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Abstract

What would happen today if we would instantly add a very large
amount of renewables to the electricity mix? First, many distribution
grids would face power quality problems such as over- and under-
voltages and excessive line-currents. Second, the existing reserve
mechanisms that are required to maintain power balance at all times
would not be able to cope with the high variability and uncertainty of
renewables. These problems can be solved if we are able to control
the huge number of electrical resources that are located in
distribution grids, which poses a number of new challenges in terms
of scalability and reliability. In this talk we discuss these challenges
and how they can be addressed by innovative information
technology solutions, which involve in particular a scalable and
composable framework (Commelec) for the development of real-
time control agents .
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What would happen if we had 100% renewables in
the grid ?




Short-term volatility

Example of daily measured power injected by solar
arrays at EPFL
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Absence of inertia in distribution grids
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What would happen if we had 100% renewables in
the grid ?

fast ramping gas power plant

1. We would need very large reserves for power
balance and reliability.



Quality of Service

problems in

distribution grids

Tension du réseau
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What would happen if we had 100% renewables in
the grid ?
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We can do better with real-time control of
electrical distribution grids with storage and
demand-response

xxxxxxx

Goals of control: B s o
- Distribution grid supports main grid
- Local solution of quality of service issues
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Explicit control of power flows
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- instruct battery, heat Eump,_EV charging
station...

- manages quality of service in grid
- respond to main grid’s signals
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Challenges for explicit control of power flows
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- nexpenswe platforms (embedded controllers)

- Real-time
- Scalability
- Simple and re-usable code

- Reliability



2. The Commelec framework for real-time control
of electrical grids
[Bernstein et al 2015, Reyes et al 2015]
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Commelec design principle #1: resource
independent control
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Every 100 msec

- Resource agent sends to grid agent a PQ profile, Virtual
Cost and uncertainty sets (Belief Function)

- Grid agent sends power setpoints
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Examples of PQ profiles

Battery

Synchronous
Generator
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Virtual cost act as proxy for internal constraints

Battery used for regulation:

\ If state of charge is 0.7,

lcando P, Q > | am willing to inject power
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Say grid agent requests setpoint (Pset , Qser) from a

resource; actual setpoint (P, Q) will, in general,
differ.

Belief function is exported |
by resource agent with the ¢

\
belief Y

semantic: \ ,,

. Upy @ J Cospmin(0) = 0.8
resource implements
(P’ Q) S BF(Pset ) Qset) b ¢

Belief Function
for a PV resource

Essential for safe operation
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Grid Agent computes setpoints

, PCe
for resource agents based on o | @, i
’O/‘
* Electrical state estimation . Cﬁ} "CO/-%
* Advertisements received e | 574 e [

* Request from main grid O
BATTERY @

Grld Agent mlnlmlzes Cost of power flow at point

of common connection
J(x) = E

[ Virtual costof the Penalty function of grid ele

resources (e.g., voltages close to 1 p.u.,
line currents below the ampacity)

Grid Agent does not see the details of resources;
Problem solved by grid agent is always the same
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Given estimated (measured) state £ = (P;, Q;) grid
agent computes next setpoint as

x = Proj {X + Ax}

where

- Ax is a opposed to gradient of overall objective

- Proj{} is the projection on the set of safe electrical
states

This is a randomized algorithm to minimize E (J(x))

20



Grid agent’s main job involves

- Testing whether a given collection of power
setpoints is feasible, given uncertainties of belief
functions and given the characteristics of the
orid

- This is known as a robust load flow

We have developed a very fast innovative method
adapted to distribution networks (linear
complexity, sub ms run time) [Wang et al. 2016]
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Commelec design principle #2: composability
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Aggregation example
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Commelec grid integrates all resources to keep grid
safe
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Commelec grid provides frequency support to main

grid

50.04

Frequency (Hz)

Active Power (kW)

Network Frequency (Frequency Support)

I fmeaS
- Jnom
| | | | | | | | |
0 20 40 60 80 100 120 140 160 180
Time (s)
- Py
L , P gl
mrim TrivriTr T 1T U | | pimp
} T P
| | | | | | | | |
0 20 40 60 80 100 120 140 160 18(
Time (s)

27



EPFL smart grid deployment
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EPFL Microgrid running Commelec
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Commelec is implemented in the Commelec API
(smartgrid.epfl.ch) for resource agent

Intelligent
Building
Application

minimize

'set': {'pointProjection': {'reference': 'S'}}}L

'pQProfile': {'parameterizedQperation': {'operati
'paramSet': {'interval': {'lower': ©.9, 'upper'
'parameters': ['V'],

PVs
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Deployment Plans 2017
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3. Networking Issues

