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MEAN FIELD INTERACTION MODEL



Common Assumptions

B Time is discrete or continuous

B N objects
B Object n has state X, (t)

W (XY, (t) .., XN(t)) is Markov
=> M"(t) = occupancy measure process is also Markov

B Objects can be observed only through their state
B Nislarge

Called “Mean Field Interaction Models” in the

Performance Evaluation community
[McDonald(2007), Benaim and Le Boudec(2008)]



Intensity /(N)

B /(N) = expected number of transitions per object
per time unit

B The mean field limit occurs when we re-scale time

by I(N)
i.e. we consider X"(t/I(N))

B If time is discrete for XV
» I(N) = 0(1): mean field limit is in discrete time
[Le Boudec et al (2007)]

» I(N) =0(1/N): mean field limit is in continuous time
[Benaim and Le Boudec (2008)]



Example: 2-Step Malware

Mobile nodes are either
» S’ Susceptible
» D’ Dormant
» A’ Active
Time is discrete
Nodes meet pairwise (bluetooth)

One interaction per time slot,
I(N) = 1/N; mean field limit is an ODE

State space is finite
— {\S) ) \AI ’\D’}

Occupancy measure is
M(t) = (S(t), D(t), A(t)) with
S(t)+ D(t) + A(t) =1

S(t) = proportion of nodes in state 'S’

[Benaim and Le Boudec(2008)]

B Possible interactions:

6.

Recovery
» D->S
Mutual upgrade
» D+D->A+A
Infection by active
» D+A->A+A
Recovery
» A->S
Recruitment by Dormant
» S+D->D+D
Direct infection
» S->D
Direct infection
» S->A



Simulation Runs, N=1000 nodes
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Sample Runs with N = 1000
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Example: WiFi Collision Resolution Protocol

B N nodes, state = retransmission stage k

B Time is discrete, I[(N) = 1/N; mean field limit
is an ODE

B Occupancy measure is M(t) = [M,(t),...M(t)]
with M, (t) = proportion of nodes at stage k

B [Bordenave et al.(2008)Bordenave,

McDonald, and Proutiere,
Bordenave et al.(2007)Bordenave,
McDonald, and Proutiere]

10



Example: TCP and ECN

B [Tinnakornsrisuphap and B Time is discrete, mean field limit is
Makowski(2003)] also in discrete time (iterated map)

ECN Feedback q(R(t))
B Similar examples:
HTTP Metastability
@ —. ECN router [Baccelli et al.(2004)Baccelli,
@%ueue length R(t) Lelarge, and McDonald]
N connections Reputation System [Le Boudec et

al.(2007)Le Boudec, McDonald,
and Mundinger]

At, every time step, all connections
update their state: I(N)=1

11
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Example: Age of Gossip

B Mobile node state = (¢, t)
c=1..16 (position)

t € R*(age)

B Time is continuous, [(N) =1

B Occupancy measure is
F_(zt) = proportion of nodes that at
location c and have age < z

[Chaintreau et al.(2009)]
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Spatial Representation

Comparison between
the mean-field limit and
the trace. Percentages
of mobile nodes in
classes 1-15 with age
z<20mn at time t=300mn

(1 p.m.).
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B We compare the previous 16 class

The Importance of Being Spatial

case with a simple 2 class case
(C=2)

The first figure suggests that for
the case C=16, trace and MF data
samples come from the same
distribution

For the case C=2 we observe the
)

<trono hiac nrecant
) GO S ) | 9

J Ll U116 iAv t.l

and high age

QQ plots, comparing the age distribution of
trace data and data artificially obtained from
the mean-field CDF, for 16 class and 2 class
scenarios. Time period observed 5 p.m.-6 p.m.
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o
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o
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Extension to a Resource

B Model can be complexified

by adding a global resource B Fast: R(t) is change state at

R(t) the aggregate rate N I(N)
B Slow: R(t) is expected to -> requires special
change state at the same rate extensions of the theory

I(N) as one object

IRArdeanavae ot
LUUI VAL IL11ICOL VY w U

al.(2007)Bordenave,
McDonald, and Proutiere]

-> call it an object of a special
class

|[Benaim and Le
Boudec(2008)]

16



What can we do with a Mean Field Interaction

Model ?
B Large N asymptotics B Large t asymptotic
» = fluid limit ~ stationary behaviour
» Markov chain replaced by » Useful performance
a deterministic dynamical metric
system
» ODE
» Fast Simulation M Issues
B Issues » [s stationary regime of
» When valid ODE an approximation of

stationary regime of

» Don’t want do devote an original system ?

entire PhD to show mean
field limit
» How to formulate the ODE

» Does this justify the
“Decoupling Assumption”?

