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Abstract
Assume that a stochastic process can be approximated, when some scale parameter gets large, by a fluid limit 
(also called “mean field limit”, or “hydrodynamic limit”). A common practice, often called the “fixed point 
approximation” consists in approximating the stationary behaviour of the stochastic process by the stationary 
points of the fluid limit. It is known that this may be incorrect in general, as the stationary behaviour of the fluid 
limit may not be described by its stationary points. We show however that, if the stochastic process is reversible, 
the fixed-point approximation is indeed valid. More precisely, we assume that the stochastic process converges 
to the fluid limit in distribution (hence in probability) at every fixed point in time. This assumption is very weak 
and holds for a large family of processes, among which many mean field and other interaction models. We show 
that the reversibility of the stochastic process implies that any limit point of its stationary distribution is 
concentrated on stationary points of the fluid limit. If the fluid limit has a unique stationary point, it is an 
approximation of the stationary distribution of the stochastic process.
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1. Fluid Limit (= mean field limit) for Interacting Objects

Model: 𝑁 interacting objects, discrete time, finite state space 𝑆, object 𝑛 is in state 
𝑋!" 𝑘 ∈ 𝑆 at time step 𝑘;	 𝑋#" 𝑘 ,… , 𝑋"" 𝑘 is Markov, 𝑀$

" 𝑘 =
#
"
∑!%#" 1&! "

# %# is the occupancy measure, with 𝑀$
" 𝑘 ∈ 𝐸 = 𝒫(𝑆)

Scaling:𝑊" 𝑘 ≔ #objects that do a transition at step 𝑘, 𝔼 𝑊" 𝑘 = 𝑂(1) and 
𝔼 𝑊" 𝑘 ' = 𝑜 𝑁

Drift: 𝑓" 𝑚 := 𝔼(𝑀" 𝑘 + 1 −𝑀"(𝑘)|𝑀" ( = 𝑚);  𝑓(𝑚) ≔ lim
"→*

𝑁𝑓"(𝑚)

Fluid limit: 𝑚: 0,+∞ → 𝐸 is solution of ODE +,(.)
+.

= 𝑓 𝑚 𝑡

Theorem: sup
01 .12

𝑀" 𝑁𝑡 −𝑚(𝑡) → 0 in probability   [Benaim 2008]
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Example: Dormant Malware [Benaim 2008]
Model: Every time step, one node 
(`S’  Susceptible, `D’ Dormant 
or `A’ Active) is picked and 
triggers a transition with this proba:
Occupancy measure is
𝑀" 𝑘 = (𝐷"(𝑘), 𝐴"(𝑘), 𝑆"(𝑘))
with
𝑆"(𝑘) + 𝐷"(𝑘) + 𝐴"(𝑘) = 1
and e.g. 𝐷"(𝑘) = proportion of
nodes in state `D’
Fluid limit is ODE:
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m(𝑡)

𝑀! 𝑁𝑡

𝑁 = 1000

1. Recovery
D	->	S

2. Mutual	upgrade	
D	+	D	->	A	+	A

3. Infection	by	active
D	+	A	->	A	+	A

4. Recovery
A	->	S

5. Recruitment	by	
Dormant

S	+	D	->	D	+	D
Direct	infection

S	->	D
6. Direct	infection

S	->	A



Example: El Botellon [Rowe 2003]

Model:𝑁 people in total, 𝑁$ are in square 𝑖. 
At every step: 
pick one person at random; say she is in 
square 𝑖; 

proba she leaves square is 1 − 9
"

"$:#

Occupancy measure is 𝑀" 𝑘 =
"$ (
" $%#:"

Fluid limit is ODE:
+,$
+.

= −𝑚$𝑒:9,$ +∑<𝑚< 𝑒:9,%𝑄$,<

and for large 𝑁: 𝑀" 𝑘 ≈ 𝑚 (
"
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Stay ?
If leave: go to 𝑗 with proba 𝑄!,#

𝑖

𝑗

Socialization factor

simulation (𝑁 = 1000)

ODE

s = 2
𝑚"

𝐼 = 3 squares

𝑚#



El Botellon, Continuous Time Version

𝑍" 𝑡 = 𝑁$ 𝑡 $%#:" is a continuous time Markov chain

with ∑$𝑁$ 𝑡 = 𝑁.

Transition matrix: 𝐴!,!:B⃗$CB⃗% =
#
"
𝑛$ 1 − 9

"

!$:#
𝑄$,<

where 𝜆 is a constant (sampling rate). 