32



Reliability

- Network Relia

Ol

- Tolerance to ¢

e

Use the BIP framework
A single code for all grids
ility by iPRP

ay faults by Axo
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IPRP : reduce packet loss probability for UDP
streaming with multi-homed sensors and

controllers
- Works on

(J//

w-a.pdc3.smartgrid.epfl.c
“-b.pdc3.smartgrid.epfl.ch

Popovic et al 2016]

P networks (unlike PRP)

Management PMU 1 PMU 2
terminal ===/¥ ===

PMU 3
nw-a.pmu3.smartgrid.epfl.ch '_::J
nw-b.pmu3.smartgrid.epfl.ch ===

vd1015-2658.4g.swisscom.ch

vd1024- 5478 4q. SW|ssc0m ch ' ”'( | ==

°MU 4

4G Base T Swisscom LTE T 4G Base
Station backbone Station

34



IPRP: transparent to UDP application and to
network o S

PMU &

nw-a.pmu3.smartgrid.epfl.ch == =zf

nw-b.pmu3.smartgrid.epfl.ch ===

RN

vd1015-2658.4g.swisscom.ch

- At source
packets are
replicated on all BEEEESIEEGET) N\

I n te rfa C e S vd1024-5478.49. svwsscom ch "f F:l\-/l:J_4

. 4G Base wisscom ase
- Matching addresses  suon K@\T i oas

learnt automatically

- Supports multicast with Biersack-
Nonnenmacher’s scheme for backoff

- Soft-state for crash recovery
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IPRP operation
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Axo: handle delay faults in Grid Agents

Controller is replicated for reliability

Commodity software used in |
controller (Grid Agent) sometimes ™.
exhibits large delays s

Delayed setpoints received
by actuator may be invalid

Axo solution T

1. require soft state approach in controller
2. tagger and masker in client libraries catch
delayed setpoints
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Pce

Cyber-Security Geim
AGEEVT /))
- Controland sensing  aen _— N ’bJ/
- CoMMUN(CATION C
messages are | \“O/
] _ RESOMR(E| |AC ReE| [ e
authenticated with  [|ouev | L2 peenr ||SG

D-TLS and ECDSA @ @

for multicast

- Timing Attacks:
Time Sync is used everywhere in smartgrid
Phasor Measurement Units: require < usec
(GPS- PTP)
Other sensors / actuators require = 1 msec
(NTP- PTP)
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Network Time Synchronization Protocols (PTP, NTP)

B’s goal is to adjust its clock to A’s Clock Clocks

B receives at t5(1) a time stamped SYNC tA(éﬂ)m\“w ig a(0)

message from A, sent by A at t,4(0). 9 o s t5(1)
i i

Assume we know the one-way delay dyp. ;;g\ 126

With B’s clock, the time tz(0) at which this Egp_m;;!.;!_i?_ffl_a s

message was sentis tg(0) = tg(1) — dyp. e g

180 180
130 150
200 200

B’s clock offset w,p with respect to Ais
wap = tg(0) — t4(0) = tp(1) — t4(0) — dyp

NTP and PTP measure the round-trip delay and do:

one-way-delay = % round-trip delay.
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Can we Measure One-Way Delays?

No. It is impossible.

Consider a simple scenario with two nodes. It is impossible for node B
to distinguish between scenarios S1 and S2

Scenario S1 Scenario S2
tA thtA+(1) tA tB=tA+Cl)—€
0 On
ta(0) Ne-y, ta(0) 'S wa
YV dely, tp(1) = ! Y elay. tp(1) =
g ) Vs g, ts(D)
t,(0)+d <t (0)+d
+w Tw

! (2) ‘/ﬂ tp (2)
14(2) = ey 0V 14(2) = = ayoeer ¢

tg(2) —w+d” O™ " tp(2) —w+d'¥ O™ \
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Theorem [Gurewitz 2006 ] In a general network with N nodes and L
unidirectional links, the number of delays that can be measured by
timestamping protocols (such as NTP and PTP) is< L — N + 1.

The bound (called cyclomatic number) is always less than L, so it is
not possible to measure all unidirectional link delays.

. . . . 1
It is possible to account for link asymmetries (one-way-delay # E

round trip delay) only by external information. For example, if
asymmetry is due to different speed of light in optical fibers, the
ratio between forward and backward delay is known and can be
used to estimate delays correctly.

[Gurewitz 2006] Gurewitz, Omer, Israel Cidon, and Moshe Sidi. "One-way delay
estimation using network-wide measurements." [EEE/ACM Transactions on
Networking (TON) 14.S1 (2006): 2710-2724.
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The Undetectable Delay Box

- Introduce OEO repeater T‘ > -y
In an optical line

- |Insert different delays
in each direction
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Attack against grid control using a delay box
- modify measured phasor angles, undetectably

- induce grid control into under- or over-
estimating power flows.
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Conclusion

- Real time control of power flows will enable
integration of large amounts of renewables

- |T Challenges are similar to those of autonomous
vehicles
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