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1
MEAN FIELD INTERACTION MODEL



Mean Field

B A model introduced in Physics

» interaction between particles is via distribution of states of all particle

B An approximation method for a large collection of particles

» assumes independence in the master equation

B Why do we care in information and communication systems ?
» Model interaction of many objects:

» Distributed systems, communication protocols, game theory, self-
organized systems



A Few Examples Where Applied

[1] L. Afanassieva. S. Popov. and G. Fayolle. Models for trans-
poration networks. Journal of Mathematical Sciences, 1997
— Springer.

[2] F. Baccelli. A. Chaintreau, D. De Vleeschauwer. and D. R.
McDonald. Http turbulence. May 2004.

[3] F. Baccelli. M. Lelarge. and D. McDonald. Metastable

regimes for multiplexed tcp flows. In Proceedings of the \\ / //‘V N(ﬁ
[5] M.-D. Bordenave, Charles and A. Proutiere. A particle sys-

tem 1n interaction with a rapidly varying environment: Mean %{(
field limits and applications. arXiv:math/0701363v2.

PR

[11] S. Kumar and L. Massoulié. Integrating streaming and file-
transfer internet traffic: Fluid and diffusion approximations.
MSR-TR-2005-160.

[16] Y. M. Suhov and N. D. Vvedenskaya. Dobrushin’s mean-
field approximation for a queue with dynamic routing.
Markov Processes and Related Fields. 3(4):493-526. 1997.

[17] P. Tinnakornsrisuphap and A. M. Makowski. Limit behavior
of ecn/red gateways under a large number of tcp flows. In
Proceedings IEEE INFOCOM 2003, The 22nd Annual Joint
Conference of the IEEE Computer and Communications So-
cieties, San Franciso, CA, USA. March 30 - April 3 2003.



Mean Field Interaction Model

B Time is discrete or
continuous

B N objects, N large
M Object n has state X, (¢t)

WXV (t) .., XVy(t))is
Markov

M Objects are observable
only through their state

B “Occupancy measure”
MV (t) = distribution of
object states at time t

B Theorem |Gast (2011)]
M"(t) is Markov



Example: 2-Step Malware

B Mobile nodes are either
» 'S’ Susceptible
» D’Dormant
» A’ Active
M Time is discrete
M Transitions affect 1 or 2 nodes

M State space is finite
={D,'A’,S’}

M Occupancy measure is
M(t) = (D(t), A(t), S(t)) with
S(t)+ D(t) + A(t) =1

D(t) = proportion of nodes in state "D’

[Benaim and Le Boudec(2008)]

6.

Recovery
» D->S
Mutual upgrade
» D+D->A+A
Infection by active
» D+A->A+A
Recovery
» A->S
Recruitment by Dormant
» S+D->D+D
Direct infection
» S->D
Direct infection
» S->A



2-Step Malware - Full Specification

At.every time step, pick one node 1. Recovery
unif at randor.n > » D->S
- Ifnode is in state D: / case prob
- With proba 8, mutate to S 2. Mutual upgrade
: ND-1 ;
- With proba A4 iy , meet /———5 » D+D->A+A 1 Dip
another D node and both 3. Infection by active 5 | pND-!
mutate to A =~ » D+A>A+A N-1
) .. i q D
If node .1s 1n state A.D / 4. Recovery 3 A‘,’}H_D
- With proba f —— change
h+D » A->S ;
one D node to A / 52 R it tb 4 Ady
- With Proba §, mutate to S - RECruitment by 5| S(ag +rD)
- Ifnode is in state S Dormant !
- With proba rD meet a D /% » S+D->D+D 6 Sa
node and become infected Direct infection
D
: » S->D
- With proba a, become /% | > | |
infected D 6. Directinfection
- With proba a become /._%b S->A
infected A