𝑀"(𝑘) is the uniformization of 𝑍"(𝑡) with sampling rate 𝜆 = 𝑁
i.e.𝑀" 𝑘 is state of 𝑍" 𝑡 sampled at 𝑘DE tick of a sampling Poisson 
process with rate 𝑁 [Rubino 2014].

𝑌" 𝑡 ≔ #
"
𝑍" 𝑡 → 𝑚(𝑡) same fluid limit and same convergence result as 

discrete time model (“Kurtz’s theorem”, [Le Boudec 2013]).
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Stay ?
If leave: go to 𝑗 with proba 𝑄!,#

𝑖

𝑗



Fluid Limit and Decoupling Assumption

For the generic model of interacting objects [Sznitman
1991]: 
• 𝑀" → deterministic limit 𝑚 (fluid limit) 

⇔
any ℓ objects are asymptotically mutually independent
(ℓ is fixed and 𝑁 → ∞)

• and then 𝑚 (
"
≈ law of state of one object 𝑋#"(𝑘)

𝑚(𝑡) approximates both
1. the occupancy measure 𝑀𝑁( 𝑁𝑡 )
2. the state probability for one object at step 𝑘 = 𝑁𝑡
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𝑡 = 0.3

𝑘 = 300

𝑚(𝑡)

𝑀𝑁(𝑘)

(𝑁 = 1000)



2. Stationary Regime

Assume system with finite 𝑁 is ergodic (hence has a unique 
stationary regime).
Decoupling assumption says 𝑚(𝑘/𝑁) approximates the law 𝜋#"(𝑘)
of one object at step 𝑘. We are looking for 𝑚∗ = lim

(→*
𝜋#"(𝑘)

Now +,(.)
+.

= 𝑓 𝑚 𝑡 , thus 𝑚∗should satisfy 𝑓 𝑚∗ = 0. This is 
called the “fixed-point assumption.”

Commonly used: e.g. “Bianchi’s formula” for 802.11 [Bianchi 1998] 
for El Botellon [Rowe 2003], for alternate routing in [Kelly 1991] etc.
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When fixed point assumption fails

• Here, fluid limit has a unique fixed point 𝑓 𝑚∗ = 0 but 𝑚∗ is 
not the large time approximation of stationary distribution –
instead, there is a limit cycle.

• Assume you are in stationary regime (simulation has run for a 
long time) and you observe that one node, say 𝑛 = 1, is in state 
‘A’ – It is more likely that 𝑚(𝑡) is in region R. Thus, it is more 
likely that some other node, say 𝑛 = 2, is also in state ‘A’. I.e. 
decoupling assumption fails here in stationary regime – objects 
states are correlated.
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ℎ = 0.1 (instead of 0.3)

𝑚∗R

ℙ 𝑋-.
𝑡
𝑁

= 𝑖 and 𝑋/.
𝑡
𝑁

= 𝑗

𝑚0 𝑡 𝑚1(𝑡)
𝑁 → ∞

𝜋0,1.

???

𝑁 → ∞

𝑡 → ∞

𝑡 → ∞
???



Long run behaviour : randomness comes back

[Benaim 2008] Any limit point of the stationary distribution of 𝑀"(𝑡)
is supported by the Birkhoff center of the ODE.
Birkhoff center = closure of set of points𝑚 s.t.𝑚 ∈ 𝜔(𝑚)
Omega limit 𝜔(𝑚) = set of limit points of orbit starting at 𝑚

Here: Birkhoff center = limit cycle ! fixed point.

Large N limit of stationary regime is not deterministic (unlike for
transient regime).
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A Simple Case

[Benaim 2008] 

If ODE has a unique fixed 
point to which all 
trajectories converge, 
then the stationary 
distribution of 𝑀𝑁

converges to a Dirac 
mass at this fixed point 
and the fixed point 
assumption is valid.
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Fixed point 
assumption
is not valid

h = 0.1

h = 0.3Fixed point 
assumption

is valid



Example with El Botellon
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s = 2.8

Multiple fixed 
points, so the 

fixed point 
assumption 

breaks.

Object states are 
correlated.

𝑁𝑥$

𝑁𝑥%𝑁𝑥&



3. Time Reversibility

Strong form: A random process 𝑌 defined for 𝑡 ∈ ℝ is time-reversible iff for any  𝑡# <
𝑡' < ⋯ < 𝑡(, 

𝑌 𝑡# , … , 𝑌 𝑡( ∼ 𝑌 𝑡( , … , 𝑌 𝑡#
where ∼means same distribution. This implies that 𝑌 is stationary.
Weak form: 𝑌 defined for 𝑡 ∈ ℝC is reversible  under Π iff for any test function ℎ and any 
𝑡 ≥ 0: ∫ 𝔼(ℎ 𝑦, 𝑌 𝑡 |𝑌 0) = 𝑦 Π 𝑑𝑦 = ∫ 𝔼(ℎ 𝑌 𝑡 , 𝑦 |𝑌 0) = 𝑦 Π 𝑑𝑦
𝑌 time-reversible (strong form) and Π is law of 𝑌 0 ⇒ 𝑌|.K0 is reversible  under Π.

