Mean Field Methods for Computer and Communication Systems: A Tutorial

Jean-Yves Le Boudec EPFL

Performance 2010

Namur, November 16-19 2010

References

COMPUTER AND COMMUNICATION SCIENCES

PERFORMANCE EVALUATION OF COMPUTER AND **COMMUNICATION SYSTEMS**

Jean-Yves Le Boudec

EPFL Press Distributed by CRC Press

published Oct 2010

perfeval.epfl.ch

Contents

- Mean Field Interaction Model
- Finite Horizon
 - ► The Mean Field Limit
 - ► Convergence to Mean Field
 - ▶ Random process modulated by Mean field limit
- Stationary regime
 - ► Stationary Regime of Mean Field Limit
 - ► Critique of the Fixed Point Method
 - ► Reversible Case
- Optimization

MEAN FIELD INTERACTION MODEL

Common Assumptions

- Time is discrete or continuous
- N objects
- Object *n* has state $X_n(t)$
- $(X^{N}_{1}(t), ..., X^{N}_{N}(t))$ is Markov => $M^{N}(t)$ = occupancy measure process is also Markov
- Objects can be observed only through their state
- N is large

Called "Mean Field Interaction Models" in the Performance Evaluation community [McDonald(2007), Benaïm and Le Boudec(2008)]

Intensity I(N)

- I(N) = expected number of transitions per object per time unit
- The mean field limit occurs when we re-scale time by I(N) i.e. we consider $X^N(t/I(N))$

- If time is discrete for X^N
 - ► I(N) = O(1): mean field limit is in discrete time [Le Boudec et al (2007)]
 - ► I(N) = O(1/N): mean field limit is in continuous time [Benaïm and Le Boudec (2008)]

Example: 2-Step Malware

- Mobile nodes are either
 - ▶ `S' Susceptible
 - ▶ 'D' Dormant
 - ► `A' Active
- Time is discrete
- Nodes meet pairwise (bluetooth)
- One interaction per time slot, I(N) = 1/N; mean field limit is an ODE
- State space is finite
 = {`S', `A',`D'}
- Occupancy measure is M(t) = (S(t), D(t), A(t)) with S(t)+D(t)+A(t)=1

S(t) = proportion of nodes in state `S'

[Benaïm and Le Boudec(2008)]

- Possible interactions:
- 1. Recovery
 - ▶ D -> S
- 2. Mutual upgrade
 - \triangleright D + D -> A + A
- 3. Infection by active
 - \triangleright D + A -> A + A
- 4. Recovery
 - A -> S
- 5. Recruitment by Dormant
 - \triangleright S + D -> D + D

Direct infection

- ► S -> D
- 6. Direct infection
 - ► S -> A

Simulation Runs, N=1000 nodes

$$\beta = 0.01, \delta_A = 0.005, \delta_D = 0.0001, \alpha_0 = \alpha = 0.0001, h = 0.3, r = 0.1, \lambda = 0.0001$$

Sample Runs with N = 1000

Example: WiFi Collision Resolution Protocol

- \blacksquare *N* nodes, state = retransmission stage *k*
- Time is discrete, I(N) = 1/N; mean field limit is an ODE

- Occupancy measure is $M(t) = [M_0(t),...,M_K(t)]$ with $M_k(t)$ = proportion of nodes at stage k
- [Bordenave et al.(2008)Bordenave, McDonald, and Proutiere, Bordenave et al.(2007)Bordenave, McDonald, and Proutiere]

Example: TCP and ECN

[Tinnakornsrisuphap and Makowski(2003)]

At, every time step, all connections update their state: I(N)=1

Time is discrete, mean field limit is also in discrete time (iterated map)

Similar examples: HTTP Metastability [Baccelli et al.(2004)Baccelli, Lelarge, and McDonald]

Reputation System [Le Boudec et al.(2007)Le Boudec, McDonald, and Mundinger]

Example: Age of Gossip

Example: Age of Gossip

- Mobile node state = (c, t) $c = 1 \dots 16$ (position) $t \in R^+$ (age)
- Time is continuous, I(N) = 1
- Occupancy measure is $F_c(z,t)$ = proportion of nodes that at location c and have age $\leq z$

[Chaintreau et al.(2009)]

Spatial Representation

Comparison between the mean-field limit and the trace. Percentages of mobile nodes in classes 1-15 with age z<20mn at time t=300mn (1 p.m.).

The Importance of Being Spatial

- We compare the previous 16 class case with a simple 2 class case (C=2)
- The first figure suggests that for the case C=16, trace and MF data samples come from the same distribution
- For the case C=2 we observe the strong bias present for both low and high age

QQ plots, comparing the age distribution of trace data and data artificially obtained from the mean-field CDF, for 16 class and 2 class scenarios. Time period observed 5 p.m.-6 p.m.

Extension to a Resource

- Model can be complexified by adding a global resource R(t)
- Fast: R(t) is change state at the aggregate rate N I(N)

- Slow: R(t) is expected to change state at the same rate I(N) as one object
- -> requires special extensions of the theory

- -> call it an object of a special class
- [Bordenave et al.(2007)Bordenave, McDonald, and Proutiere]

[Benaïm and Le Boudec(2008)]

What can we do with a Mean Field Interaction Model?

- Large N asymptotics
 - ► = fluid limit
 - Markov chain replaced by a deterministic dynamical system
 - ► ODE
 - ► Fast Simulation
- Issues
 - ▶ When valid
 - ► Don't want do devote an entire PhD to show mean field limit
 - ► How to formulate the ODE

- Large *t* asymptotic
 - ▶ ≈ stationary behaviour
 - ► Useful performance metric

Issues

- ► Is stationary regime of ODE an approximation of stationary regime of original system?
- ► Does this justify the "Decoupling Assumption"?

