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Mean Field Interaction Model:
Common Assumptions

Time is discrete or continuous

N objects
Object n has state X, (t)

(XV,(t), ..., XV (t)) is Markov
=> MN(t) = occupancy measure process is also Markov

Objects can be observed only through their state
N is large

Called “Mean Field Interaction Models” in the Performance
Evaluation community

[McDonald(2007), Benaim and Le Boudec(2008)]



Intensity /(N)
B /(N) = expected number of transitions per object per time unit

B The mean field limit occurs when we re-scale time by I(N)
i.e. we consider XV(t/I(N))

B [n discrete time
» I(N)=0(1): mean field limit is in discrete time
» I(N)=0(1/N): mean field limit is in continuous time



Example: 2-Step Malware

B Mobile nodes are either
» 'S’ Susceptible
» D’ Dormant
» A’ Active

B Time is discrete

Nodes meet pairwise (bluetooth)

B One interaction per time slot,
I(N) = 1/N; mean field limit is an ODE

B State space is finite
— {‘SP , ‘Al ,\D’}

B Occupancy measure is
M(t) = (S(t), D(t), A(t)) with
S(t)+ D(t) + A(t) =1

S(t) = proportion of nodes in state 'S’

[Benaim and Le Boudec(2008)]

B Possible interactions:

6.

. Recovery

» D->S

. Mutual upgrade

» D+D->A+A

. Infection by active

» D+A->A+A
Recovery
» A->S

. Recruitment by Dormant

» S+D->D+D
Direct infection
» S->D

Direct infection
» S->A



Simulation Runs, N=1000 nodes
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Sample Runs with N = 1000
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Example: WiFi Collision Resolution Protocol

B N nodes, state = retransmission stage k

B Time is discrete, I(N) = 1/N; mean field limit is an
ODE

B Occupancy measure is M(t) = [M,(t),...M(t)]
with M, (t) = proportion of nodes at stage k

B [Bordenave et al.(2008)Bordenave, McDonald, and
Proutiere,
Bordenave et al.(2007)Bordenave, McDonald, and
Proutiere]



Example: HTTP Metastability

B N flows between hosts and servers
B Flow nis OFF or ON
B Time is discrete, occupancy measure = proportion of ON flows

B Atevery time step, every flow switches state with proba matrix that
depends on the proportion of ON flows

B I(N) =1; Mean field limit is an iterated map (discrete time)

[Baccelli et al.(2004)Baccelli, Lelarge, and McDonald]

B Other Examples where the mean field limit is in discrete time:
TCP flows with a buffer in [Tinnakornsrisuphap and Makowski(2003)]

Reputation System in [Le Boudec et al.(2007)Le Boudec, McDonald, and
Mundinger]



Example: Age of Gossip
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Example: Age of Gossip

B Mobile node state = (¢, t)
c=1..16 (position)

t € R*(age)

B Time is continuous, [(N) =1

B Occupancy measure is
F_(zt) = proportion of nodes that at
location c and have age < z

[Chaintreau et
al.(2009)Chaintreau, Le Boudec,
and Ristanovic]

11



Extension to a Resource

B Model can be complexified by
adding a global resource R(t)

B Slow: R(t) is expected to change B Fast: R(t) is change state at the
state at the same rate I(N) as one aggregate rate N I(N)
object
-> call it an object of a special class -> requires special extensions of
the theory

[Bordenave et
al.(2007)Bordenave, McDonald,
and Proutiere]

[Benaim and Le Boudec(2008)]
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The Mean Field Limit

B Under very general conditions (given later) the
occupancy measure converges, in some sense,
to a deterministic process, m(t), called the
mean field limit

M () = o

B [Graham and Méléard(1994)] consider the
occupancy measure L" in path space

£ 1 .
M) = 5D o
n

1
=G oy
n
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Propagation of Chaos is Equivalent to
Convergence to a Deterministic Limit

Definition

Let XN = (XN, ..., X{/) be an exchangeable sequence of
processes in P(S) and m € P(S) where S is metric complete
separable. (XV)y is m-chaotic iff for every k:

LXN . XNy me...emas N - .

