}(j) \tau_{j}}
$$

where $\tau_{i}=E^{0}\left(S_{0} \mid I_{0}=i\right)$, i.e. mean trip duration given that phase is i

- Path and duration, given the phase:

$$
d P(P(t)=p, S(t)=s \mid I(t)=i)=\frac{s}{\tau_{i}} d P^{0}\left(P_{0}=p, S_{0}=s \mid I_{0}=i\right)
$$

- Time elapsed on the current trip: $\mathrm{S}^{-}(\mathrm{t})=\mathrm{S}(\mathrm{t}) \mathrm{U}(\mathrm{t})$, where $U(t)$ is uniform on $[0,1]$

Models with Uniform Location

Random waypoint on sphere

- Time stationary distribution of location is uniform
- But trip endpoints are not

Billiards, Random waypoint on torus

- Time stationary distribution of location is uniform
- So are trip endpoints

Time-stationary distributions " Summary "

- Palm inversion yields representation of time-stationary distribution for any random trip model
- Representation can be used to derive closed form for location alone (painful and useless)
- Representation can be used to derive closed form for complete state (easy and useful) - see next section

Outline

Perfect simulation " Outline "

- Perfect simulation
- Sample initial state from time-stationary distribution
- Then state is a time-stationary realization at any time
- If you know how to do perfect simulation, there is no transient

Perfect simulation is highly desirable

- If model is stable and initial state is drawn from distribution other than time-stationary distribution
- The distribution of node state converges to the timestationary distribution
- Naïve: so, let's simply truncate an initial simulation duration
- The problem is that initial transience can last very long

Example [space graph]: node speed $=1.25 \mathrm{~m} / \mathrm{s}$ bounding area $=1 \mathrm{~km} \times 1 \mathrm{~km}$

Perfect simulation is highly desirable (2)

- Distribution of path:

Perfect Simulation Based on the Representation of Stationary Distributions

Time-stationary distribution fo (restricted) random waypoint

- Conditional on phase is ($\mathbf{i}, \mathrm{j}, \mathrm{r}, \mathrm{move}$)
- Node speed at time t is independent of path and locat with density

$$
f_{v}(v)=\text { const } \frac{1}{v} f_{0}^{v}(v)
$$

- Path endpoints at time $t,(P(t)(0), P(t)(1))=\left(m_{0}, m_{1}\right)$ a joint density:

$$
=K_{i j r} d\left(m_{0}, m_{1}\right), \quad \text { for }\left(m_{0}, \mathrm{~m}_{1}\right) \in \mathrm{A}_{\mathrm{i}} \times A_{j}
$$

- Conditional on $(P(t)(0), P(t)(1))=(x, y)$, distribution of position $X(t)$ is uniform on the segment $[\mathrm{X}, \mathrm{y}]$
- A similar formula exists for the general random trip m (next slide)
- Question: how to sample (M_{0}, M_{1}) when we know joint pdf is
$f_{(\mathrm{m}, \mathrm{m} 1)}\left(\mathrm{m}_{0}, \mathrm{~m}_{\mathbf{1}}\right)=\mathrm{Kg}\left(\mathrm{m}_{0}, \mathrm{~m}_{\mathbf{1}}\right)$
g() easy to compute
- Answer: rejection sampling
do
sample $\mathrm{m}_{0}, \mathrm{~m}_{1} \sim \operatorname{unif}(\mathrm{~A})$
sample V ~ unif([0, $\Delta])$) until $V<\mathrm{g}\left(\mathrm{m}_{0}, \mathrm{~m}_{1}\right)$
with Δ upper bound on g

Perfect sampling algorithm for random waypoint

$$
\begin{aligned}
& \text { Input: } A, \Delta \\
& \text { Output: } X_{0}, X, X_{1} \\
& \text { 1. Do sample } X_{0}, X_{1}, \text { iid, } \sim \operatorname{Unif}(A) \\
& \quad \text { sample } V \sim \operatorname{Unif}[0, \Delta] \\
& \text { until } V<\left\|X_{1}-X_{0}\right\| \\
& \text { 2. Draw } U \sim \text { Unif[0,1] } \\
& \text { 3. } X=(1-U) X_{0}+U X_{1}
\end{aligned}
$$

Input: $A=$ domain, $\Delta=$ upper bound on the diameter of A
Similar algo exists for any random trip model