17



FINITE HORIZON

MEAN FIELD LIMIT

18



The Mean Field Limit

B Under very general conditions (given later)
the occupancy measure converges, in some
sense, to a deterministic process, m(t), called

the mean field limit f
N .
M ( I N)) > m(t)

B |Graham and Méléard(1994)] consider the
occupancy measure L" in path space

def 1 i
MY = 5D dxv
f

1
NS ax
n

19



Mean Field Limit
N =+

Stochastic
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N=1000
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Mean Field Limit Equations

case prob
I D(SD 1. Recovery
_ ND—1 > Do oD
2 D)‘ N _1 2. Mutual upgrade - _5DD - QADQ . D}A + (Ct‘[] + T‘D)S
3D » D+D->A+A Ot h+ D
3 I 3. Infection by active aA _
AtD b D+A->A+A — ~ 2\D*+ 34 — S4A +aS
4 Ad A 4. Recovery gg h+D
# A->S
. — & 0pD +64A— (apg+1rD)S —aS
Y 5. R tment b - D A 0
5| S(ag+rD) |5 Recrutmentby ot
) » S+D->D+D
6 SG » S->D
6. Direct infection
P S->A
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Propagation of Chaos is Equivalent to
Convergence to a Deterministic Limit

Definition 1.1 Ler XV = (X\V. ..., X¥) be an exchangeable sequence
of processes in P(.S) and m € P(S) where S is metric complete separa-
ble. (X™)x is m-chaotic iff for every k: L(XY, . X)) - m®..Q@m
as N — oo.

Theorem 1.1 ([Sznitman(1991)]) (XV)y is m-chaotic then the occu-
def - . . :

pancy measure MY = % le dxn converges in probability (and in

law) to m.

If the occupancy measure converges in law to m then (X )y is m-

chaotic.

22



Propagation of Chaos
Decoupling Assumption

B (Propagation of Chaos)

If the initial condition (XN, (0)),.; yis exchangeable and there is mean field
convergence then the sequence (XN ) _; yindexed by N is m-chaotic

k objects are asymptotically independent with common law equal to the
mean field limit, for any fixed k

c ()\q (K—LJ X (“_z‘))) Smit)e .. @ m(t)

(Decoupling Assumption)

(also called Mean Field Approximation, or Fast Simulation)

The law of one object is asymptotically as if all other objects were drawn
randomly with replacement from m(t)

23



Example: Propagation of Chaos

B Atanytimet il \
t 'I?Im u.-_b
S g |
t t 1
P(Xm(®) =' D', Xa®) =' &) ~ D(2)A(5) )
(Xm(t) = n(t) 1= D \
where (D, A, S) is solution of ODE o
B Thus for large | o Daman
» Prob (node n is dormant) = 0.3 s
» Prob (node nis active) ~ 0.6 wa

» Prob (node n is susceptible) = 0.1

24



The Two Interpretations of the

PR .
wviedlIl r

&
L

Ry U O
ciU LIl

m(t) is the approximation for large N of
1. the occupancy measure MN(t)

2. the state probability for one object at time ¢, drawn at random
among N

25



The Mean Field Approximation

B Common in Physics

B Consists in pretending that XV _(t), X" (t) are independent in the
time evolution equation

B Itis asymptotically true for large N, at fixed time ¢, for our
model of interacting objects, when convergence to mean field
OCCUrsS.

B Also called “decoupling assumption” (in computer science)

26



FINITE HORIZON

CONVERGENCE TO MEAN FIELD
LIMIT

27



The General Case

B Convergence to the mean field limit
is very often true

B A general method is known
|Sznitman(1991)]:

» Describe original system as a markov
system; make it a martingale problem,
using the generator

» Show that the limiting problem is
defined as a martingale problem with
unique solution

» Show that any limit point is solution of
the limitingmartingale problem

» Find some compactness argument (with
weak topology)

B Requires knowing [Ethier and
Kurtz(2005)] 28



Finite State Space per Object : Kurtz’s Theorem

B State space for one object is finite

B Original Sytem is in discrete time and I(N) -> 0; limit is in
continuous time

[Kurtz(1970), Sandhelm(2006)] Let

Nimy = f{N E(M”{k + 1) — m| MV (ky = m)
AN(my = ;(N Ty (1M 41) = | Mk} = m)
1
BY(m) = E(HMN K+ 1) = ml| 1 s ty—m =50y | M () = m)

TN

@ limysup,, ||[N(m} — f(m)|| = O for some f,
SUPy sUp,, AY(m) < oo
limp sup,, ||BY(m}|| = 0 with limy—; o dy =0

& MN{O} — myp in probability
Then supg< <7 P (||MY () — mx(£)||} — O in probability.