Theorem ([Sznitman(1991)])

(XN)n is m-chaotic then the occupancy measure
MmN & 1'1%’ Effﬂ ) xn converges in probability (and in law) to m.

If the occupancy measure converges in law to m then (XN)y is
m-chaotic.

16



Propagation of Chaos
Decoupling Assumption

B (Propagation of Chaos)

If the initial condition (XN, (0)),-, y is exchangeable and there is mean field
convergence then the sequence (XN, ),_; yindexed by N is m-chaotic

k objects are asymptotically independent with common law equal to the
mean field limit, for any fixed k

c (X1 (f(—j\f)) X (I(—r))) Smt) e .. @ m(t)

(Decoupling Assumption)

(also called Mean Field Approximation, or Fast Simulation)

The law of one object is asymptotically as if all other objects were drawn
randomly with replacement from m(t)

17



Example: Propagation of Chaos

B Atanytimet

P(Xn(t) = A =~ A(i)
P(Xm(t) =' D', Xn(t) =' A') ~ D( )A(

where (D, A, S) is solution of ODE

B Thus for large
» Prob (node nis dormant) = 0.3
» Prob (node nis active) = 0.6
» Prob (node n is susceptible) = 0.1

Active

ikl

18



Example: Decoupling Assumption

B Letp"(t]i) be the probability that
a node that starts in state i is in
state j at time t:

py (ti) =PX (1) = ] X0 (
B The decoupling assumptions says

that N R :
p?‘ (t/N|i) =~ p;(t]i)

where p(t/i) is a continuous time, non
homogeneous process

jfﬁ(ﬂi) = Pt Aji(t))
%f(t) — AT A1) = F (1))

0) = i)

Active
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The Two Interpretations of the
Mean Field Limit

m(t) is the approximation for large N of

1.
2.

the occupancy measure MN(t)
the state probability for one object at time t

20



Contents

B Mean Field Interaction Model
B The Mean Field Limit

Convergence to Mean Field
B The Decoupling Assumption
B Optimization

21



The General Case

B Convergence to the mean field limit is very
often true

B A general method is known
[Sznitman(1991)]:

» Describe original system as a markov
system; make it a martingale problem, using
the generator

» Show that the limiting problem is defined as
a martingale problem with unique solution

» Show that any limit point is solution of the
limitingmartingale problem

» Find some compactness argument (with
weak topology)

B Requires knowing [Ethier and Kurtz(2005)]

22



Kurtz’s Theorem

B Original Sytem is in discrete time and I(N) -> 0; limit is in continuous time
B State space for one object is finite

[Kurtz(1970), Sandholm(2006)] Let

Nm) € ﬁlﬁ] (MN(k +1) — m|MN (k) = m)

AN(m) B (MY 1) = mil| MY(6) = m)
B(m) = ﬁE (MY +1) = ml| 1 yaas s 1y-mys sy | MY (K) = m)

@ limysup,, |[fN(m) —f(m)|| = 0 for some f,
supy sup,, AV(m) < o
limy sup,, [|BY(m)|| = 0 with limy— o dv = 0

@ MN(0) — mp in probability
Then supyc <7 P (|| MM () — m(t)||) — 0 in probability.

23



Discrete Time, Finite State Space per Object

B Refinement + simplification, with a fast resource

[Benaim and Le Boudec(2008), loannidis and Marbach(2009)]

o Let WV(k) be the number of objects that do a transition in
time slot k. Note that E (WN(k)) = NI(N), where

[(N) Hintensity. Assume

E(W”(k)2) < B(N) with lim /(N)3(N) =0

N— oo

@ MN(0) — mg in probability
@ regularity assumption on the drift (generator)
Then supg;7 P (|MN(t) — m(t)||) — 0 in probability.