Simulation Runs, N=1000 nodes

Node 1
State = D3 T T T T T T
State = A 21 H‘
State = S 1 LA HRRY AEN |
0 500 1000 1500 2000 2500 3000 300 4000
3 J | [ | | | I |
2
Node 2
ode 1 | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
3 [ [ IH | | IH |
]! -
Node 3 1 ’_ | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
05 [ [ [ | | I |
Proporti.on of nodes 0 | | | | | | |
In state i=1 0 500 1000 1500 2000 2500 3000 3500 4000
07 | T T T I i T
Proportion of nodes 05 | | | | | | |

In state i=2 0 500 1000 1500 2000 2500 3000

3 =0.01,64 = 0.005,5p = 0.0001, g = o = 0.0001, h = 0.3, 7 = 0.1, \ = 0.0001

3500

4000



Sample Runs with N = 1000

1 1
09F 09
08pF 08
g 0

o) 0
> >
-E 05 6- 05
4 <
04F 04
03F 03
02F 02
01F c—— - 01k
C 1 1 1 1 1 | 1 1 1 G 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 0.7 08 09 1 0 0.1 02 03 04 05 06 0.7 08 0o 1
Dormant Dormant

3 =0.01,84 = 0.005,5p = 0.0001, g = a = 0.0001, 7 = 0.3,7 = 0.1, \ = 0.0001
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Example: WiFi Collision Resolution Protocol

B N nodes, state = retransmission stage k

W Time is discrete, I(N) = 1/N; mean field limit
is an ODE

W Occupancy measure is M(t) = [My(t),...M(t)]
with M, (t) = proportion of nodes at stage k

W [Bordenave et al.(2008)Bordenave,

McDonald, and Proutiere,
Bordenave et al.(2007)Bordenave,
McDonald, and Proutiere]

11
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The Importance of Being Spatial

M Mobile node state = (¢, t)
c=1..16 (position)

t € R*(age of gossip)

B Time is continuous

B Occupancy measure is
F_(zt) = proportion of nodes that at

location c and have age < z

[Age of Gossip, Chaintreau et

al.(2009)]
no class 16 classes

150 150

50 100 50 100
Quantiles Trace Quantiles Trace

Qgplots simulation vs mean field
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What can we do with a Mean Field
Interaction Model ?

B Large N asymptotics, B Large t asymptotic
Finite Horizon » Stationary approximation
» fluid limit of occupancy of occupancy measure
measure (ODE) » Decoupling assumption
» decoupling assumption
(fast simulation) M [ssues
M Issues » When valid
» When valid

» How to formulate the
fluid limit

15
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CONVERGENCE TO MEAN FIELD
MADE EASY

/\\

%\
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To Obtain a Mean Field Limit we Must Make
Assumptions about the Intensity /(N)

B /(N) = (order of) expected number of transitions per
object per time unit

B A mean field limit occurs when we re-scale time by
I(N) i.e. one time slot = I(N)
i.e. we consider XN(t/I(N))

B I(N) =0(1/N): mean field limit is in continuous time
|Benaim and Le Boudec (2008)]

[(N) = 0(1): mean field limit is in discrete time
|[Le Boudec et al (2007)]

17



Intensity for 2-step malware modelis 1/N

W In one time step, the

number of obj
Simulation Runs, N=1000 nodes umber of objects

| ' Nodel affected by a transition
state=azb d | — J T ] T30 30 1 2] ﬁ} is 0, 1 or 2; mean
Ty w - : » - J*‘“:J ‘j = number of affected
Note2 |1 17 objectsis 0(1)
) 50 W 150 X =0 0 Hl o
ves 4l 0 HO —/ M There are N objects
B 20 00 150 RiLE 50 ELL b1 0
SV P . PR [P Wt Jupe W Expected number of

Prcpemos efncda ‘

Rt 4w w w = w = = transitions per time slot

o
U

24 . Nttt N N o N : : 1

i’.il"if"“"“t:swfaf ' L J per Ob]eCt is O |—=

i . S0 00 1500 00 X0 E11) I 00 N
0.01.4, 0005, 8p, DANML ., ongy 0 LIKMIL. & 1.3 » 0l i AL
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The Mean Field Limit