29



Discrete Time, Finite State Space per Object

B Refinement + simplification, with a fast resource

[Benaim and Le Boudec(2008), loannidis and Marbach(2009)]

o Let WN(k) be the number of objects that do a transition in
time slot k. Note that E (WN(k)) = NI(N), where

[(N) Hintensity. Assume

E (WN(k)E) < 3(N) with  lim I(N)5(N) =0
e MN(0) — mp in probability
@ regularity assumption on the drift (generator)
Then supg <7 P (|[MN(t) — m(t)||) — 0 in probability.

When limit is non continuous:
[Benaim et al.(2006)Benaim, Hofbauer, and Sorin]



Example: Convergence to Mean Field

[ afeppp— P |

c
LAQIIPICT. £70

& Mobile nodes are either

» S Susceptible

» D' Dormant

» "A'Active
B Time is discrete
W Nodesmeet pairwise (bluetooth)
B One interaction per time slot.

I{N] = 1 /N; mean field limit ic an ODE

B State space is finite
={S.'A".D?}

® Occupancy measureis
M(x) = (5{t), D(t), A(t)) with
S(t)+ D(t) + A(t) =1

S8(t] = proportion of nodes in state 'S’

{Benair and L& Boudec(2008)]

B Possibleinteractions:
. Recovery

2. Mutual upgrade

. Infection by active

. Recovery

. Recruitment by Dormant

. Direct infection

B Rescale time such that one time
step=1/N

B Number of transitions per time
step is bounded by 2, therefore
there is convergence to mean field

» D-»5§

» D+D->A+A

» D+A=A+A

» A-=5

» 5+D->D=+D

Direct infection

» S-=D

» 5->A

oD

ot
JA

ot
as

ot

D
o 51D —9o\D? _
~ =0pD = 2AD* — fA;—" + (a0 +7D)S

~ 2\D? + JSAHLD — 54 A +aS

~ OpD+4+6,A— (ag+rD)S —aS
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Discrete Time, Enumerable State Space per Object

B State space is enumerable with discrete topology, perhaps
infinite; with a fast resource
[Bordenave et al.(2007)Bordenave, McDonald, and Proutiere]
@ Probability that objects / and j do a transition in one time
slotis o(1/N)
@ MN(0) — m(0) in probability for the weak topology
o (XN(0),..., X (0)) is exchangeable at time 0
@ regularity assumption on the drift (generator)
Then MV is m-chaotic.

B Essentially : same as previous plus exchangeability at time 0

32



Discrete Time, Discrete Time Limit

B Mean field limit is in discrete time

[Le Boudec et al.(2007)Le Boudec, McDonald, and Mundinger,
Tinnakornsrisuphap and Makowski(2003)]
imy I(N) =1

@ Object / draws next state at time k independent of others with
transition matrix KN (MN)

@ MN(0) — mg a.s. [in probability]

@ reqgularity assumption on the drift (generator)

Then sup,x<x P (||[MN(k) — m(k)||) — 0 a.s. [in probability]

33



Continuous Time

B « Kurtz’s theorem » also holds in continuous time (finite state space)

B Graham and Méleard: A generic result for general state space (in particular
non enumerable).

[Graham and Meleard(1997), Graham and Meleard(1994)]
I{N}=1/N, continuous timse.

@ Object f has a free evolution plus pairwise interactions.
@ XN(0)y—1..n is iid with commen law my

@ Generator of pairwise meetings 1s unifermly bounded In total
variation norm
0.9. it G- (X, X"} = [y, ¥ }(y.¥|x. x")dydy" then
Ty, y'|x, x| dydy” <A, for all x, x’

Then there is propagation of chaos with explicit bounds in total
variation over finite time intervals. Mean field independsnce holds.