Ergodic discrete time Markov chain is time-reversible iff Π$𝑄$,< =Π<𝑄<,$ , ∀𝑖, 𝑗,where 𝑄
is transition probability matrix and Π stationary probability.
Ergodic continuous time Markov chain is time-reversible iff Π$𝐴$,< =Π<𝐴<,$ , ∀𝑖, 𝑗,where 
𝐴 is infinitesimal generator and Π stationary probability.
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Reversible

• Continuous or Discrete time 
Markov chain on a tree

• Continuous or Discrete time 
Markov chain with symmetric
transition probs 𝑃$,< = 𝑃<,$ or 
rates 𝐴$,< = 𝐴<,$ • This Markov chain on a ring with unequal 

transition probabilities 
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Non-Reversible

0.1

0.90.5

0.5

Reversible

• Birth and Death process, M/M/1 queue
• Product-form queuing network when 

the chain of visited stations is reversible 
[Le Boudec 87].

• El Botellon when neighbours are visited 
with equal proba. 



Reversible Semi-Flows
Semi-flow: mapping 0,+∞ ×𝐸 → 𝐸, 𝑡, 𝑦 → 𝜑.(𝑦)
s.t. 𝜑0 𝑦 = 𝑦 and 𝜑9C. 𝑦 = 𝜑9 𝜑. 𝑦 .
Stationary point 𝑦: 𝜑. 𝑦 = 𝑦, ∀𝑡 ≥ 0.

Example: ODE:  𝜑. 𝑚0 = 𝑚(𝑡) where +,(.)
+.

= 𝑓 𝑚 𝑡
with 𝑚 0 = 𝑚0; stationary 𝑚0: 𝑓 𝑚0 = 0 (= fixed point)

Semi-flow 𝜑 is reversible under probability Π iff 

h
L
ℎ 𝑦,𝜑. 𝑦 Π 𝑑𝑦 = h

L
ℎ 𝜑. 𝑦 , 𝑦 Π 𝑑𝑦

i.e. trajectories in stationary regime are statistically same 
under time reversal.
Concentration on stationary points:  If semi-flow 𝑡, 𝑦 →
𝜑.(𝑦) is continuous w.r. 𝑦 and is reversible under Π, then 
Π set of stalonary points = 1. [Le Boudec 2013]
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This semi-flow is not 
reversible under the 

invariant probability of the 
limit-cycle: if we reverse 

time, it turns in the other 
direction.



Fluid Limit of Reversible Processes
Theorem [Le Boudec 2013] If
1) 𝑌" is reversible under Π"

2) 𝑌" 𝑡 → 𝜑. in distribution in the following sense:

∀𝑡 ≥ 0, conditional law of 𝑌"(𝑡)|𝑌" 0 = 𝑦" 0
"→*

dirac mass at 𝜑. 𝑦0
whenever 𝑦" 0

"→*
𝑦0

3) Π is a limit point of Π"

then fluid limit 𝜑 is reversible under Π,	hence Π stationary points of 𝜑 = 1
Examples: 2) holds when𝑌" = occupancy measure for 𝑁 interacting objects 
Corollary:
If in addition, 𝐸 is compact and semi-flow 𝜑 has a unique stationary point 𝑚∗, 
then lim

"→*
Π" = 𝛿,∗ (Dirac mass, for weak topology)

Examples: 𝐸 is compact when state space of one object is finite
In the reversible case, no need to show that all trajectories converge to 𝑚∗ ! 
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s = 2.8

s = 2

𝑠 < 2.7456
All trajectories of ODE converge to 
the unique fixed point
Fixed-point assumption is valid
The proba that a person is in 
square 𝑖 is ≈ -

4

𝑠 > 2.7456
ODE has four stable fixed points
The occupancy measure is 
concentrated  on the four stable 
fixed points (metastability)

𝑁𝑥$

𝑁𝑥%𝑁𝑥&



Conclusion
Mean-field / fluid approximation gives a large 𝑁 deterministic 
approximation of interacting objects over finite horizons.

In stationary regime, the fluid limit may appear to be random.

The (common) assumption that stationary points of the fluid 
limit characterize its stationary behaviour is wrong, in general, 
but is true if pre-limit processes are time-reversible.
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