B When limit is non continuous:
[Benaim et al.(2006)Benaim, Hofbauer, and Sorin]



Discrete Time, Enumerable State Space per Object

B State space is enumerable with discrete topology, perhaps infinite; with a
fast resource

[Bordenave et al.(2007)Bordenave, McDonald, and Proutiere]
@ Probability that objects / and j do a transition in one time
slotis o(1/N)
@ MN(0) — m(0) in probability for the weak topology
o (XN(0),...,X)/(0)) is exchangeable at time 0
@ regularity assumption on the drift (generator)
Then MN is m-chaotic.

B Essentially : same as previous plus exchangeability at time 0

25



Discrete Time, Discrete Time Limit

B Mean field limit is in discrete time

[Le Boudec et al.(2007)Le Boudec, McDonald, and Mundinger,

Tinnakornsrisuphap and Makowski(2003)]
limy [(N) = 1

@ Object / draws next state at time k independent of others with
transition matrix KN (MN)

@ MN(0) — mp a.s. [in probability]

@ reqularity assumption on the drift (generator)

Then supy <« P (||MN (k) — m(k)||) — 0 a.s. [in probability]

26



Continuous Time

B « Kurtz’'s theorem » also holds in continuous time (finite state space)

B Graham and Méléard: A generic result for general state space (in particular
non enumerable).

[Graham and Méléard(1997), Graham and Méléard(1994)]
I(N) = 1/N, continuous time.

@ Object / has a free evolution plus pairwise interactions.
@ XN(0)p—1.. n is iid with common law mg

@ Generator of pairwise meetings is uniformly bounded in total
variation norm
e.9.if G- o(x.X") = [y, Yy )(y,y'|x,x")dydy’ then
1y, y'|x. x")| dydy” <A, for all x, x’

Then there is propagation of chaos with explicit bounds in total
variation over finite time intervals. Mean field independence holds.
27



Age of Gossip

Every taxi has a state
» Positioninareac=0...16
» Age of last received information

¥

(veec,

Ve e C,
. Veel,

B [Graham and Méléard 1997]

applies, i.e. mean field convergence
occurs for iid initial conditions

B [Chaintreau et

al.(2009)Chaintreau, Le Boudec,
and Ristanovic] shows more, i.e.
weak convergence of initial
condition suffices

OF.(z,t) N OF.(z,t)

ot 0z
ch" «:Fc’(zat)_ (Z Pe.c’ FC(Z,t)
c’F#c c'F#c
+ (ue(t|d) — Fe(z,t)) (2neFe(z,1) + i)
+ (ue(td) = Fu(2,1)) Y 2Bpe,eny For (2,1)
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The Bounded Confidence Model

B Introduced in [Deffuant et al (2000)], used in mobile networks in [Buchegger
and Le Boudec 2002]; Proof of convergence to Mean Field in [Gomez,

Graham, Le Boudec 2010]

@ Discrete time. State space =|0, 1].
XN(k) € [0, 1] rating of common subject held by peer n

@ Two peers, say / and j are drawn uniformly at random.

If | XY (k) — X"(k)| > A no change; else

29



PDF of Mean Field Limit
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Is There Convergence to Mean Field ?

B Intuitively, yes B However, there can be no similar
result for the real version of the

B Discretized version of the problem: problem

» There are some initial conditions
such that MN(0) -> m, while there

» Generic results apply: number of is not convergence to the mean
meetings is upper bounded by 2 field

» Make set of ratings discrete

» There is convergence for any
initial condition such that

MN(0) -> m, » There is convergence to mean field

if initial condition is iid from m,

B This is what matlab does.