Example: random waypoint No speed decay

- Standard simulation

Perfect simulation software

- Developed by Santashil PalChaudhuri
- see the random trip web page
- Scripts to use as front-end to ns-2
- Output is ns-2 compatible format to use as input to ns-2
- Supported models:
- Random waypoint on general connected domain
- Restricted random waypoint
- Random walk with wrapping
- Billiards

Perfect simulation " Summary "

- Random trip model can be perfectly simulated
- Node mobility state is a time-stationary realization throughout a simulation
- Perfect simulation by rejection sampling
- It alleviates knowing geometric constants
- Bound on the trip length is sufficient

Concluding remarks

- Random trip model covers a broad set of models of independent node movements
- All presented in the catalogue of this slide deck
- Defined by a set of stability conditions
- Time-stationary distributions specified by Palm inversion
- Sampling algorithm for perfect simulation
- No initial transience
- Not necessary to know geometric constants

Future work

- Realistic mobility models ?
- Real-life invariants of node mobility ?
- Human-carried devices, vehicles, ...
- What extent of modelling detail is enough ?
- Scalable simulations ?
- Algorithmic implications ?
- Scalable simulations ?
- Statistically dependent node movements
- Application scenarios, models ?

References

[ARMA02] Scale-free dynamics in the movement patterns of jackals, R. P. D. Atkinson, C. J. Rhodes, D. W. Macdonald, R. M. Anderson, OIKOS, Nordic Ecological Society, A Journal of Ecology, 2002
[CBD02] A survey of mobility models for ad hoc network research, T. Camp, J. Boleng, V. Davies, Wireless Communication \& Mobile Computing, vol 2, no 5, 2002
[CHC+06] Impact of Human Mobility on the Design of Opportunistic Forwarding Algorithms, A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, J. Scott, IEEE Infocom 2006
[E01] Stochastic billiards on general tables, S. N. Evans, The Annals of Applied Probability, vol 11, no 2, 2001
[GLO6] Analysis of random mobility models with PDE's, M. Garetto, E. Leonardi, ACM Mobihoc 2006
[JBAS+02] Towards realistic mobility models for mobile ad hoc networks, A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, S. Suri, ACM Mobicom 2003
[KS05] Anomalous diffusion spreads its wings, J. Klafter and I. M. Sokolov, Physics World, Aug 2005

References (2)

[LO4] Understanding the simulation of mobility models with Palm calculus, J.-Y. Le Boudec, accepted to Performance Evaluation, 2006
[LV05] Perfect simulation and stationarity of a class of mobility models, J.-Y. Le Boudec and M. Vojnovic, IEEE Infocom 2005
[LV06] The random trip model: stability, stationary regime, and perfect Simulation, J.-Y. Le Boudec and M. Vojnovic, MSR-TR-2006-26, Microsoft Research Technical Report, 2006
[M87] Routing in the Manhattan street network, N. F. Maxemchuk, IEEE Trans. on Comm., Vol COM-35, No 5, May 1987
[NT+05] Properties of random direction models, P. Nain, D. Towsley, B. Liu, and Z. Liu, IEEE Infocom 2005
[PLV05] Palm stationary distributions of random trip models, S. PalChaudhuri, J.-Y. Le Boudec, M. Vojnovic, 38 ${ }^{\text {th }}$ Annual Simulation Symposium, April 2005

References (3)

[RMM01] An analysis of the optimum node density for ad hoc mobile networks, ICC 2001
[S64] Principles of random walk, F. Spitzer, 2 ${ }^{\text {nd }}$ Edt, Springer, 1976
[SMS06] Delay and capacity trade-offs in mobile ad hoc networks: a global perspective, G. Sharma, R. Mazumdar, N. Shroff, IEEE Infocom 2006
[SZK93] Strange kinetics (review article), M. F. Shlesinger, G. M. Zaslavsky, J. Klafter, Nature, May 1993
[YLN03] Random waypoint considered harmful, J. Yoon, M. Liu, B. Noble, IEEE Infocom 2003

Outline

Appendix 1: Frequently Asked Questions

- Does model accommodate power-law inter-contact times ?
- Does model accommodate heavy-tailed trip durations ?
- Can model produce a given timestationary distribution of node position ?
- What are mobility data resources ?

Frequently Asked Questions

Does model accommodate power-law inter-contact times ?

- Does model accommodate heavy-tailed trip durations ?
- Can model produce a given timestationary distribution of node position ?
- What are mobility data resources ?