34



Age of Gossip

B Every taxi has a state
» Positioninareac=0..16
» Age of last received information

(veec,

Ve e C,
. Veel,

B [Graham and Méléard 1997]

applies, i.e. mean field convergence
occurs for iid initial conditions

B [Chaintreau et

al.(2009)Chaintreau, Le Boudec,
and Ristanovic] shows more, i.e.
weak convergence of initial
condition suffices

OF.(z,1) N OF.(z,1)

ot 0z
ch’,CFc’(Z?t) - (Z Pec.c’ FC(Z:t)
c’'#e ' #c
-+ (uc(t|d) T Fc(zat)) (QWCFC(Zv t) -+ UC)
+ (e (td) = Fe(2,1) D 2Bpe.cryFer (2,1)

35



Graham, Le Boudec 2010]

The Bounded Confidence Model

B Introduced in [Deffuant et al (2000)], used in mobile networks in [Buchegger
and Le Boudec 2002]; Proof of convergence to Mean Field in [Gomez,

A
Useri  Userj
<A before
0 1
after meeting
0 1
Useri Usery
SA before
0 1
after meeting
0 1

Discrete time. State space =[0, 1].
XN(k) [0, 1] rating of common subject held by peer n

Two peers, say [ and j are drawn unifermly at randoi,.
It XV(k)— XM (k)| > A no change; else

XN (k1 1) = wxM(k) 1+ (1 - w)X (k).
XN (k+1) = wX[(k) + (1 = w) XV (k)

36



PDF of Mean Field Limit
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Is There Convergence to Mean Field ?

B Yes for the discretized version of
the problem

» Replace ratings in [0,1] by fixed
point real nombers on d decimal
places

» Generic result says that mean field
convergence holds (use [Benaim
Le Boudec 2008], the number of
meetings is upper bounded by a
constant, here 2).

» There is convergence for any
initial condition such that
MY(0) -> m,

B This is what any simulation
implements

A
Useri  Userj
<A , before
0 1
I I after meeting
0 1
Useri Userj
I" SA I before
0 I
I afler meeting
0 1

38



Is There Convergence to Mean Field ?

B There can be no similar result for B There is convergence to mean field
the real version of the problem if initial condition is iid from m,
» Counter Example: MN(0) -> m(0) |Gomez et al, 2010]

(in the weak topology) but MN(t)
does not converge to m(t)

MN(0)
(=0 MN(t))

«# % t=t
1 [ | 1 1I
0 | 0 |

 mo) m(t,)

A t=0 A _

. . . . =Y
0 1 0 1

39



Convergence to Mean Field

B For the finite state space case,
there are many simple results,
often verifiable by inspection

For example [Kurtz 1970] or
|Benaim, Le Boudec 2008]

B For the general state space, things
may be more complex

40



FINITE HORIZON

RANDOM PROCESS MODULATED
BY MEAN FIELD LIMIT

41



Fast Simulation =
Random Process Modulated by Mean Field
Limit
Assume we know the state of one tagged object at time 0; we

can approximate its evolution by replacing all other objects
collectively by the mean field limit (e.g. the ODE)

ump process, with transition

I'he stat 2}
matrix d riven byth ODE |Darling and Norris, 2008]

A stronger result than propagation of chaos - does not require
exchangeability

42



2-Step Malware Example

N . " R K

B p"(t]i) isthe probablh.ty

that a node that starts in
state 11s in state j at time t:

B Then pf{t/\“" i) = py(t]é)
where p(t/i) is a continuous

time, non homogeneous
process

d ooty — areliyT
=Pl = pltld)” A ()
d

lt

B Same ODE as mean field
limit, but with different
initial condition

pY (t)i) = P(XN (1) = jIXN(0) = i) o

= 051

O
P
—
O
<

0.4r

03F

Q

01

fof node 2

ccupancy measure

WD
4 ity = m@TAGRE) = FOR@) 4

pdf of node 3  Dormant |

! pngBf of node 1
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Details of the 2-Step Malware Example

(m) is the marginal transition probability for one object, given that the state of

the system is m

PN (m)

—

1

A ND—1 N J\D 1 N
[ EpP AT 00 gl 22 Op
= |+ T 0 —0 4 04
g+ Dr v —ag — Dr — «

1 T
— J4+ —AN(m
* N )

B Note: Knowing the transition matrix PN (m) is not enough to be able to simulate (or
analyze) the system with N objects

[

Because there may be simultaneous transitions of several objects (on the example, up to 2)

B However, the fast simulation says that, in the large N limit, we can consider
one (or k) objects as if they were independent of the other N-k