FINITE HORIZON

MEAN FIELD LIMIT

The Mean Field Limit

Under very general conditions (given later) the occupancy measure converges, in some sense, to a deterministic process, m(t), called the mean field limit

 $M^N\left(\frac{t}{I(N)}\right) \to m(t)$

Graham and Méléard(1994)] consider the occupancy measure L^N in path space

$$M^{N}(t) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n} \delta_{X_{n}^{N}(t)}$$
$$L^{N} \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n} \delta_{X_{n}^{N}}$$

Mean Field Limit Equations

case	prob
1	$D\delta_D$
2	$D\lambda \frac{ND-1}{N-1}$
3	$A\beta \frac{D}{h+D}$
4	$A\delta_A$
5	$S(\alpha_0 + rD)$
6	$S\alpha$

1. Recovery

2. Mutual upgrade

Infection by active

4. Recovery

5. Recruitment by Dormant

Direct infection

$$\frac{\partial D}{\partial t} \approx -\delta_D D - 2\lambda D^2 - \beta A \frac{D}{h+D} + (\alpha_0 + rD)S$$

$$\frac{\partial A}{\partial t} \approx 2\lambda D^2 + \beta A \frac{D}{h+D} - \delta_A A + \alpha S$$

$$\frac{\partial S}{\partial t} \approx \delta_D D + \delta_A A - (\alpha_0 + rD)S - \alpha S$$

Propagation of Chaos is Equivalent to Convergence to a Deterministic Limit

Definition 1.1 Let $X^N = (X_1^N, ..., X_N^N)$ be an exchangeable sequence of processes in $\mathcal{P}(S)$ and $m \in \mathcal{P}(S)$ where S is metric complete separable. $(X^N)_N$ is m-chaotic iff for every k: $\mathcal{L}(X_1^N, ..., X_k^N) \to m \otimes ... \otimes m$ as $N \to \infty$.

Theorem 1.1 ([Sznitman(1991)]) $(X^N)_N$ is m-chaotic then the occupancy measure $M^N \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N}$ converges in probability (and in law) to m.

If the occupancy measure converges in law to m then $(X^N)_N$ is m-chaotic.

Propagation of Chaos Decoupling Assumption

(Propagation of Chaos)

If the initial condition $(X_n^N(0))_{n=1...N}$ is exchangeable and there is mean field convergence then the sequence $(X_n^N)_{n=1...N}$ indexed by N is m-chaotic

k objects are asymptotically independent with common law equal to the mean field limit, for any fixed k

$$\mathcal{L}\left(X_1\left(\frac{t}{I(N)}\right),...,X_k\left(\frac{t}{I(N)}\right)\right)\to m(t)\otimes...\otimes m(t)$$

(Decoupling Assumption)

(also called Mean Field Approximation, or Fast Simulation)
The law of one object is asymptotically as if all other objects were drawn randomly with replacement from m(t)

Example: Propagation of Chaos

At any time t

$$P(X_n(t)='A') \approx A\left(rac{t}{N}
ight)$$
 $P(X_m(t)='D',X_n(t)='A') \approx D\left(rac{t}{N}
ight)A\left(rac{t}{N}
ight)$ where (D,A,S) is solution of ODE

- Thus for large t:
 - ▶ Prob (node *n* is dormant) ≈ 0.3
 - ▶ Prob (node *n* is active) ≈ 0.6
 - ▶ Prob (node *n* is susceptible) ≈ 0.1

The Two Interpretations of the Mean Field Limit

m(t) is the approximation for large N of

- 1. the occupancy measure $M^N(t)$
- 2. the state probability for one object at time *t,* drawn at random among *N*

The Mean Field Approximation

- Common in Physics
- Consists in pretending that $X_m^N(t)$, $X_n^N(t)$ are independent in the time evolution equation
- It is asymptotically true for large *N*, at fixed time *t*, for our model of interacting objects, when convergence to mean field occurs.
- Also called "decoupling assumption" (in computer science)

FINITE HORIZON

CONVERGENCE TO MEAN FIELD LIMIT

The General Case

- Convergence to the mean field limit is very often true
- A general method is known [Sznitman(1991)]:
 - ► Describe original system as a markov system; make it a martingale problem, using the generator
 - ► Show that the limiting problem is defined as a martingale problem with unique solution
 - ► Show that any limit point is solution of the limitingmartingale problem
 - ► Find some compactness argument (with weak topology)
- Requires knowing [Ethier and Kurtz(2005)]

Finite State Space per Object : Kurtz's Theorem

- State space for one object is finite
- Original Sytem is in discrete time and I(N) -> 0; limit is in continuous time

[Kurtz(1970), Sandholm(2006)] Let

$$f^{N}(m) \stackrel{\text{def}}{=} \frac{1}{I(N)} \mathbb{E} \left(M^{N}(k+1) - m \middle| M^{N}(k) = m \right)$$

$$A^{N}(m) \stackrel{\text{def}}{=} \frac{1}{I(N)} \mathbb{E} \left(||M^{N}(k+1) - m|| ||M^{N}(k) = m \right)$$

$$B^{N}(m) \stackrel{\text{def}}{=} \frac{1}{I(N)} \mathbb{E} \left(||M^{N}(k+1) - m|| \mathbf{1}_{\{||M^{N}(k+1) - m|| > \delta_{N}\}} \middle| M^{N}(k) = m \right)$$

- $\lim_N \sup_m \|f^N(m) f(m)\| = 0$ for some f, $\sup_N \sup_m A^N(m) < \infty$ $\lim_N \sup_m \|B^N(m)\| = 0$ with $\lim_{N \to \infty} \delta_N = 0$
- $M^N(0) \rightarrow m_0$ in probability

Then $\sup_{0 \le t \le T} \mathbb{P}\left(\left\|M^N(t) - m(t)\right\|\right) \to 0$ in probability.