Power-law evidence

- Chaintreau et al 2006 [CHC+06]: distribution of intercontact times of human carried devices (iMote/PDA) is well approximated by a power law

- Source [CHC+06] with permission from authors

Power-law inter-contact times (cont'd)

- Implications on packet-forwarding delay ([CHC+06])
? Can random trip model accommodate power-law node inter-contacts ?
- Yes! (see next example)

Example: random walk on torus

- Discrete-time, discrete-space of M sites

- $T=$ inter-contact time, $E(T)=M$

Example: random walk on torus (2)

- Let first $M \rightarrow \infty$ (infinite lattice)

$$
\mathrm{P}(\mathrm{~T}>\mathrm{n}) \sim \text { const } / \mathrm{n}^{1 / 2} \text {, large } \mathrm{n}
$$

```
power-law
```

- Holds for any aperiodic recurrent random walk with finite variance on infinite 1dim lattice, Spitzer [S64]
- If M is fixed, tail is exponentially bounded
- If n and M scale simultaneously ? (see next)

Example: random walk on torus (3)

$$
M=50
$$

Inter-contact time n

Example: random walk on torus (4)

 $M=500$

Example: random walk on torus (4) $M=1000$

What if random walk is on a 2dim torus ?

- Manhattan grid
- Ex [M87], [SMS06]

What if random walk is on a 2 dim torus ? (2)

- Finite torus: 500×500 (20M walk steps)

Frequently Asked Questions

- Does model accommodate power-law inter-contact times ?

Does model accommodate heavy-tailed trip durations ?

- Can model produce a given timestationary distribution of node position ?
- What are mobility data resources ?

Heavy-tailed trip times

? Can trip duration be heavy-tailed ? - Yes.

- Common in nature
- Albatross search, spider monkeys [KS05], jackals [ARMA02]
- Model: random walk with
heavy-tailed trip distance
- Model: random walk with
heavy-tailed trip distance (Levy flights)

Heavy-tailed trip times (2)

- Ex 1: random walk on torus or billiards
- Take a heavy-tailed distribution for trip duration with finite mean
- Ex. Pareto: $\mathrm{P}^{0}\left(\mathrm{~S}_{\mathrm{n}}>\mathrm{s}\right)=(\mathrm{b} / \mathrm{s})^{\mathrm{a}}, \mathrm{b}>0,1<\mathrm{a}<2$
- Ex 2: Random waypoint
- Take $\mathrm{f}_{\mathrm{V}}{ }^{0}(\mathrm{v})=\mathrm{K} \mathrm{v}^{1 / 2} 1(0 \leq \mathrm{v} \leq \mathrm{vmax})$
- $E^{0}\left(S_{n}\right)<\infty, E^{0}\left(S_{n}{ }^{2}\right)=\infty$

Frequently Asked Questions

- Does model accommodate power-law inter-contact times ?
- Does model accommodate heavy-tailed trip durations ?

Can model produce a given timestationary distribution of node position ?

- What are mobility data resources ?

Given time-stationary distribution of node position

- Given is a random trip model with time-stationary density of node position $\mathrm{a}_{\mathrm{x}}(\mathrm{x})$ density of node position is a given $b_{x}(x)$?
- Yes. Twist speed as described next

Remarks:

- Speed twisting applies to random trip model, in general
- See [GL06], for random direction model

Speed twist

B: twisted model

$t=$ time elapsed on trip
$u_{n}^{A}, u_{n}^{B}=$ fraction of traversed trip length

- Twist function $u_{n}^{B}(t)$?

Speed twist (2)

- Palm inversion formula: the twist function is given by differential equation:

$$
\frac{d}{d t} u_{n}^{B}=\frac{1}{S_{n}^{A}} w\left(P_{n}\left(u_{n}^{B}\right)\right), 0 \leq t \leq S_{n}^{B}
$$

with boundary values $u_{n}(0)=0, u_{n}\left(S_{n}{ }^{B}\right)=1$
and $w(x):=a_{x}(x) / b_{x}(x)$

- Trip duration may change but its mean remains same:

$$
E^{0}\left(S_{0}^{B}\right)=E^{0}\left(S_{0}^{A}\right)
$$

Speed twist (3)

node location at time t

- At location x, speed is inversely proportional to the target density $\mathrm{b}_{\mathrm{x}}(\mathrm{x})$ of location x

Frequently Asked Questions

- Does model accommodate power-law inter-contact times ?
- Does model accommodate heavy-tailed trip durations ?
- Can model produce a given timestationary distribution of node position ?
(1) What are mobility data resources?