M Under very general conditions (given later)
the occupancy measure converges, inlaw, to a

deterministic process, m(t), called the mean
field limit

MmN (I(LN)> - m(t)

M Finite State Space

+ Vanishing intensity [I (N)=0 (%)]
= mean field limit is ODE

19



Mean Field Limit "

N =+

02
01

1 1 1 1L 1 1 c L 1 L L L L

04 05 06 07 08 09 1 0 0.1 02 0.3 04 05 06

N Dormant Dormant

m(t) z M (t N) 1 L] L] L T L] T L] L) L] 1 L) L] L) L] Ll L]
] 09
08p 03
07k 0.7

Stochastic

) ]

system 2) 20
N=1000 < )

- 04f 04

hlk] 3 03

| k =300 .

VRl e UR]

G-J ﬂ"r ‘312 0.5 nla OIS 01.6 DIT OIB 0I9 1 :0 0l1 012 El3 U‘-' DIS 0.6

Dormant Dormant



Sufficient Conditions for Convergence
verifiable by inspection

M Condition 1: state space (for one object) is finite
B and Condition 2: I(N) - 0

M and Condition 3: probabilities at every time slot depend

smoothly (C1) on all parameters and have a limit when
N — o

M and Condition 4 : Second moment of number of objects
affected in one timeslot < a constant

21



Example: Convergence to Mean Field; the 4

_Conditions Apply
| 1. 3 states
1
musp 2' I(N) —_
Mean Field Limit3:; 1 N
NS oo | @ | 3. Seetable
N ’ ﬁ 4. Number of
T T transitions per
S | time step is
Stochastic : bounded by z
system |
N=1000 27 ] i
k = 300

04 0s
Dormant



The convergence theorem

[Benaim and Le Boudec(2008), loannidis and Marbach(2009)]

o Let WN(k) be the number of objects that do a transition in
time slot k. Note that E (WN(k)) = NI(N), where

def.

I(N) =intensity. Assume

E(WN(k)2) < B(N) with lim I[(N)3(N) =0

N— oo

e MN(0) — mg in probability
@ regularity assumption on the drift (generator)
Then supg< <7 P (|MN(t) — m(t)||) — 0 in probability.

23



3

FORMULATING THE MEAN FIELD
LIMIT

24



A key concept to write the mean field limit is
the drift

M Assume you have a model with a mean field limit as in the
previous section

B The mean field limitis an ODE
® How can we write the ODE without error ?
W Solution: study first the drift of the original model

25



Drift of a Markov Process

W Given some discrete time Markov process Z (k) on some state
space E c R¢

M the drift f of the process is the mapping E — E defined by:
f@)=E(Zk+1)—-ZK)|Z(k) = 2)
B Example: 2-step malware with N objects:
Z(k) = MV (k) = (D(k), A(k), S(k))

d D(k+1)—D(k) | /[D(k) d
fy (a) =FE|| A(k+1)—A(k) Alk) | = (a)
S S(k+1)—S(k) S(k) S

le (d' a, S)
— fZN(dl a, S)
f3'(d,as)

26



= E(S(k+ 1) —s|(S(k) =s,A(k) = a,D(k) = d)

Let’s compute Y (s, a, d)

6.

Recovery
» D->S
Mutual upgrade
» D+D->A+A
Infection by active
» D+A>A+A
Recovery
» A->S
Recruitment by
Dormant
» S+D->D+D
Direct infection
» S->D
Direct infection
» S->A

case prob
1 Dép
2 DM
3 AB%
4 Ad
51 S(ag+1D)
6 Sa
f3'(s,a,d) =

27



Let’s compute fY(d, a, s)
=FE(S(k+1)—s|(D(k)=d,A(k) =a,S(k) =s)

6.