Discrete Time, Finite State Space per Object

Refinement + simplification, with a fast resource

[Benaïm and Le Boudec(2008), Ioannidis and Marbach(2009)]

 Let W^N(k) be the number of objects that do a transition in time slot k. Note that E (W^N(k)) = NI(N), where
 I(N) ^{def}=intensity. Assume

$$\mathbb{E}\left(W^N(k)^2\right) \le \beta(N)$$
 with $\lim_{N\to\infty} I(N)\beta(N) = 0$

- $M^N(0) \rightarrow m_0$ in probability
- regularity assumption on the drift (generator)

Then $\sup_{0 \le t \le T} \mathbb{P}\left(\left\|M^N(t) - m(t)\right\|\right) \to 0$ in probability.

When limit is non continuous:

[Benaim et al.(2006)Benaim, Hofbauer, and Sorin]

Example: Convergence to Mean Field

Example: 2-Step Malware

- Mobile nodes are either
 - 'S' Susceptible
 - ▶ 'D' Dormant
 - ► `A' Active
- Time is discrete
- Nodes meet pairwise (bluetooth)
- One interaction per time slot,
 I(N) = 1/N; mean field limit is an ODE
- State space is finite = {`S', `A', `D'}
- Occupancy measure is M(t) = (S(t), D(t), A(t)) with S(t)+D(t)+A(t)=1

S(t) = proportion of nodes in state 'S'

[Benaim and Le Boudec(2008)]

- Possible interactions:
- Recovery
 - ▶ D->S
- 2. Mutual upgrade
 - ▶ D+D->A+A
- 3. Infection by active
 - ▶ D+A->A+A
- 4. Recovery
 - ▶ A -> S
- 5. Recruitment by Dormant
 - ▶ S+D->D+D

Direct infection

- ▶ S-> D
- 6. Direct infection
 - ▶ S-> A

- Rescale time such that one time step = 1/N
- Number of transitions per time step is bounded by 2, therefore there is convergence to mean field

$$\frac{\partial D}{\partial t} \approx -\delta_D D - 2\lambda D^2 - \beta A \frac{D}{h+D} + (\alpha_0 + rD)S$$

$$\frac{\partial A}{\partial t} \approx 2\lambda D^2 + \beta A \frac{D}{h+D} - \delta_A A + \alpha S$$

$$\frac{\partial S}{\partial t} \approx \delta_D D + \delta_A A - (\alpha_0 + rD)S - \alpha S$$

Discrete Time, Enumerable State Space per Object

State space is enumerable with discrete topology, perhaps infinite; with a fast resource

[Bordenave et al.(2007)Bordenave, McDonald, and Proutiere]

- Probability that objects i and j do a transition in one time slot is o(1/N)
- $M^N(0) \to m(0)$ in probability for the weak topology
- $(X_1^N(0), ..., X_N^N(0))$ is exchangeable at time 0
- regularity assumption on the drift (generator)

Then M^N is m-chaotic.

Essentially: same as previous plus exchangeability at time 0

Discrete Time, Discrete Time Limit

Mean field limit is in discrete time

[Le Boudec et al.(2007)Le Boudec, McDonald, and Mundinger, Tinnakornsrisuphap and Makowski(2003)] $\lim_{N} I(N) = 1$

- Object i draws next state at time k independent of others with transition matrix K^N(M^N)
- $M^N(0) \rightarrow m_0$ a.s. [in probability]
- regularity assumption on the drift (generator)

Then $\sup_{0 \le k \le K} \mathbb{P}\left(\left\|M^N(k) - m(k)\right\|\right) \to 0$ a.s. [in probability]

Continuous Time

- « Kurtz's theorem » also holds in continuous time (finite state space)
- Graham and Méléard: A generic result for **general** state space (in particular non enumerable).

[Graham and Méléard(1997), Graham and Méléard(1994)] I(N) = 1/N, continuous time.

- Object i has a free evolution plus pairwise interactions.
- $X_n^N(0)_{n=1...N}$ is iid with common law m_0
- Generator of pairwise meetings is uniformly bounded in total variation norm

e.g. if
$$\mathcal{G} \cdot \varphi(x, x') = \int \varphi(y, y') f(y, y'|x, x') dy dy'$$
 then $\int |f(y, y'|x, x')| dy dy' \leq \Lambda$, for all x, x'

Then there is propagation of chaos with explicit bounds in total variation over finite time intervals. Mean field independence holds.

Age of Gossip

- Every taxi has a state
 - Position in area $c = 0 \dots 16$
 - Age of last received information

- [Graham and Méléard 1997] applies, i.e. mean field convergence occurs for iid initial conditions
- [Chaintreau et al.(2009)Chaintreau, Le Boudec, and Ristanovic] shows more, i.e. weak convergence of initial condition suffices

$$\begin{cases} \forall c \in \mathcal{C}, & \frac{\partial F_c(z,t)}{\partial t} + \frac{\partial F_c(z,t)}{\partial z} = \\ & \sum_{c' \neq c} \rho_{c',c} F_{c'}(z,t) - \left(\sum_{c' \neq c} \rho_{c,c'}\right) F_c(z,t) \\ & + \left(u_c(t|d) - F_c(z,t)\right) \left(2\eta_c F_c(z,t) + \mu_c\right) \\ & + \left(u_c(t|d) - F_c(z,t)\right) \sum_{c' \neq c} 2\beta_{\{c,c'\}} F_{c'}(z,t) \\ \forall c \in \mathcal{C}, & \forall t \geq 0, F_c(0,t) = 0 \\ \forall c \in \mathcal{C}, & \forall z \geq 0, F_c(z,0) = F_c^0(z). \end{cases}$$

The Bounded Confidence Model

Introduced in [Deffuant et al (2000)], used in mobile networks in [Buchegger and Le Boudec 2002]; Proof of convergence to Mean Field in [Gomez, Graham, Le Boudec 2010]

Discrete time. State space =[0, 1].