31
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Decoupling Assumption

B [s true when mean field convergence holds, i.e. almost always

B [tis often used in stationary regime

35



Example

B [n stationary regime:
» Prob (node nis dormant) = 0.3
» Prob (node nis active) = 0.6
» Prob (node n is susceptible) = 0.1

» Nodes m and n are independent

B We arein the good case: the
diagram commutes

t->+1
Law of MN(t) > N
N->+1 N->+1
Sp(t) > Sm*
t->+1

Active

36



Counter-Example

B The ODE does not |-
converge to a unique 1o
attractor (limit cycle) 1T

k]

Active

B Assumption H does not
hold; does the
decoupling assumption | |
still hold ? A E

(-]
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Decoupling Assumption Does Not Hold Here
In Stationary Regime

B [n stationary regime, m(t) = (D(t), A(t), S(t))
follows the limit cycle

B Assume you are in stationary regime (simulation
has run for a long time) and you observe that L

one node, say n=1, is in state ‘A’

Active

B [tis more likely that m(t) is in region R
B Therefore, it is more likely that some other node,

say n=2, is also in state ‘A’

04 1] il
Dormmant

Active

B This is synchronization Q

ikl

04 1] e
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Stationary point of ODE

1

0.9

0.8

pdf of node 2 07

In stationary

regime, 0 > %
- -3 b
givennode 1 43 osr i
is A <
0.4r .
2y pdf of node 2 in“stationary |
94_ regime, given node ‘s D i
pdf of node 2 ioq stationary .
regime, given ngde 1is S
00 0.|1 0.|2 0.|3 0.|4 0.|5 0.|6 0.|7 0.|8 0.|9 1
Dormant

0.6

Numerical Example

\

Mean of Limit of @N = pdf of one node in statig

nary regime
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Numerical Results (A = 0.1).

prob of state

D

A

S

given D

0.261

0.559

0.181

given A

0.152

0.583

0.264

given S

0.099

0.533

0.368

unconditional

0.154

0.565

0.281

Simplified Analysis 2

Decoupling Assumption (Stationary

case prob ‘ Regl m e)

1 DéD 1.  Recover y 9 D

N » D->S ) 2) A — T S
2 D/\‘\_\gll 2. Mutual upgrade DD+2\D +’JA]?—Q—D [“0+ !D)S
3 432 3. mfectionts ONDZPB D
k] AP 3. nfection b ‘ / S y

}i+D Jection by 2ADF Ah—l—D +aS = d4A4
4 Ada o Recovery dphhst64A = (ag+rD)S+aS
| St +rD) | 5 peemimes

. S*D->
6 Sa 6._agDirect infection

S B Solve for (D,A,S)

M Has a unique solution
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Where is the Catch ?

B Fluid approximation and fast simulation result say that nodes m and n are
asymptotically independent

B But we saw that nodes may not be asymptotically independent

... is there a contradiction ?

41



The Diagram Does Not Commute

P(XN(t/N) =i and XN(t/N) = j) —= =

N—oo lNHO@
() p(t) % fUT pi(t) () dt

B Forlarge tand N:

: : 1 [
P(X{ (t/N) =iand X[ (t/N) =j) = ?/0 pui(t) i (€)dt
T

y (% / m(t)dr-) (% / ; mt)dt)

where T is the period of the limit cycle



Generic Result for Stationary Regime

B Original system (stochastic):
» (XN(t)) is Markov, finite, discrete time
» Assume it is irreducible, thus has a unique stationary proba vN
» Let @N be the corresponding stationary distribution for MN(t), i.e.

P(MN(t)=(X1,...,XI)) = @V (Xy,..X) for x; of the form k/n, k integer

B Theorem [Benaim]

Theorem 3 The support of any limit point of =" is a compact set included in the
Birkhoff center of .

Birkhoff Center: closure of set of points s.t. me w(m)
Omega limit: ®(m) = set of limit points of orbit starting at m

43



B Here:
Birkhoff center = |
limit cycle U fixed
point Al

] L .G

Active

B The theorem says |
that the stochastic 1 o
system for large Nis 171

close to the Birkhoff = © = © “pman © © T T 7 e o o®
center, ' |
i.e. the stationary -
regime of ODE is a ST 1 e"
good approximation 2* 18"
of the stationary k\—’———f”
regime of stochastic .
system - {