Recovery
» D->S
Mutual upgrade
» D+D->A+A
Infection by active
» D+A>A+A
Recovery
» A->S
Recruitment by
Dormant
» S+D->D+D
Direct infection
» S->D
Direct infection
» S->A

case prob
| Dép
ND-
2| DA
a2 D
4 Ady
51 S(ag+rD)
6 Sa
fSN (d; a, S)
1
ZN(D5D+A5A—S(C(0+TD)

—Sa )

28



The drift for the 2-step malware example
with N objects is

—Dép — 2DARP=L — A,Bh% + S(ap + rD)

. 1 | ‘
drift = f(D,A4,5) = 2DANP=L 4 A Do A5, + Sa
Dép + A — S(ag + rD) — Sa

29



The mean field limit is derived from the drift

B Given some discrete time Markov process Z (k) on some state
space E ¢ R% with drift f :

Zk+1) =Zk) + f(Z(k)) + &(k)
- S
Y Stochastic evolution
Deterministic evolution Martingale noise

B Application to mean field model Z = MV:

MY (k +1) = MV (k) + £ (MY (k) + §Y (k)

MY (k)
— MmN N
= M (k)+I(N)[ ]+f L5 b unter

I(N)

\« conditions 1 to 4

has a limit f under
conditions 1 to 4 30




Interpretation of the Mean Field limit as a
stochastic approximation of an ODE

N
M Let f(m) = 1\1{1_1)130 ! - (fvn;) (re-scaled drift)

This limit exists by Conditions 1 to 4.

B MV(k+1)= MN(k) + I(N)fF(MYN(k)) + noise

i.e. MN (k) is an approximation of the ODE
dm

=7 = f(m)

with time step At = I(N)

31



The ODE for the 2-step malware example

T drift= fN(D, A, S) =
Mean Field Limit 1 1 —Dop — QD)\% — AH,H_LD + S(ag+rD)
b +o0 | I 2DAAP=L + ABPS — Ada + Sa
< <
“r 1 Dop + Ady — S(QO + TD) — Sa
ODE
0 01 02 03 “Dor:;ant% 07 08 0% I/Y
° i 1 oD . i _ \
Stochastic | &~ spD—2AD?— 34 + (ag + D)3
SYS tem ot h+ D
' )A 9 _
3 ¢ Ot AD" + A/,,, +D a4 +af
505'
o 5pD +64A — (g +rD)S — aS
4 (k=300

0 01 02 03 04 0s 06 07 08 09
Dormant

32



Formulating the Mean Field Limit: Automation

B Drift = sum over all transitions of

proba of transition

X
Delta to system state MN(t) case prob effect on (D, A, S)
. . . 1 DS +(—1,0,1
B Re-scale drift by intensity b v )
2 | DAAEA ~(=2,42,0)
. : . 5
B Equation for mean field limit is 3 ABES %(_1, +1.0)
am o 4 Ad 4 %(0,—1,-}—1)
E=hm1tof 5| s D) L(+1.0.-1)
g+ r ~ (1,0, —
rescaled drift " N

B Can be automated using reaction
language

http://icawww1.epfl.ch /IS /tsed
33



4,

FAST SIMULATION AND
DECOUPLING ASSUMPTION (PERF
TUT)

34



The Decoupling Assumption

M Often used in analysis of complex systems

M Says that k objects are asymptotically mutually independent
(k is fixed and N — o0)

B What is the relation to mean field convergence ?

35



The Decoupling Assumption

M Often used in analysis of complex systems

M Says that k objects are asymptotically mutually independent
(k is fixed and N — o0)

B What is the relation to mean field convergence ?

M [Sznitman 1991] [For a mean field interaction model: |

|

[ ——

Decoupling assumption
=

MY (t) converges to a deterministic limit

| —

B Further, if decoupling assumption holds, m(t) ~ state proba
for any arbitrary object

36



The Two Interpretations of the Mean Field

Limit

B Atanytimet
P(Xn(t) =" A)

&

A(i
N

B(Xplt) =D . X, )= A) = D (i

N
where (D, A, S) is solution of ODE

B Thus for N = 1000 and simulation step
k = 300:
» Prob (node n is dormant) = 0.48
» Prob (node nis active) = 0.19
» Prob (node n is susceptible) = 0.33

M m(t) approximates both
1. the occupancy measure MN(t)