 $X_n^N(k) \in [0, 1]$ rating of common subject held by peer n

Two peers, say i and j are drawn uniformly at random.

If
$$\left|X_i^N(k) - X_j^N(k)\right| > \Delta$$
 no change; else

$$X_i^N(k+1) = wX_i^N(k) + (1-w)X_j^N(k),$$

$$X_j^N(k+1) = wX_j^N(k) + (1-w)X_i^N(k),$$

PDF of Mean Field Limit

Is There Convergence to Mean Field?

- Yes for the discretized version of the problem
 - ► Replace ratings in [0,1] by fixed point real nombers on d decimal places
 - ► Generic result says that mean field convergence holds (use [Benaim Le Boudec 2008], the number of meetings is upper bounded by a constant, here 2).
 - ► There is convergence for any initial condition such that M^N(0) -> m₀
- This is what any simulation implements

Is There Convergence to Mean Field?

- There can be no similar result for the real version of the problem
 - ► Counter Example: M^N(0) -> m(0) (in the weak topology) but M^N(t) does not converge to m(t)
- There is convergence to mean field if initial condition is iid from m₀
 [Gomez et al, 2010]

Convergence to Mean Field

For the finite state space case, there are many simple results, often verifiable by inspection

For example [Kurtz 1970] or [Benaim, Le Boudec 2008]

For the general state space, things may be more complex

FINITE HORIZON

RANDOM PROCESS MODULATED BY MEAN FIELD LIMIT

Fast Simulation = Random Process Modulated by Mean Field Limit

Assume we know the state of *one tagged object* at time 0; we can approximate its evolution by replacing all other objects collectively by the mean field limit (e.g. the ODE)

The state of this object is a jump process, with transition matrix driven by the ODE [Darling and Norris, 2008]

A stronger result than propagation of chaos – does not require exchangeability

2-Step Malware Example

 $p^{N}_{j}(t|i)$ is the probability that a node that starts in state i is in state j at time t:

$$p_j^N(t|i) = \mathbb{P}(X_n^N(t) = j|X_n^N(0) = i)$$

Then $p_j^N(t/N|i) \approx p_j(t|i)$ where p(t|i) is a continuous time, non homogeneous process

process
$$\frac{d}{dt}\vec{p}(t|i) = \vec{p}(t|i)^T A(\vec{\mu}(t))$$

$$\frac{d}{dt}\vec{m}(t) = \vec{m}(t)^T A(\vec{m}(t)) = F(\vec{m}(t))$$

Same ODE as mean field limit, but with different initial condition

Details of the 2-Step Malware Example

P^N_{i,j} (m) is the marginal transition probability for one object, given that the state of the system is m

$$P^{N}(\vec{m}) = I + \frac{1}{N} \begin{pmatrix} -\frac{A}{h+D}\beta - 2\lambda \frac{ND-1}{N-1} - \delta_{D} & \frac{A}{h+D}\beta + 2\lambda \frac{ND-1}{N-1} & \delta_{D} \\ 0 & -\delta_{A} & \delta_{A} \\ \alpha_{0} + Dr & \alpha & -\alpha_{0} - Dr - \alpha \end{pmatrix}$$
$$= I + \frac{1}{N}A^{N}(\vec{m})$$
$$\vec{m} = (D, A)$$

- Note: Knowing the transition matrix P^N (m) is not enough to be able to simulate (or analyze) the system with N objects
 - ▶ Because there may be simultaneous transitions of several objects (on the example, up to 2)
- However, the fast simulation says that, in the large N limit, we can consider one (or k) objects as if they were independent of the other N-k
 - ► $(X_1^N(t/N), M^N(t/N))$ can be approximated by the process $(X_1(t), m(t))$ where m(t) follows the ODE and $X_1(t)$ is a jump process with time-dependent transition matrix A(m(t)) where $A^N(\vec{m}) \rightarrow A(\vec{m})$

$$P^{N}(\vec{m}) = I + \frac{1}{N} \begin{pmatrix} -\frac{A}{h+D}\beta - 2\lambda \frac{ND-1}{N-1} - \delta_{D} & \frac{A}{h+D}\beta + 2\lambda \frac{ND-1}{N-1} & \delta_{D} \\ 0 & -\delta_{A} & \delta_{A} \\ \alpha_{0} + Dr & \alpha & -\alpha_{0} - Dr - \alpha \end{pmatrix}$$

$$= I + \frac{1}{N}A^{N}(\vec{m})$$

The state of one object is a jump process with transition matrix:

$$A(\vec{m}) = \begin{pmatrix} -\frac{A}{h+D}\beta - 2\lambda D - \delta_D & \frac{A}{h+D}\beta + 2\lambda D & \delta_D \\ 0 & -\delta_A & \delta_A \\ \alpha_0 + Dr & \alpha & -\alpha_0 - Dr - \alpha \end{pmatrix}$$

where m = (D, A, S) depends on time (is solution of the ODE)

Computing the Transition Probability

 $\mathbf{P}^{N}_{i,j}$ (m) is the transition probability for one object, given that the state if m

$$P^{N}(\vec{m}) = I + \frac{1}{N} \begin{pmatrix} -\frac{A}{h+D}\beta - 2\lambda \frac{ND-1}{N} - \delta_{D} & \frac{A}{h+D}\beta + 2\lambda \frac{ND-1}{N} & \delta_{D} \\ 0 & -\delta_{A} & \delta_{A} \\ \alpha_{0} + Dr & \alpha & -\alpha_{0} - Dr - \alpha \end{pmatrix}$$

$$= I + \frac{1}{N}A^{N}(\vec{m})$$

where I is the identity matrix and $\vec{m} = (D, A, S)$.

