A SERVICE CURVE APPROACH TO DEMAND RESPONSE

Jean-Yves Le Boudec Dan-Cristian Tomozei

Agenda

Demand Response
 Service Curve Approach
 User Side Optimization
 Operator Side Optimization

Demand Response

- Some Demand can be delayed !
- DSO provides best effort service with statistical guarantees [Keshav and Rosenberg 2010]

Voltalis Bluepod switches off thermal load for 30 mn

Programmable dishwasher

PeakSaver cycles AC for 15mn

Price vs Quantity

- Peaksaver, Bluepod act by quantity control
 - DSO/Aggregator switches off appliance
- Price control often proposed as alternative
 - Users save when price is high

Centralized vs Distributed Control

- Direct control by DSO/Aggregator for air conditioning, dryers
- Not scalable, does not adapt to diversity and flexibility
- Appliance control should be done close to end-users

Managing End-User Preferences in the Smart Grid, C. Wang and M. d. Groot, E-energy 2010, Passau, Germany, 2010

Price Based Approach
+ Distributed, flexible, user can interact

Volatility, Reconciliation,
 Predictability

Quantity Based Approach

- + Predictable costs
- Centralized, inflexible, no user input

Service Curve Approach

+ Distributed, flexible, user can interact

+ Predictable costs

Definition of Service Curve Approach

- 1. Customer agrees to be throttled, with a bound
- 2. Fixed price per kWh
- 3. Total load is controlled

Service curve

Example 1: Load Switching

 At most 30 mn of interruption total per day
 Or reduction to ^z max for 60mn
 ²
 ²
 ²
 ¹
 ²
 ¹
 ¹
 ²
 ¹
 ¹

total per day

Example 2: Two Level Control

- Similar, but a minimum power z_{min} is guaranteed
- Better suited (than ex 1) when applied to an entire home /enterprise

$$\int_{t}^{t+t_{1}} u(s)ds \ge A$$

i.e. the allowed energy per window of time t₁ is lower bounded

User Side Optimization

- User can observe past signals and predict worst case future
- Smart home controller can manage load accordingly

[LeBoudec Tomozei 2011]

Provider Side Optimization

- Provider may send smooth signals
 - E.g. u(t) = 2 z_{min} to many customers, for long periods of time
- Or bursty signals
 - E.g. u(t) = z_{min} to selected customers, for shorter periods of time
- Smooth signals are optimal for stationary but random loads, bursty signal are better for shaving peaks

(a) $t_0 = 30$ mn, quota $N_a = 6100$

(b) $t_0 = 3h$, quota $N_a = 3500$.

EPFL Testbed

Conclusions

We propose a service curve approach to demand response

Distributed Applies to total customer load Provides large flxibility to provider Protects user from price uncertainty

[Le Boudec Tomezei 2011] Le Boudec J.Y. and Tomozei, D.C "Demand Response Using Service Curves", EPFL-REPORT-168868, https://infoscience.epfl.ch/record/168868, 2011