
Mean Field Methods for Computer and 
Communication Systems
Part 1: Finite Horizon

Jean‐Yves	Le	Boudec
EPFL

ROCKS	Automn School
October	2012

1



Contents

1. Mean Field	Interaction	Model
2. Convergence	to	Mean Field	Limitmade	easy
3. Formulating the	Mean Field	Limit
4. Fast Simulation,	Decoupling assumption
5. Convergence	to	Mean Field	Limit

general case

2



MEAN FIELD INTERACTION MODEL
1
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Mean Field 

A	model introduced	in	Physics
interaction	between	particles is	via	distribution	of	states	of	all	particle

An	approximation method	for	a	large	collection	of	particles
assumes	independence in	the	master	equation

Why do	we care	in	information	and	communication	systems ?
Model	interaction	of	many objects:	
Distributed systems,	communication	protocols,	game theory,	self‐
organized systems
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A Few Examples Where Applied
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Never 
again !

E.L.



Mean Field Interaction Model

Time	is	discrete	or	
continuous

N objects,	N	large
Object	n has	state	Xn(t)
(XN1(t),	…,	XNN(t))	is	
Markov

Objects are	observable	
only through their state

“Occupancy	measure”
MN(t) =	distribution	of	
object	states	at	time	t

Theorem [Gast (2011)]
MN(t) is	Markov
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Example: 2‐Step Malware
Mobile	nodes	are	either

`S’		Susceptible
`D’	Dormant
`A’	Active

Time	is	discrete
Transitions	affect	1	or	2	nodes

State	space	is	finite	
=	{`D’	,	`A’	,`S’}

Occupancy	measure	is
M(t)	=	(D(t),	A(t),	S(t))	with	
S(t)+	D(t)	+	A(t)	=1

D(t)	=	proportion	of	nodes	in	state	`D’

[Benaïm and	Le	Boudec(2008)]

1. Recovery
D	‐>	S

2. Mutual	upgrade	
D	+	D	‐>	A	+	A

3. Infection	by	active
D	+	A	‐>	A	+	A

4. Recovery
A	‐>	S

5. Recruitment	by	Dormant
S	+	D	‐>	D	+	D

Direct	infection
S	‐>	D

6. Direct	infection
S	‐>	A
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2‐Step Malware – Full Specification

1. Recovery
D	‐>	S

2. Mutual	upgrade	
D	+	D	‐>	A	+	A

3. Infection	by	active
D	+	A	‐>	A	+	A

4. Recovery
A	‐>	S

5. Recruitment	by	
Dormant

S	+	D	‐>	D	+	D
Direct	infection
S	‐>	D

6. Direct	infection
S	‐>	A

At every time step, pick one node
unif at random
- If node is in state :

- With proba mutate to S
- With proba , meet

another node and both
mutate to 

- If node is in state :
- With proba change 

one 	node to 
- With Proba mutate to 

- If node is in state 
- With proba meet a 

node and become infected

- With proba become
infected

- With proba become
infected



A(t)
Proportion of nodes 
In state i=2

9

Simulation Runs, N=1000 nodes
Node 1

Node 2

Node 3

D(t)
Proportion of nodes 
In state i=1

State = D
State = A
State = S
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Sample Runs with N = 1000



Example: WiFi Collision Resolution Protocol

N	nodes,	state	=	retransmission	stage	k

Time	is	discrete,	I(N)	=	1/N;	mean	field	limit	
is	an	ODE

Occupancy	measure	is	M(t)	=	[M0(t),...,MK(t)]
with	Mk(t)	=	proportion	of	nodes	at	stage	k

[Bordenave	et	al.(2008)Bordenave,	
McDonald,	and	Proutiere,
Bordenave	et	al.(2007)Bordenave,	
McDonald,	and	Proutiere]
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Example: Dissemination in a Vehicle Fleet

Nikodin
Ristanov
ic’s PhD
thesis

Without
Taxi	to	
Taxi	
Dissemi
nation →
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With Taxi to Taxi Dissemination
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The Importance of Being Spatial
Mobile	node state	=	(c,	t)
c	=	1	…	16	(position)
t		∊	R+	(age of	gossip)

Time	is continuous
Occupancy measure is
Fc(z,t)	=	proportion	of	nodes that at
location	c and	have	age ≤	z

[Age	of	Gossip,	Chaintreau et	
al.(2009)]	
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Qqplots simulation vs mean field

no class           16 classes
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What can we do with a Mean Field 
Interaction Model ?

Large	N asymptotics,	
Finite	Horizon

fluid	limit	of	occupancy	
measure	(ODE)
decoupling assumption
(fast simulation)

Issues
When	valid
How	to	formulate	the	
fluid	limit

Large	t	 asymptotic
Stationary	approximation	
of	occupancy	measure
Decoupling	assumption

Issues
When	valid



CONVERGENCE TO MEAN FIELD 
MADE EASY

2.
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E. L.