» (XN, (t/N), MN(t/N)) can be approximated by the process (X,(t), m(t)) where m(t)

follows the ODE and X, ( '2 is a jump process with time-dependent transition
matrix A(m(t)) where ;4 {'f—ﬂ Al

44



AN\

ND— 1 - ND— 1
N 1 —H_—D@—Z/\ —0p h+Dd+2)\ O‘D
P(?ﬁ) = I—FT 0 —04 04
: ag + Dr 8] —ag— Dr — a
— I+—AN{ 7)
N

B The state of one object is a jump process with transition matrix:

h+D§f 2\D — op MLD,S—FQAD 0p
Alm) = 0 —04 04
ag + Dr o —ag — Dr — a

where m = (D, A, S) depends on time (is solution of the ODE)

45



Computing the Transition Probability

B P (m) is the transition probability for one object, given that the state if m

_ | [ Bl AR —op pB+ 2R Op
PYN(m) = f+E 0 —d4 S
: ag + Dr o —apg— Dr— o

= I+ %A‘""r(rﬁ.)

where [ is the identity matrix and m = (D, 4, 5).

PY, is the probability that one node in state i = 1, i.e. "D’ moves to state j = 3, i.e. ’S’. This
corresponds to case 1 in the table. The probability that this case occurs in one time slot is Ddp and
the probability that the transition affects precisely the node of interest is % since there are N[
nodes in the *D’ state. Thus P1\3 — ﬂi,f_?p.

Pl, is the probability that one node in state i = 1, i.e. "D’ moves to state j = 2, i.e. ’S’. This
corresponds to cases 2 and 3. The probability is the sum of the probabilities for each of these two
cases, as they are mutually exclusive. The probability that case 2 occurs is DAT—_‘II (given by
the table). The probability that this node is affected, given that case 2 occurs 1is % since case 2
affects 2 nodes that are in state ’D’. Thus the probability that this node does a ‘[Iansition of case

21s f‘: Y D 1 . Similarly, the probability that this node does a transition of case 3 1s h n D 3. Thus
Pl = & (5 + 22853, y




The Two Interpretations of the

PR - P R
viedIl Ficia LITTHL

m(t) is the approximation for large N of
1. the occupancy measure MN(t)

2. the state probability for one object at time ¢, drawn at
random among N

The state probability for one object at time t, known
to be in state i at time 0, follows the same ODE as the
mean field limit, but with different initial condition
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STATIONARY REGIME

STATIONARY REGIME OF MEAN
FIELD LIMIT

48



Stationary Regimes

B Original process is random,
assume it has a unique
stationary regime

B The mean field limit is
deterministic;

Q: What is the stationary regime
for a deterministic process ?

Active

Active

ik

k]

[

0.
]

03F

{1l

]

5F

—
AN

N

NN

n:s 03 DG
Dormant
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Frequent Answer

AN
B Mean field limit : \\
dm 3 ki\
R — F( —’1) 3
dt
B Stationary regime
T Dorur-;antm ;
F(m) = 0

Active
3 = = = = = =
e [T o by

N




B Same as before except o
for one parameter uf

value : h = 0.1 instead
of 0.3

Active

[ ]

B The ODE does not
converge to a unique
attractor (limit cycle)

[utked ]

(k]

Lip

Active

04 i1 il
Dormant

il

na

mT
has a unique solution
(red cross)

[agyal
C ©

s
-

1'

Active

Darmant

Dormant
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STATIONARY REGIME

CRITIQUE OF FIXED POINT METHOD
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The Fixed Point Method

B A generic method, sometimes implicitly used
B Method is as follows:

» Assume many interacting objects, focus on one object

» Pretend this and other objects have a state distributed
according to some proba m

» Pretend they are independent

» Write the resulting equation for m (a fixed point equation)
and solve it, assumption

B Can be interpreted as follows

» Assume a mean field interaction model, converges to mean
field

» Propagation of chaos => objects are asymptotically
independent
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Example: 802.11 Analysis, Bianchi’s Formula

802.11 single cell

m, = proba one node is in
backoff stage |

B= attempt rate
v = collision proba

See [Benaim and Le
Boudec, 2008] for this
analysis

dmy o _ ~
= —moqo + F(m) (1 — ~(m)) + ggmi~y(m)
dm; . S .
I = —my;q; +mi_1q;_1ym) =1, 1

" 1
n; = A
) K~
QE Zk_o Ik
L —3

Bianchi’s Y= 1l —e
Fixed K _k

Point 3 — =k=0 !