14 0=
Dormant Dormant



B MN(t)is a Markov chain on E={(a, b,c), 0,a+ b + c=1, a, b, c multiples of 1/N}

A. MN(1) is periodic, this is
why there is a limit cycle
for large N.

B. For large N, the stationary
proba of MN tends to be
concentrated on the blue
cycle.

Active

C. For large N, the stationary
proba of MN tends to a
Dirac.

D. MN(t) is not ergodic, this is
why there is a limit cycle
for large N.

0.9

Quiz
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Decoupling Assumption in Stationary Regime
Holds under (H)

B Forlarge N the decoupling assumption holds at any fixed time ¢
B [t holds in stationary regime under assumption (H)

» (H) ODE has a unique global stable point to which all trajectories converge

B Otherwise the decoupling assumption may not hold in stationary regime

B [t has nothing to do with the properties at finite N

» In our example, for h=0.3 the decoupling assumption holds in stationary regime
» For h=0.1 it does not

B Study the ODE!

46



Existence and Unicity of a Fixed Point are not
Sufficient for Validity of Fixed Point Method

B Essential assumption is

ik

(H) u(t) converges to a unique m’

B Itis not sufficient to find that there is a unique
stationary point, i.e. a unique solution to F(m")=0 ¢ |

B Counter Example on figure <

E 3

» (XN(t)) is irreducible and thus has a unique
stationary probability nN

12
» There is a unique stationary point ( = fixed point ) Ll L L

(red cross) | Domant

» F(m")=0 has a unique solution

ik

» but it is not a stable equilibrium o}
» The fixed point method would say here 7t
» Prob (node nis dormant) = 0.1 o
» Nodes are independent E;
» ...butinreality

» We have seen that nodes are not independent, but are o
correlated and synchronized of

a o 0z 03 04 1] . 7 a8 0a 1
Dormant



Example: 802.11 with Heterogeneous Nodes

B [Cho2010]

Two classes of nodes with
heterogeneous parameters

O I S S En B SR T E (restransmission probability)
< L DIMC| & i

N e : . . . .
£ oosf-e 7 - Fixed point equation has a unique
S ol " solution

z 0.04/- . -

>

=)

§o.oc3— ----------- ] ] .

: | ; There is a limit cycle

g 002 %=0. o

|

§ 0.01 : i

0 ! ! L
045 05 055 06 0685 07 075 08 08 09 095
Short—term occupancy measure of stage 0
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Decentralized Control

B Game Theoretic setting; N players, each player has a class, each class has a
policy; each player also has a state;

» Set of states and classes is fixed and finite
» Time is discrete; a number of players plays at any point in time.
» Assume similar scaling assumptions as before.

B [Tembine et al.(2009)Tembine, Le Boudec, El-Azouzi, and Altman]
For large N the game converges to a single player game against a
population;

Theorem 3.6.2 (Infinite N). Optimal strategies (resp. equii-
l[ibrivum strategies) exist in the limiting regime when N — oo
under uniform convergence and continuity of R® — R.
Moreover, if {UNY} is a sequence of ey —optimal strategies
(resp. en—equilibrium strategies) in the finite regime with
ey — €, then, any limit of subsequence UWN) — U is an
€— optimal strategies (resp. €—equilibrium) for game with

infinite N.



Centralized Control

[Gast et al.(2010)Gast, Gaujal, and Le Boudec]

Markov decision process
» Finite state space per object, discrete time, N objects
» Transition matrix depends on a control policy
» Forlarge N the system without control converges to mean field

Mean field limit
» ODE driven by a control function

Theorem: under similar assumptions as before, the optimal value function of
MDP converges to the optimal value of the limiting system

The result transforms MDP into fluid optimization, with very different
complexity
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Conclusion

B Mean field models are frequent in
large scale systems

B Writing the mean field equations is
simple and provides a first order
approximation

Mean field is much more than a
fluid approximation: decoupling
assumption / fast simulation

Decoupling assumption in
stationary regime is not
necessarily true.

Mean field equations may reveal
emerging properties

Control on mean field limit may
give new insights
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