To Obtain a Mean Field Limit we Must Make
Assumptions about the Intensity I(N)

I(N) =	(order of)	expected number of	transitions	per	
object per	time	unit

A	mean field limit occurs when we re‐scale time	by	
I(N)	i.e.	one	time	slot	
i.e.	we consider XN(t/I(N))

I(N)	=	O(1/N):	mean field limit is in	continuous time	
[Benaïm and	Le	Boudec	(2008)]

I(N)	=	O(1):	mean field limit is in	discrete time	
[Le	Boudec et	al	(2007)]
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Intensity for 2‐step malware model is
In	one	time	step,	the	
number of	objects
affected by	a	transition	
is 0,	1	or	2;	mean
number of	affected
objects is 1
There	are	 objects
Expected number of	
transitions	per	time	slot	
per	object is
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The Mean Field Limit

Under	very general conditions	(given later)	
the	occupancy measure converges,		in	law,	to	a	
deterministic process,	m(t), called the	mean
field limit

→

Finite State	Space
Vanishing intensity	 	 	

⇒ mean field limit is ODE
19



Mean Field Limit
N = +∞

Stochastic 
system

N = 1000

20

0.3

300

	



Sufficient Conditions for Convergence 
verifiable by inspection

Condition	1:	state	space (for	one	object)	is finite
and	Condition	2:	 → 0	
and	Condition	3:	probabilities at every time	slot	depend
smoothly (C on	all	parameters and	have	a	limit when
→ ∞

and	Condition	4	:	Second	moment	of	number of	objects
affected in	one	timeslot 	 a	constant
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Example: Convergence to Mean Field; the 4 
Conditions Apply

1. 3	states

3. See table
4. Number of	

transitions	per	
time	step is
bounded by	2
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Mean Field Limit
N = +∞

Stochastic 
system

N = 1000

0.3

300



The convergence theorem
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FORMULATING THE MEAN FIELD 
LIMIT

3
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A key concept to write the mean field limit is
the drift

Assume	you have	a	model	with a	mean field limit as	in	the	
previous section
The	mean field limit is an	ODE
How	can we write the	ODE	without error ?
Solution:	study first	the	drift of	the	original	model
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Drift of a Markov Process

Given	some discrete time	Markov	process on	some state	
space ⊂ 		
the	drift	 of	the	process is the	mapping → defined by:

≔ 1
Example:	2‐step	malware	with objects:	

, ,
1
1
1

		 	

:
	 , ,
, ,
, ,
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Let’s compute

, ,
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1. Recovery
D	‐>	S

2. Mutual	upgrade	
D	+	D	‐>	A	+	A

3. Infection	by	active
D	+	A	‐>	A	+	A

4. Recovery
A	‐>	S

5. Recruitment	by	
Dormant

S	+	D	‐>	D	+	D
Direct	infection
S	‐>	D

6. Direct	infection
S	‐>	A



Let’s compute

, ,

	
1
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1. Recovery
D	‐>	S

2. Mutual	upgrade	
D	+	D	‐>	A	+	A

3. Infection	by	active
D	+	A	‐>	A	+	A

4. Recovery
A	‐>	S

5. Recruitment	by	
Dormant

S	+	D	‐>	D	+	D
Direct	infection
S	‐>	D

6. Direct	infection
S	‐>	A



The drift for the 2‐step malware example
with N objects is

29

drift 	 , ,



The mean field limit is derived from the drift

Given	some discrete time	Markov	process on	some state	
space ⊂ 		with drift	 :

1

30

Deterministic evolution
Stochastic evolution

Martingale noise

Application	to	mean field model	 :

1

		
→ 0 under

conditions 1 to 4

has a limit under
conditions 1 to 4



Interpretation of the Mean Field limit as a 
stochastic approximation of an ODE

Let	 ≔ lim
→

(re‐scaled drift)
This	limit exists by	Conditions	1	to	4.

1

i.e.	 is an	approximation	of	the	ODE

with time	step Δ
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The ODE for the 2‐step malware example
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drift = , ,

=

=

=

ODE 

Mean Field Limit
N = +∞

Stochastic 
system

N = 1000

0.3

300



Formulating the Mean Field Limit: Automation

33

Drift	=	sum over	all	transitions	of

proba of	transition
x

Delta	to	system	state	MN(t)

Re‐scale drift	by	intensity

Equation	for	mean field limit is

limit of	
rescaled drift	

Can	be automated using reaction
language

http://icawww1.epfl.ch/IS/tsed



FAST SIMULATION AND 
DECOUPLING ASSUMPTION (PERF 
TUT)

4.
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The Decoupling Assumption

Often	used in	analysis of	complex systems
Says that 	objects are	asymptotically mutually independent
( is fixed and	 → ∞
What is the	relation	to	mean field convergence	?
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The Decoupling Assumption

Often	used in	analysis of	complex systems
Says that 	objects are	asymptotically mutually independent
( is fixed and	 → ∞
What is the	relation	to	mean field convergence	?