 $P_{1,3}^N$ is the probability that one node in state i=1, i.e. 'D' moves to state j=3, i.e. 'S'. This corresponds to case 1 in the table. The probability that this case occurs in one time slot is $D\delta_D$ and the probability that the transition affects precisely the node of interest is $\frac{D\delta_D}{ND}$ since there are ND nodes in the 'D' state. Thus $P_{1,3}^N = \frac{1}{N}\delta_D$.

 $P_{1,2}^N$ is the probability that one node in state i=1, i.e. 'D' moves to state j=2, i.e. 'S'. This corresponds to cases 2 and 3. The probability is the sum of the probabilities for each of these two cases, as they are mutually exclusive. The probability that case 2 occurs is $D\lambda \frac{ND-1}{N-1}$ (given by the table). The probability that this node is affected, given that case 2 occurs is $\frac{2}{ND}$ since case 2 affects 2 nodes that are in state 'D'. Thus the probability that this node does a transition of case 2 is $\frac{2}{N}\lambda \frac{ND-1}{N-1}$. Similarly, the probability that this node does a transition of case 3 is $\frac{AN}{h+D}\beta$. Thus $P_{1,2}^N = \frac{1}{N}\left(\frac{A}{h+D}\beta + 2\lambda \frac{ND-1}{N-1}\right)$.

The Two Interpretations of the Mean Field Limit

m(t) is the approximation for large N of

- 1. the occupancy measure $M^{N}(t)$
- 2. the state probability for one object at time *t*, drawn at random among *N*

The state probability for one object at time t, known to be in state i at time 0, follows the same ODE as the mean field limit, but with different initial condition

STATIONARY REGIME

STATIONARY REGIME OF MEAN FIELD LIMIT

Stationary Regimes

Original process is random, assume it has a unique stationary regime

The mean field limit is deterministic;

Q: What is the stationary regime for a deterministic process?

Frequent Answer

Mean field limit :

$$\frac{d\vec{m}}{dt} = F(\vec{m})$$

Stationary regime

$$F(\vec{m}) = \vec{0}$$

Example

- Same as before except for one parameter value : *h* = 0.1 instead of 0.3
- The ODE does not converge to a unique attractor (limit cycle)
- The equation F(m) = 0 has a unique solution (red cross)

STATIONARY REGIME

CRITIQUE OF FIXED POINT METHOD

The Fixed Point Method

- A generic method, sometimes implicitly used
- Method is as follows:
 - ► Assume many interacting objects, focus on one object
 - ► Pretend this and other objects have a state distributed according to some proba *m*
 - ► Pretend they are independent
 - ► Write the resulting equation for *m* (a fixed point equation) and solve it, assumption
- Can be interpreted as follows
 - ► Assume a mean field interaction model, converges to mean field
 - Propagation of chaos => objects are asymptotically independent

Example: 802.11 Analysis, Bianchi's Formula

802.11 single cell m_i = proba one node is in backoff stage I β = attempt rate γ = collision proba

See [Benaim and Le Boudec, 2008] for this analysis

$$\begin{split} \frac{dm_0}{d\tau} &= -m_0 q_0 + \beta(\vec{m}) \left(1 - \gamma(\vec{m})\right) + q_K m_K \gamma(\vec{m}) \\ \frac{dm_i}{d\tau} &= -m_i q_i + m_{i-1} q_{i-1} \gamma(\vec{m}) \qquad i = 1, ..., K \\ \beta(\vec{m}) &= \sum_{i=0}^K q_i m_i \\ \gamma(\vec{m}) &= 1 - e^{-\beta(\vec{m})}. \end{split}$$

Solve for Fixed Point:

$$m_i = \frac{\gamma^i}{q_i} \frac{1}{\sum_{k=0}^K \frac{\gamma^k}{q_k}}$$

Bianchi's
Fixed
Point
Equation
[Bianchi 1998]

$$\gamma = 1 - e^{-\beta}$$

$$\beta = \frac{\sum_{k=0}^{K} \gamma^k}{\sum_{k=0}^{K} \frac{\gamma^k}{q_k}}$$

Example: Kelly's Alternate Routing [Kelly, 1991]

- N = K(K 1)/2 links, each of capacity C calls
- Arrival of calls to link ab with rate λ
- If link is saturated $(X_{ab}(t) = C)$, arriving call attempts one two-hop alternate route (ac, cb); if either link on chosen alternate route is saturated, call is lost
- Call duration is expo(1)
- $X_{ab}(t)$ = number of calls using link ab; $Y_{ab}^c(t)$ = number of calls diverted via c
- System state = $(X_{ab}(t), Y_{ab}^c(t))_{a,b,c}$

- This is not a mean field interaction model
 - ► If we rename object ab we need to rename obejct abc accordingly
- However, there is convergence to a deterministic occupancy measure and propagation of chaos [e.g. Graham and Méléard 1997]

Kelly's Alternate Routing Simplified Model

- N = K(K-1)/2 links, each of capacity C calls
- Arrival of calls to link n with rate λ
- If link is saturated $(X_n(t) = C)$, arriving call attempts one alternative pair (n_1, n_2) of links; if either link on chosen alternate route is saturated, call is lost.
- If call is accepted on two hop route, both legs of the call become independent
- Call duration is expo(1)

This *is* a mean field interaction model, has same limiting equations as original limit.