Equation " ZK v
[Bianchi 1998] k=0 g
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Example: Kelly’s Alternate Routing
[Kelly, 1991]

..... ) &}

N = K(K —1)/2 links. each of capacity C' calls

e Arrival of calls to link ab with rate A

e If link is saturated (Xgu(t) = ). arriving call attempts one two=hop
alternate route (ac, ¢b): if either link on chosen alternate route is satu-
rated, call is lost

Call duration is expo(1)

Xap(t) = number of calls using link ab: Y5 () = number of calls di-
verted via ¢

System state = (Xgp(t), Y5(t))abe

B This is not a mean field interaction
model

» If we rename object ab we need to
rename obejct abc accordingly

B However,there is convergence to a
deterministic occupancy measure

and propagation of chaos [e.g.
Graham and Méléard 1997]
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Kelly’s Alternate Routing Simplified Model

e N = L (I —1)/2links. each of capacity C' calls

e Arrival of calls to link n with rate A

e If link is saturated (X, () = (). arriving call attempts one alternative
pair (n1. ng) of links; if either link on chosen alternate route is saturated,
call is lost.

e If call is accepted on two hop route, both legs of the call become inde-
pendent

e Call duration is expo(1)

B This is a mean field
interaction model, has
same limiting equations
as original limit.
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Mean field equations:

XN(t)€{0,1.2....C} = state of link

Tt

D () = (n+ D)magp(t) —

k=0

,-:r,.(f).”lﬂ(t)‘. n — 0: ]_:

y(t) = A {1 + 2me(t) [(1 — ??lC{f)]}

Fixed point: solve for m,, and ~

(n+1mpey =

-~ —
f

Which gives

My, =

A1+ 2me(t) (1 —me)}

ﬂ-

n‘

(

9%

k=

0

I;:

I

|

O -1
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the stationary points are obtained by solving for m¢ and ~ in

me = FE(v,C)

v = A14+2me(1l —me)]
with
C ¢k
- 1! x
£0.0% 5/ (L 5
k=0
which is equivalent to v Dot
r'ixcad roimnt
me = E(\[1+2me(l—me)],C) | Son for
prob mq
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pafp M L
z/
H -7 =120
/ //
03f= Czl(/ /
C=10000
oa= //
/
/ l
0igp= /
/ |
7/
01f= /
a0s}- / non unique fixed point
.-"‘"J
; . . | ‘r_/ | y AC |

4 0% ! 07 i E oo 1 11
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Fixed Point Method Applied to 2-Step
Malware Example

case prob
1 Dop
2| DA
3| A8
4 Ad 4
5| S(ag+7rD)
6 Sov

Recovery

» D->S
Mutual upgrade

> D+D->A+A
Infection by active

- D+A->A+A
Recovery

# A->S
Recruitment by
Dormant

» S+D->D+D
Direct infection

P S>A

D

] z £ = '
opL + 2AD +'ﬁAﬁ-—I—B (evy + D)8
D ‘
¥ 2 i —_— . J—
2AD +,;3A&+D+r.1$' = d44
SpD 48,4 = (aw+rD)S + a8

B Solve for (D,A,S)
B Has a unique solution

60



Example Where Fixed Point Method Succeeds
1N

B [n stationary regime: \
\
» Prob (node n is dormant) = 0.3 ol \
» Prob (node nis active) = 0.6 s | R
<

» Prob (node n is susceptible) = 0.1

» Nodes m and n are independent gt
a1
1 ! ' I ; r u.ls ul.a III.? u.la st 1
B The diagram commutes =03 Domen
1 T T T T T T
t->+00 3f
Law of MN(t) > N &
N -> 400 N > 400 o | &-\.h?
= 05p
g
04
v v
03
Su(t) > 8m* 02}
t->+too
a1
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Example Where Fixed Point Method Fails

B In stationary regime, m(t) = (D(t), A(t),
S(t)) follows the limit cycle AR

B Assume you are in stationary regime gi@
(simulation has run for a long time) and <]

you observe that one node, say n=1, is in
state ‘A’

B Itis more likely that m(t) is in regionR , _,, _J e a6 & G

B Therefore, it is more likely that some
other node, say n=2, is also in state ‘A’