2. the state probability for one object at time

t, drawn at random among N

4

4 05
Dormant

1 1 1 1
06 07 08 08

Active

(k=300

[ —
L

1 02 03 04

05 06 07 08 09
Dormant

A bl




Fast Simulation

B The evolution for one object as if the other
objects had a state drawn randomly and
independently from the distribution m(t)

W Is valid over finite horizon whenever mean field
convergence occurs

M Can be used to perform «fast simulationy, i.e.,
simulate in detail only one or two objects,
replace the rest by the mean field limit (ODE)

38



plV(t]i) = PCXN (®) = j XX (0) We can

=) fast-simulate one
t . .
pY (Nll) ~ p; (t]0) node, and even
N . compute its PDF at
where p(t|i) is the (transient) )
probability of a continuous any time
time nonhomogeneous Markov ¢ 1 04e 2 (initially in A state)
process TN
d - s - . — " \\\\
) =FEDTA@D) .
M Same ODE as mean field limit, £ 2
with different initial condition N
d 03F
aﬁi((j) =m(t)TA (ﬁi(t)) ocoripancy measure m(t) N
= F(m(t)) | R N
Opd_(i:10f OriOd;33 0.4Dor('.ll'.1i:)]ant0.6 07 p(ojqf O'lqgnode l

39



The Two Interpretations of the
Mean Field Limit

m(t) is the approximation for large N of
1. the occupancy measure MN(t)

2. the state probability for one object at time ¢, drawn at
random among N

The state probability for one object at time t, known
to be in state i at time 0, follows the same ODE as the
mean field limit, but with different initial condition

40



5.

CONVERGENCE TO MEAN FIELD
— GENERAL CASE

41



There are many variants of the mean field
convergence result of Section 2

M As long as state space is finite, results remain simple
B Example: «Kurtz’s theorem»: time is discrete and state space is
finite  [Kurtz(1970), Sandholm(2006)] Let

Nm) € I(LN)IE (MN(k +1) = m|MN (k) = m)
AV(m) & ﬁl}z (MM (K + 1) = m||| MM (k) = m)
BY(m) = __E ([[MN (k1) = M| 1 g1y mi=any | MY (k) = m)

I(N)

@ limysup,, ||[fN(m) — f(m)|| = 0 for some f,

supy, sup,,, AV(m) < oo
limy sup,, ||BY(m)|| = 0 with limy_, o oy = 0

@ MN(0) — mo in probability

Then supy< 7 P (|[MY(t) — m(t)||) — 0 in probability.
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«Kurtz’s Theorem» is another Classical

Result for Convergence to Mean Field
M Original Sytem is in discrete time and I(N) -> 0; limit is in
continuous time

M State space for one object is finite
[Kurtz(1970), Sandholm(2006)] Let

Nm) « I(LN)E (MN(k +1) — m|MN (k) = m)

AV(m) & ﬁE(}|M”(k+1)—m|||MN(k):m)
’

de
BY(m) = ,(—N)E (J[MN (K + 1) = M| 1 gamges1y—mi=sny | M7 (k) = m)

@ limysup,, ||[fN(m) — f(m)|| = 0 for some f,
supy, sup,,, AV(m) < oo
limn sup,, ||BY(m)|| = 0 with limy— e on =0

@ MN(0) — myo in probability
Then supyc <7 P (|[MN(t) — m(t)||) — 0 in probability. 43



Discrete Time, Discrete Time Limit when
I(N)=0(1)

[Le Boudec et al.(2007)Le Boudec, McDonald, and Mundinger,

Tinnakornsrisuphap and Makowski(2003)]
limy I[(N) = 1

@ Object / draws next state at time k independent of others with
transition matrix KN (MN)

@ MN(0) = mp a.s. [in probability]

@ regularity assumption on the drift (generator)

Then supy <« P (||MN (k) — m(k)||) — 0 a.s. [in probability]
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Extension to a Resource

B Model can be M Fast: R(t) changes state
complexified by adding a at the aggregate rate
global resource R(t) N I(N)