Mean field equations:

$$\begin{split} X_n^N(t) &\in \{0,1,2...,C\} &= \text{ state of link } n \\ &\sum_{k=0}^n \dot{m}_k(t) &= (n+1)m_{n+1}(t) - \gamma(t)m_n(t), \ n=0,1,....C-1 \\ &\gamma(t) &= \lambda \left\{1 + 2m_C(t) \left[(1-m_C(t)]\right]\right\} \end{split}$$

Fixed point: solve for m_n and γ

$$(n+1)m_{n+1} = \gamma m_n$$

$$\gamma = \lambda \left\{ 1 + 2m_C(t) \left((1 - m_C) \right) \right\}$$

Which gives

$$m_n = \frac{\gamma^n}{n!} / \left(\sum_{k=0}^C \frac{\gamma^k}{k!}\right)$$

the stationary points are obtained by solving for m_C and γ in

$$m_C = E(\gamma, C)$$

 $\gamma = \lambda \left[1 + 2m_C(1 - m_C)\right]$

with

$$E(\gamma, C) \stackrel{\text{def}}{=} \frac{\gamma^C}{C!} / \left(\sum_{k=0}^C \frac{\gamma^k}{k!} \right)$$

which is equivalent to

$$m_C = E(\lambda \left[1 + 2m_C(1 - m_C)\right], C)$$

Fixed Point Equation for saturation prob m_C

Fixed Point Method Applied to 2-Step Malware Example

case	prob				
1	$D\delta_D$				
2	$D\lambda \frac{ND-1}{N-1}$				
3	$A\beta \frac{D}{h+D}$				
4	$A\delta_A$				
5	$S(\alpha_0 + rD)$				
6	$S\alpha$				

1. Recovery

2. Mutual upgrade

3. Infection by active

4. Recovery

5. Recruitment by Dormant

6. Direct infection

$$\delta_D D + 2\lambda D^2 + \beta A \frac{D}{h+D} = (\alpha_0 + rD)S$$

$$2\lambda D^2 + \beta A \frac{D}{h+D} + \alpha S = \delta_A A$$

$$\delta_D D + \delta_A A = (\alpha_0 + rD)S + \alpha S$$

- Solve for (D,A,S)
- Has a unique solution

Example Where Fixed Point Method Succeeds

- In stationary regime:
 - ▶ Prob (node *n* is dormant) ≈ 0.3
 - ▶ Prob (node *n* is active) ≈ 0.6
 - ▶ Prob (node *n* is susceptible) ≈ 0.1
 - ▶ Nodes *m* and *n* are independent
- The diagram commutes

Example Where Fixed Point Method Fails

- In stationary regime, m(t) = (D(t), A(t), S(t)) follows the limit cycle
- Assume you are in stationary regime (simulation has run for a long time) and you observe that one node, say n=1, is in state 'A'
- It is more likely that m(t) is in region R $_{h=0.1}$
- Therefore, it is more likely that some other node, say n=2, is also in state 'A'

This is synchronization

Joint PDFs of Two Nodes in Stationary Regime

Numerical Results (h = 0.1).

prob of state	D	A	S
given D	0.261	0.559	0.181
given A	0.152	0.583	0.264
given S	0.099	0.533	0.368
unconditional	0.154	0.565	0.281

Fixed Point Method

case	prob							
1	$D\delta_D$	1. Recov	ery			D		
2	$D\lambda \frac{ND-1}{N-1}$	Z. Mutua	n-> s I upgrade	$\delta_D D +$	$2\lambda D^2$ -	$+\beta A \frac{D}{b+D}$	=	$(\alpha_0 + rD)S$
3	$A\beta \frac{D}{h+D}$	Infect	In the section on by active	$2\lambda D^2$	+ 3.1	$\frac{D}{1+D} + \alpha S$	=	$\delta_A A$
4	$A\delta_A$	4. Recov			'	$\delta_D D + \delta_A A$	=	$(\alpha_0 + rD)S + \alpha S$
5	$S(\alpha_0 + rD)$	5. Recrui	itment by					
6	$S\alpha$	6. Direct	infection					
			5-3-A	Solve for (D,A,S)				
		■ Has a unique solution						

Where is the Catch?

- Mean field convergence implies that nodes m and n are asymptotically independent
- There *is* mean field convergence for this example
- But we saw that nodes may not be asymptotically independent

... is there a contradiction?

Markov chain is ergodic

- Mean Field convergence implies asymptotic Independence in Transient Regime, but says nothing about Stationary Regime
- We have three general results

Result 1: Fixed Point Method Holds under (H)

Assume that

- (H) ODE has a unique global stable point to which all trajectories converge
- Theorem [e.g. Benaim et al 2008] : The limit of stationary distribution of M^N is concentrated on this fixed point
 - i.e., under (H), the fixed point method and the decoupling assumptions are justified
- Uniqueness of fixed point is not sufficient
- (H) has nothing to do with the properties at finite N
 - ▶ In our example, for h=0.3 the decoupling assumption holds in stationary regime, for h=0.1 it does not
 - ▶ In both cases the Markov chain at finite *N* has the same graph.
- Study the ODE!

The Diagram Does Not Always Commute

h=0.1

$$\mathbb{P}(X_1^N(t/N) = i \text{ and } X_1^N(t/N) = j) \xrightarrow{t \to \infty} \pi_{i,j}^N$$

$$\downarrow_{N \to \infty} \qquad \qquad \downarrow_{N \to \infty}$$

$$\mu_i(t)\mu_j(t) \qquad \qquad \frac{1}{T} \int_0^T \mu_i(t)\mu_j(t) dt$$

For large *t* and *N*:

$$\mathbb{P}(X_1^N(t/N) = i \text{ and } X_1^N(t/N) = j) \approx \frac{1}{T} \int_0^T \mu_i(t) \mu_j(t) dt$$

$$\neq \left(\frac{1}{T} \int_0^T \mu_i(t) dt\right) \left(\frac{1}{T} \int_0^T \mu_j(t) dt\right)$$

where *T* is the period of the limit cycle

Result 2 for Stationary Regime

- Original system (stochastic):
 - \triangleright (X^N(t)) is Markov, finite, discrete time
 - ightharpoonup Assume it is irreducible, thus has a unique stationary proba $v^{\mathcal{N}}$
 - Let ϖ^N be the corresponding stationary distribution for $M^N(t)$, i.e. $P(M^N(t)=(x_1,...,x_I))=\varpi^N(x_1,...,x_I)$ for x_i of the form k/n, k integer
- Theorem [Benaim]

Theorem 3 The support of any limit point of ϖ^N is a compact set included in the Birkhoff center of Φ .