Act

B This is synchronization

gk
k|
1
g 2§
14k
ok 3
a3

Dormant
oc



Joint PDFs of Two Nodes in Stationary
Regime

Stationary point of ODE
\
1

0ol Mean of Limit of @N = pdf of one node in stationary regime

0.8+ -

pdf of node 2 077 §
In stationary

regime, ) > % S
- - B
given node 1 % o5¢ i
isA <
04r -
i’ pdf of node 2 in‘stationary ]
94_ regime, given node &is D |

pdf of node 2 ioq stationary
regime, given nade 1is S

0 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Dormant
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Numerical Results (4 = 0.1).

prob of state

D

A S

given D

0.261

0.559 | 0.181

given A

0.152

0.583 | 0.264

given S

0.099

0.533 | 0.368

unconditional

0.154

0.565 | 0.281

Fixed Point Method

| Diip 1 : ”

5 )
Ayl 20007 + 4, =
]”I"'f:u;_ v|" _Fb+ I

A ‘:.'. I II, 1 32 Imfectian iy actia INT > -:- + S

B Solve for (D,AS)

B Has a unique solution
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Where is the Catch ?

B Mean field convergence implies that nodes m and n are
asymptotically independent

B There is mean field convergence for this example

B But we saw that nodes may not be asymptotically independent

... is there a contradiction ?

65



Markov chain 1s ergodic

P(XN(t/N) =i and XN (t/N) = j) —= = 7V

t,J

Mean Field n_. ¢ l N — oo
Convergence

i 1) 105(1) ””

B Mean Field convergence implies asymptotic
Independence in Transient Regime, but says nothing
about Stationary Regime

B We have three general results



Result 1: Fixed Point Method Holds under (H)

B Assume that

(H) ODE has a unique global stable point to which all trajectories
converge

B Theorem [e.g. Benaim et al 2008] : The limit of stationary distribution
of MV is concentrated on this fixed point

» i.e, under (H), the fixed point method and the decoupling assumptions
are justified

B Uniqueness of fixed point is not sufficient

B (H) has nothing to do with the properties at finite N

» In our example, for h=0.3 the decoupling assumption holds in stationary
regime, for h=0.1 it does not

» In both cases the Markov chain at finite N has the same graph.
B Study the ODE!
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I° The Diagram Does Not Always
AN Commute

P(XN(t/N) =i and XN (t/N) = j) —= A

1.7
.N—>Dol lf\rﬂoo
T
(1) (t) 7 Jo 1a(t)p;(t)dt
B Forlarge tand N:
T
P(XN(t/N)=iand XV (t/N) =) =~ % / i () (t) e

i
LAY

#+ (i [T,ug;{t)dt\ (i [T pj(t)dt\
\{ Jo /J \1 Jo /

where T is the period of the limit cycle



Result 2 for Stationary Regime

B Original system (stochastic):
» (XN(t)) is Markov, finite, discrete time
» Assume it is irreducible, thus has a unique stationary proba v
» Let @ be the corresponding stationary distribution for MN(t), i.e.

P(MN(t):(xl,...,xI)) = @"(Xy,...X;) for x; of the form k/n, k integer

B Theorem [Benaim]

g W | ] I ry - . - ry N - 4 V. - 1
Theorem 3 7he support of any limit point of @ is a compact set included in the
Birlkhoff center of O.

Birkhoff Center: closure of set of points s.t. me o(m)
Omega limit: ®(m) = set of limit points of orbit starting at m
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B Here:

Birkhoff center = o

limit cycle U fixed b~

point . .
g E

B The theorem says !
that the stochastic . 1 =
system for large N is 1 °T

Close tO the Birkhoff [5] 01 az i II'.‘-DDr:II':;antE-.E or [k} 0= 1 i) ot 0z k] :I-lDDrl:-.;ant:lE v os e}
center, ’
i.e. the stationary | o
regime of ODE is a o 1.°
3 3 = E5I E o5
good approximation g g

of the stationary N 11

regime of stochastic 1o
system . I

Domant



Existence and Unicity of a Fixed Point are not
Sufficient for Validity of Fixed Point Method

B Essential assumption is

ik

(H) m(t) converges to a unique m"

i

B [tis not sufficient to find that there is a unique
stationary point, i.e. a unique solution to F(m")=0

il
1

nse
e

Act

B Counter Example on figure

13

» (XN(t)) is irreducible and thus has a unique
stationary probability nN

» There is a unique stationary point ( = fixed point ) ! I
(red cross) Dormant
» F(m")=0 has a unique solution

ik g

> butitis not a stable equilibrium o
» The fixed point method would say here
» Prob (node n is dormant) = 0.1 o |
» Nodes are independent g
» ... butinreality