= (easy) extensions of

B Slow: R(t) is expected to the theory

change state at the same

rate I(N) as one object )
|Benaim and Le

= call it an object of a Boudec(2008)]
special class [Bordenave et
al.(2007)Bordenave,

McDonald, and

Proutiere]
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General State Space: The Mean Field Limit is
no longer an ODE

B Every taxi has a state B Occupancy measure is
» Positioninareac=0..16 F_(zt) = proportion of nodes
» Age of last received info that at location ¢ and have

age <z

B Mean Field Equations:

OF.(z,1) ’ OF.(z,t)

4
YeSC, ot B2

el'zte
+ (uc(t|d) — Fe(z2,1)
t)

+ (ue(t|d) — Fe(z,

VeeC, Vt >0, F.(0,t) =0
[ Vee(C, V2> 0, Fe(2,0) = F)(2).
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General State Space: Convergence to Mean
Field

M There is convergence to B |[Graham and Meléard 1997]
applies, i.e. mean field

mean field .
convergence occurs for iid
initial conditions
B [Chaintreau et
al.(2009)Chaintreau, Le

Boudec, and Ristanovic] for
arbitrary initial conditions

150}

—_
(=]
=

MF Quantiles

g

% 50 100 150
Quantiles Trace

Qgplots simulation vs mean field
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General State Space : A Generic Mean Field
Convergence Result

W «Graham and Meléard: A generic result for general state space
(in particular non enumerable).

[Graham and Méléard(1997), Graham and Méléard(1994)]
[(N) =1/N, continuous time.

@ Object/ has a free evolution plus pairwise interactions.
@ XN (0)p—1. . is iid with common law mg

@ Generator of pairwise meetings is uniformly bounded in total
variation norm
e.9.ifG-o(x.X") = [w(y.y)(y.y'|x.x")dydy’ then
[y, y'|x.x")| dydy’” <A, for all x, x’

Then there is propagation of chaos with explicit bounds in total
variation over finite time intervals. Mean field independence holds.
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When things get (surprisingly hard):
The Bounded Confidence Model

W Introduced in [Deffuant et al (2000)], used in mobile networks
in [Buchegger and Le Boudec 2002]; Proof of convergence to
Mean Field in [Gomez, Graham, Le Boudec 2010]

= @ Discrete time. State space =[0, 1].
Useri  Userj XN (k) € [0. 1] rating of common subject held by peer n
P petore @ Two peers, say i and j are drawn uniformly at random.
0 | 1 It | X (k) — X (k)| > A no change; else
aﬂermegting
0 | 1
X[ (k+1) = wX" (k) + (1 = w)X" (k)
Useri Userj XjN(k +1) = WXjN(k) +(1 - W)XfN(k)-
 >A before
0 1
| after meeting
0 o
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PDF of Mean Field Limit
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Is There Convergence to Mean Field ?

M Yes for the discretized
version of the problem

A

Useri  Userj
» Replace ratings in [0,1] by seri - sery

o before
fixed point real numbers on — : ]
d decimal places L
. _ after meeting
» The number of meetings is T :
upper bounded by a
constant, here 2 (Section 3)
: Useri Userj
» There is convergence for : 5
e g ~ >A | before
any initial condition such ; i . I :
that L :
MN(O) ->m, a{'termeeting
o 0 1
M This is what any

simulation implements
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Is There Convergence to Mean Field ?

B There can be no similar M There is convergence to

result for the real mean field if initial
version of the problem condition is iid from m,
» Counter Example: MN(0) - |Gomez et al, 2010]

>m(0) (in the weak
topology) but MN(t) does
not converge to m(t)

MN(0)
t: O MN(tl)

# A% t=t

1
0 1 0 1

; mO) m(t,)
A t=0 A _
. Y N
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Convergence to Mean Field

o &
=

<<
E. L.

M Thus:

For the finite state space case,
most cases are verifiable by
inspection of the model

B For the general state space,
things may be more complex
fluid limit is not an ODE
there may be no convergence
to mean field




Thank You ...
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