Birkhoff Center: closure of set of points s.t. $m \in \omega(m)$ Omega limit: $\omega(m)$ = set of limit points of orbit starting at m

Here:

Birkhoff center = limit cycle ∪ fixed point

The theorem says that the stochastic system for large N is close to the Birkhoff center,

i.e. the stationary regime of ODE is a good approximation of the stationary regime of stochastic system

Existence and Unicity of a Fixed Point are not Sufficient for Validity of Fixed Point Method

- Essential assumption is
- (H) m(t) converges to a unique m*
- It is not sufficient to find that there is a unique stationary point, i.e. a unique solution to F(m*)=0
- Counter Example on figure
 - $(X^N(t))$ is irreducible and thus has a unique stationary probability η^N
 - ► There is a unique stationary point (= fixed point) (red cross)
 - ► F(m*)=0 has a unique solution
 - ▶ but it is not a stable equilibrium
 - ► The fixed point method would say here
 - ▶ Prob (node n is dormant) ≈ 0.1
 - ► Nodes are independent
 - ... but in reality
 - ► We have seen that nodes are not independent, but are correlated and *synchronized*

Dormant

Example: 802.11 with Heterogeneous Nodes

[Cho2010]

Two classes of nodes with heterogeneous parameters (restransmission probability)

Fixed point equation has a unique solution

There is a limit cycle

Quiz

M^N(t) is a Markov chain on $E=\{(a, b, c) \ge 0, a+b+c=1, a, b, c \text{ multiples of } 1/N\}$

A. M^N(t) is periodic, this is why there is a limit cycle for large N.

B. For large N, the stationary proba of M^N tends to be concentrated on the blue cycle.

C. For large N, the stationary proba of M^N tends to a Dirac.

D. M^N(t) is not ergodic, this is why there is a limit cycle for large N.

STATIONARY REGIME

REVERSIBLE CASE

Result 3: Reversible Case

- **Definition** Markov Process X(t) on enumerable state E space, with transition rates q(i,j) is reversible iff
 - 1. It is ergodic
 - 2. There exists some probability distribution p such that, for all i, j in E

$$p(i) q(i,j) = p(j) q(j,i)$$

- If X(t) is reversible iff
 - 1. It is stationary (strict sense)
 - 2. It has same process law under reversal of time
- Most processes are not reversible, but some interesting cases exist:
 - ► Product form queuing networks with reversible routing matrix (e.g, on a bus)
 - ► Kelly's alternate routing models

Result 3: Reversible Case

Theorem 1.2 ([Le Boudec(2010)]) Assume some process $Y^N(t)$ converges at any fixed t to some deterministic system y(t) at any finite time. Assume the processes Y^N are reversible under some probabilities Π^N . Let $\Pi \in \mathcal{P}(E)$ be a limit point of the sequence Π^N . Π is concentrated on the set of stationary points S of the fluid limit y(t)

- Stationary points = fixed points
- If process with finite *N* is reversible, the stationary behaviour is determined only by fixed points.
- Even if (H) does not hold

Example: Kelly's Alternate Routing

- System with *N* nodes is reversible
- Kelly's analysis looks for fixed points only
- Justified by reversibility

OPTIMIZATION

Decentralized Control

- Game Theoretic setting; N players, each player has a class, each class has a policy; each player also has a state;
 - Set of states and classes is fixed and finite
 - ► Time is discrete; a number of players plays at any point in time.
 - Assume similar scaling assumptions as before.
- [Tembine et al.(2009)]
 For large N the game converges to a single player game against a population;

Theorem 3.6.2 (Infinite N). Optimal strategies (resp. equilibrium strategies) exist in the limiting regime when $N \to \infty$ under uniform convergence and continuity of $R^N \to R$. Moreover, if $\{U^N\}$ is a sequence of \mathcal{E}_N —optimal strategies (resp. \mathcal{E}_N —equilibrium strategies) in the finite regime with $\mathcal{E}_N \longrightarrow \mathcal{E}$, then, any limit of subsequence $U^{\phi(N)} \longrightarrow U$ is an \mathcal{E} —optimal strategies (resp. \mathcal{E} —equilibrium) for game with infinite N.

Optimal, Centralized Control

- Gast et al.(2010)]
- Markov decision process (MDP)
 - ► Finite state space per object, discrete time, *N* objects
 - Transition matrix depends on a control policy
 - ► For large *N* the system control converges to mean field, under any control
- Mean field limit
 - ► ODE driven by a control function

- **Theorem:** under similar assumptions as before, the optimal value function of MDP converges to the optimal value of the limiting system
- The result transforms MDP into fluid optimization, with very different complexity

Conclusion

- Mean field models are frequent in large scale systems
- Mean field is much more than a fluid approximation: decoupling assumption / fast simulation / random process modulated by fluid limit
- Decoupling assumption holds at finite horizon; may not hold in stationary regime.
- Stationary regime is more than stationary points, in general (except for reversible case)
- Control on mean field limit may give new insights

References

- [Baccelli et al.(2004)Baccelli, Lelarge, and McDonald] F. Baccelli, M. Lelarge, and D McDonald. Metastable regimes for multiplexed tcp flows. In Proceedings of the Forty-Second Annual Allerton Conference on Communication, Control, and Computing, Allerton House, Monticello, Illinois, USA, University of Illinois at Urbana-Champaign, October 2004.
- [Benaim and Le Boudec(2008)] M. Benaim and J.Y. Le Boudec. A class of mean field interaction models for computer and communication systems. *Performance Evaluation*, 65(11-12):823–838, 2008.
- [Benaïm and Weibull(2003)] M. Benaïm and J. Weibull. Deterministic approximation of stochastic evolution. *Econometrica*, 71:873–904, 2003.
- [Benaim et al.(2006)Benaim, Hofbauer, and Sorin] M. Benaim, J. Hofbauer, and S. Sorin. Stochastic approximations and differential inclusions ii: Applications. 2006.
- [Bordenave et al.(2007)Bordenave, McDonald, and Proutiere] C. Bordenave, D. McDonald, and A. Proutiere. A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Arxiv preprint math/0701363, 2007.