[Sznitman 1991]	[For	a	mean field interaction	model:	]

Decoupling assumption
⇔

converges	to	a	deterministic limit

Further,	if	decoupling assumption holds,	 state	proba
for	any arbitrary object
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The Two Interpretations of the Mean Field 
Limit

At	any	time t

Thus	for	 1000 and	simulation	step		
300:
Prob (node	n is	dormant)	≈	0.48
Prob (node	n is	active)	≈	0.19	
Prob (node	n is	susceptible)	≈	0.33

m(t)	 approximates both
1. the	occupancy measure MN(t)
2. the	state	probability for	one	object at time	

t,	drawn at random among N	

0.3

300



Fast Simulation

The	evolution for	one	object as	if	the	other
objects had a	state	drawn randomly and	
independently from the	distribution	m(t)

Is	valid over	finite horizon	whenever mean field
convergence	occurs

Can	be used to	perform «fast simulation»,	i.e.,	
simulate in	detail only one	or	two objects,	
replace	the	rest by	the	mean field limit (ODE)
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We can
fast‐simulate one 
node, and even

compute its PDF at
any time

P 0

|

where 	 | 	is the	(transient)	
probability of	a	continuous
time	nonhomogeneous Markov	
process

	

Same ODE	as	mean field limit,	
with different initial	condition

39

pdf of node 1

pdf of node 2 (initially in A state)

pdf of node 3

occupancy measure



The Two Interpretations of the 
Mean Field Limit

m(t)	 is the	approximation	for	large	N of
1. the	occupancy measure MN(t)
2. the	state	probability for	one	object at time	t,	drawn at

random among N	

The		state	probability for	one	object at time	t,	known
to	be in	state	i	at time	0,	follows the	same ODE	as	the	
mean field limit,	but	with different initial	condition
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CONVERGENCE TO MEAN FIELD   
GENERAL CASE

5.
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E.L.



There are many variants of the mean field
convergence result of Section 2

As	long	as	state	space is finite,	results remain simple
Example:	«Kurtz’s theorem»:	time	is discrete and	state	space is
finite
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«Kurtz’s Theorem» is another Classical
Result for Convergence to Mean Field

Original	Sytem is in	discrete time	and	I(N)	‐>	0;	limit is in	
continuous time
State	space for	one	object is finite
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Discrete Time, Discrete Time Limit when
I(N)=O(1)
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Extension to a Resource

Model	can be
complexified by	adding a	
global	resource R(t)

Slow:	R(t) is expected to	
change	state	at the	same
rate	I(N) as	one	object

call	it an	object of	a	
special class

Fast:	R(t) changes	state	
at the	aggregate rate	

(easy)	extensions	of	
the	theory

[Benaïm and	Le	
Boudec(2008)]	
[Bordenave	et	
al.(2007)Bordenave,	
McDonald,	and	
Proutiere]
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General State Space: The Mean Field Limit is
no longer an ODE

Every taxi	has	a	state
Position	in	area	c	=	0	…	16
Age	of	last	received info

Occupancy measure is
Fc(z,t)	=	proportion	of	nodes
that at location	c and	have	
age ≤	z
Mean Field	Equations:
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General State Space: Convergence to Mean
Field

There	is convergence	to	
mean field

[Graham	and	Méléard 1997]	
applies,	i.e.	mean field
convergence	occurs for	iid
initial	conditions
[Chaintreau et	
al.(2009)Chaintreau,	Le	
Boudec,	and	Ristanovic]	for	
arbitrary initial	conditions

47

Qqplots simulation vs mean field



General State Space : A Generic Mean Field 
Convergence Result

«Graham	and	Méléard:	A	generic result for	general state	space
(in	particular non	enumerable).
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When things get (surprisingly hard):
The Bounded Confidence Model

Introduced in	[Deffuant et	al	(2000)],	used in	mobile	networks	
in	[Buchegger and	Le	Boudec 2002];	Proof	of	convergence	to	
Mean Field	in	[Gomez,	Graham,	Le	Boudec 2010]
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PDF of Mean Field Limit
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Is There Convergence to Mean Field ?
Yes for	the	discretized
version	of	the	problem

Replace	ratings	in	[0,1]	by		
fixed point	real	numbers on	
decimal places

The	number of	meetings	is
upper bounded by	a	
constant,	here 2	(Section	3)
There	is convergence	for	
any initial	condition	such
that
MN(0)	‐>	m0

This	is what any
simulation	implements
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Is There Convergence to Mean Field ?

There	can be no	similar
result for	the	real	
version	of	the	problem

Counter Example:	MN(0)	‐
>	m(0) (in	the	weak
topology)	but	MN(t)	does
not	converge	to	m(t)

There	is convergence	to	
mean field if	initial	
condition	is iid fromm0
[Gomez	et	al,	2010]
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0 1 0 1

t = 0Δ Δ t = t1

MN(0)
MN(t1)

0 1

t = 0Δ
m(0)

0 1

Δ t = t1

m(t1)



Convergence to Mean Field

Thus:	

For	the	finite state	space case,	
most cases	are	verifiable by	
inspection	of	the	model

For	the	general state	space,	
things may be more	complex
fluid limit is not	an	ODE
there may be no	convergence	
to	mean field

53E.L.

E. L.
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Thank You …
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