» We have seen that nodes are not independent, but are 4}
correlated and synchronized .

a o1 0z o3 04 %] e [ g %] 1
Dormant



Example: 802.11 with Heterogeneous Nodes

B [Cho2010]

Two classes of nodes with
heterogeneous parameters
(restransmission probability)

0.08

0.07-

0.06f---

Fixed point equation has a unique
solution

%

There is a limit cycle

Short—term occupancy measure of stage 1 & 17
T

045 05 055 06 065 07 075 08 08 09 095
Short—term occupancy measure of stage 0
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Quiz

B MN(t)is a Markov chain on E={(a,b,c) > 0,a+b + c=1, a, b, c multiples of 1/N}

1 HE

A. MN(t) is periodic, this is
why there is a limit cycle 09

for large N.
_ E (for N =200)
B. For large N, the stationary
proba of MN tends to be
concentrated on the blue o
cycle. =
46 0.5
, < 3\‘\&@# : i
C. For large N, the stationary 0.4 —E
proba of MN tends to a -
Dirac. CEhe L
. . . 0.2 - -
D. MN(t) 1s not ergOdIC’ this 1s e Hi,
Why there is a hmit Cycle 0.1 b, orirer tog PR e i,
for large N.
% 01 02 03 04 05 06 07 08 09

Dormant



STATIONARY REGIME

REVERSIBLE CASE
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Result 3: Reversible Case

B Definition Markov Process X(t) on enumerable state E space,
with transition rates q(ij) is reversible iff
1. Itisergodic
2. There exists some probability distribution p such that, for alli,jin E
p(i) q(ij) = p() q(i1)
B If X(t)isreversible iff

1. Itis stationary (strict sense)
2. It has same process law under reversal of time

B Most processes are not reversible, but some interesting cases
exist:

» Product form queuing networks with reversible routing matrix (e.g, on a
bus)

» Kelly's alternate routing models

75



Result 3: Reversible Case

Theorem 1.2 ([Le Boudec(2010)]) Assume some process YN (t) converges at

any fixed t to some deterministic system y(t) at any finite time. Assume the

processes YN are reversible under some probabilities TI"V . Let II € P(E) be

a limit point of the sequence TIN. 1 is concentrated on the set of stationary

points S of the fluid limit y(t)

B Stationary points = fixed points
B If process with finite N is reversible, the stationary
behaviour is determined only by fixed points.

B Even if (H) does not hold
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Example: Kelly’s Alternate Routing

B System with N nodes is reversible

B Kelly’s analysis looks for fixed points
only

B Justified by reversibility

Saturation prob
u-—mc ///"
/=124
- //
- /YC=10000
/ /
/ / /
/ /
/ |
% / |
/ / \
// /
AN A Y
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OPTIMIZATION
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Decentralized Control

B Game Theoretic setting; N players, each player has a class, each class has a
policy; each player also has a state;

» Set of states and classes is fixed and finite
» Time is discrete; a number of players plays at any point in time.
» Assume similar scaling assumptions as before.

B [Tembine etal.(2009)]
For large N the game converges to a single player game against a
population;

Theorem 3.6.2 (Infinite N'). Optimal strategies (resp. equii-
librium strategies) exist in the limiting regime when N — oo
under uniform convergence and continuity of RN — R.
Moreover, if {UNY} is a sequence of ey —optimal strategies
(resp. €n—equilibrium strategies) in the finite regime with
ey — €, then, any limit of subsequence U*WN) — U is an
€— optimal strategies (resp. € —equilibrium) for game with

infinite N.



Optimal, Centralized Control

|Gast et al.(2010)]
Markov decision process (MDP)

» Finite state space per object, discrete time, N objects
» Transition matrix depends on a control policy
» For large N the system control converges to mean field, under any control

Mean field limit
» ODE driven by a control function

Theorem: under similar assumptions as before, the optimal value function
of MDP converges to the optimal value of the limiting system

The result transforms MDP into fluid optimization, with very different
complexity
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Conclusion

B Mean field models are
frequent in large scale
systems

B Mean field is much more
than a fluid approximation:
decoupling assumption / fast
simulation / random process
modulated by fluid limit

B Decoupling assumption
holds at finite horizon; may
not hold in stationary
regime.

B Stationary regime is more
than stationary points, in
general

(except for reversible case)

B Control on mean field limit
may give new insights
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