- [Bordenave et al.(2008)Bordenave, McDonald, and Proutiere] C. Bordenave, D. McDonald, and A. Proutiere. Performance of random medium access control, an asymptotic approach. In *Proceedings of the 2008 ACM* SIGMETRICS international conference on Measurement and modeling of computer systems, pages 1–12. ACM, 2008.
- [Buchegger and Le Boudec(2002)] S. Buchegger and J.-Y. Le Boudec. Performance analysis of the confidant protocol (cooperation of nodes - fairness in dynamic ad-hoc networks). In *Proceedings of MobiHoc'02*, June 2002.
- [Chaintreau et al.(2009)Chaintreau, Le Boudec, and Ristanovic] A. Chaintreau, J.Y. Le Boudec, and N. Ristanovic. The age of gossip: spatial mean field regime. In *Proceedings of the eleventh international joint conference on Measurement and modeling of computer systems*, pages 109–120. ACM, 2009.
- [Darling and Norris(2008)] RWR Darling and J.R. Norris. Differential equation approximations for Markov chains. *Probability surveys*, 5:37–79, 2008.
- [Deffuant et al.(2000)Deffuant, Neau, Amblard, and Weisbuch] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs among interacting agents. Advances in Complex Systems, 3:87–98, 2000.
- [Ethier and Kurtz(2005)] Stewart N. Ethier and Thomas G. Kurtz. *Markov Processes, Characterization and Convergence*. Wiley, 2005.

- [Gast et al.(2010)Gast, Gaujal, and Le Boudec] Nicolas Gast, Bruno Gaujal, and Jean-Yves Le Boudec. Mean field for Markov Decision Processes: from Discrete to Continuous Optimization. Technical Report arXiv:1004.2342v2, 2010.
- [Gomez-Serrano et al.(2010)Gomez-Serrano, Graham, and Le Boudec]
 Javier Gomez-Serrano, Carl Graham, and Jean-Yves Le Boudec. The
 Bounded Confidence Model Of Opinion Dynamics. Technical Report arxiv:1006.3798.v1, 2010.
- [Graham and Méléard(1994)] Carl Graham and Sylvie Méléard. Chaos hypothesis for a system interacting through shared resources. *Probab. Theory Related Fields*, 100(2):157–173, 1994. ISSN 0178-8051. doi: 10.1007/BF01199263. URL http://dx.doi.org/10.1007/BF01199263.
- [Graham and Méléard(1997)] Carl Graham and Sylvie Méléard. Stochastic particle approximations for generalized Boltzmann models and convergence estimates. *Ann. Probab.*, 25(1):115–132, 1997. ISSN 0091-1798. doi: 10.1214/aop/1024404281. URL http://dx.doi.org/10.1214/aop/1024404281.
- [Ioannidis and Marbach(2009)] S. Ioannidis and P. Marbach. Absence of Evidence as Evidence of Absence: A Simple Mechanism for Scalable P2P Search. In *INFOCOM 2009*, *IEEE*, pages 576–584. IEEE, 2009.
- [Kelly(1991)] F.P. Kelly. Loss networks. The annals of applied probability, 1 (3):319–378, 1991.

- [Kurtz(1970)] T.G. Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes. *Journal of Applied Probability*, 7(1): 49–58, 1970.
- [Le Boudec(2010)] Jean-Yves Le Boudec. The Stationary Behaviour of Fluid Limits of Reversible Processes is Concentrated on Stationary Points. Technical Report arxiv:1009.5021.v2, 2010.
- [Le Boudec et al.(2007)Le Boudec, McDonald, and Mundinger] Jean-Yves Le Boudec, David McDonald, and Jochen Mundinger. A Generic Mean Field Convergence Result for Systems of Interacting Objects. In OEST'07, 2007.
- [McDonald(2007)] David McDonald. Lecture Notes on Mean Field Convergence, March 2007.
- [Sandholm(2006)] W.H. Sandholm. Population games and evolutionary dynamics. *Unpublished manuscript, University of Wisconsin*, 2006.
- [Sznitman(1991)] A.S. Sznitman. Topics in propagation of chaos. In P.L. Hennequin, editor, *Springer Verlag Lecture Notes in Mathematics 1464, Ecole d'Eté de Probabilités de Saint-Flour XI (1989)*, pages 165Ű–251, 1991.

- [Tembine et al.(2009)Tembine, Le Boudec, El-Azouzi, and Altman]
 Hamidou Tembine, Jean-Yves Le Boudec, Rachid El-Azouzi, and
 Eitan Altman. Mean Field Asymptotic of Markov Decision Evolutionary
 Games and Teams. In *Gamenets* 2009, 2009. Invited Paper.
- [Tinnakornsrisuphap and Makowski(2003)] Peerapol Tinnakornsrisuphap and Armand M. Makowski. Limit behavior of ecn/red gateways under a large number of tcp flows. In *Proceedings IEEE INFOCOM* 2003, The 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, San Franciso, CA, USA, March 30 April 3 2003.