Resources

- Partial list:
- CRAWDAD (crawdad.cs.dartmouth.edu)
- Haggle (www.haggleproject.org)
- MobiLib (nile.usc.edu/MobiLib)
- Street maps:
- U.S. Census Bureau TIGER database (www2.census.gov/geo/tiger)
- Mapinfo (www.mapinfo.com)

Frequently Asked Questions " Summary "

- Power-law inter-contact times are captured by some random trip models
- Trip duration can be heavy tailed
- Given time-stationary distribution of node position can be achieved

Outline

- Simulation Issues with mobility models
- Random trip basic constructs

Appendix 2: An additional condition

- We introduce an additional condition that is needed for stability result of random trip to be valid
- Positive Harris recurrence
- $Y_{n}=\left(I_{n}, P_{n}\right)$ (phase, path) is a Markov chain by construction of the random trip model
- In general, on general state space!
- Not necessarily bounded or countable

- We assume that Y_{n} is positive Harris recurrent
- We check the condition for our catalogue of models

Positive Harris recurrence

- If the state space for the Markov chain of phases and paths sampled at trip endtimes would be countable (not true in general), this would mean
- Any state can be reached
- No escape to infinity
- A natural condition if we want the mobility state to have a stationary regime
- On a general state space, the definition is more evolved. It is true for all the models in the catalog before, assuming common sense assumptions:
- The underlying graphs are fully connected.
- Expected number of consecutive visits in a subdomain if finite
- For billiards, assume density of speed vector is completely symmetric

Harris recurrence

- It means that there exists a set R that is visited by Y_{n} from any initial state in some given number of transitions
- The set R is "recurrent"

Harris recurrence (2)

- Probability that Y_{n} hits a set B starting from R in some given number of transitions is lower bounded by $\beta \varphi(B)$
$-\beta$ is a number in $(0,1), \varphi$ is a probability measure on $I \times P$
- The set R is "regenerative"

Positive Harris recurrence

- Y_{n} Harris recurrent implies that Y_{n} has a stationary measure π^{0} on $\mathrm{I} \times \mathrm{P}$
- It may be $\pi^{0}(\mathrm{I} \times \mathrm{P})=+\infty$
- We need $\pi^{0}(\mathrm{I} \times \mathrm{P})<+\infty$ so that Y_{n} has a stationary probability distribution
- We assume that Y_{n} is positive Harris recurrent
- It means Harris recurrent plus that the return time to set R has a finite expectation

Check the condition for random waypoint

- For this model, it is easy
- It suffices to consider RWP with no pauses
- Note that any two paths P_{n}, P_{m} such that $|n-m|>1$ are independent
- Hence

$$
P\left(P_{n} \in A_{1} \times A_{2} \mid P_{0}=p\right)=\left|A_{1}\right| \cdot\left|A_{2}\right|, \text { for all } n>1
$$

- Take as the recurrent set $\mathrm{R} \equiv \mathrm{A} \times \mathrm{A}$

Check condition for restricted random waypoint

The condition is true if

- In addition to assumptions for random waypoint, it holds
- The Markov walk on sub-domains is irreducible
- And the mean number of trips within a sub-domain is finite
- Proof follows from well known stability results for Markov chains on finite state spaces

Check condition for random walk on torus

The condition is true if

- The speed vector has a density in R^{2}
- And, trip duration has a density, conditional on either phase is move or pause

Check condition for random walk on torus(2)

- Main thing to prove is that node position at trip transitions, X_{n}, is Harris recurrent
- Fact: the distribution of X_{n} started from any given initial point, converges to uniform distribution, provided only that node speed has a density
- Harris recurrence follows by the latter fact, Erdos-TuranKoksma inequality, and Fourier analysis

Check condition for billiards

The condition is true if

- The speed vector has a density in R^{2} that is completely symmetric
- And, trip duration has a density, conditional on either phase is move or pause
- Proof by reduction to random walk (see [LV06])
- Def. A random vector (X, Y) is said to have a completely symmetric distribution iff $(-X, Y)$ and $(X,-Y)$ have the same distribution as (X,Y)

To be complete ...

- We also need to assume:
(a) Trip duration S_{n} is strictly positive
(b) Distribution of trip duration S_{n} is non-arithmetic
arithmetic $=$ on a lattice
- These are minor conditions, can in practice be assumed to hold
- (a) is common sense
- (b) is true in particular if S_{n} has a density

