Immune System Modelling Examples

Jean-Yves Le Boudec School of Computer and Communication Sciences, EPFL

January 2005

Contents

Immune System ModellingCase studies

Goal of Modelling

- □ Predict *quantitative* behaviour of a complex system
 - (« What if ») Analyze hypotheses in silico
 - Interprete conclusions from experiment

« Mean proliferation and death rates of CD4 + T cells are elevated threefold or more with HIVinfection, but subsequently reduce to nearly normal levels after 1 year of antiretroviral therapy 93. These quantitative results strongly indicate that the CD4 + lymphocyte depletion observed in AIDS is primarily a consequence of increased cellular destruction, and not decreased production » [Alan Perelson 02]

Understand role of microscopic components in *emergent* behaviour

"A means of asking questions about the behaviour of a biological system that may not be answerable by conventional experimental approach" [Robin Callard 02]

« Modelling indicated that the [HIV] virus could quickly become resistant to any single drug, particularly those that required one mutation to generate resistance. » [Alan Perelson 02]

Assist in the *formulation* of the complete behaviour

"The process of building the model highlights gaps and inconsistencies in our understanding of the immune response" [Chao03].

Ex: TCR affinity to MHC/peptide complex is the sum of binding to MHC and to peptide

Modeling Methods

Deterministic

- ODE, PDE
- Low numerical complexity
- Provides answers to: kinetics, stability
- □ Stochastic
 - model complexity and emerging behaviour more truly
 - May have very large numerical complexity
 - techniques:
 - Simulator
 - Cellular Automaton
 - Markov Process
 - Stage structured population

Immune System Modelling at EPFL

- □ An emerging interest in I&C school of EPFL
 - exploratory phase (feasibility)
- □ Prof Le Boudec + Martinoli + others
 - Successful experience in modeling engineered systems
- □ Scientific interest
 - stochastic models, rare events
 - contribute to understanding of Immune System
- □ What we would like to do
 - contribute to the understanding of biology by quantitative modelling and simulation

Case Studies

- □ Some examples of the kind of research we can pursue
- □ List of case studies planned for student seminar
 - Chao: Modelling the Cytotoxic T Cell Response
 - Van Den Berg, Rand and Burroughs: <u>A Reliable and Safe T Cell Repertoire based on</u> <u>Low-affinity T Cell Receptors</u>
 - Van den Berg and Rand: Foreignness as a matter of degree: the relative immunogenicity of peptide/MHC ligands
 - Robin Callard ODE models
 - Rob de Boer 1 general model
 - Rob de Boer 2 HIV
 - Castiglione's application of simulator
 - Alan Perelson's overview 2002
- □ Today: a glimpse of one of them

Chao: « Modelling The Cytotoxic T-Cell Response »

- PhD Thesis by Dennis Chao, U. New Mexico, Prof. Stephanie Forrest. Joint work with Alan Perelson (Santa Fe) and Miles Daveport (Sidney, AUS)
- □ Further studied by Eric Winnington, EPFL Master Thesis, due March 2005

Contents

- 1. Chao's model
- 2. Results in Chao's dissertation
- 3. Results by Eric Winnington

1. Chao's Model Focuses on CTL response

Goal: model CTL response

- dynamics
- role of affinity
- role of distribution of naive/memory CTLs

□ Macroscopic model

- no detail on tissue, lymphocyte trafficking, immune system elements other than CTLs
- model is: number of cells of each type (tissue, infected, various CTLs) + virus load as a function of time
- stochastic model; randomness is in T-cell repertoire, binding and lifetime and reproduction
 - stage structured approach == numerical approximation of Markov process

Elements present in Model

TCR Matching

- □ Affinity is measured by 1 out of 3 hypothetical bit matching rule
 - 1. Hamming distance (alphabet size =3, string length=32+48)
 - 2. Xor distance (an ad-hoc distance ??? : d(3,1)=2 d(3,0)=3 d(2,1)=3 d(5,10)=15) alphabet size = 128, string length=4+6
 - Modified L¹ (Manhattan) distance: sum of distances modulo n ; n = 16 d(1,5)=4, d(0,15)=1; alphabet size = 32, string length=4+6
- Distance between pMHC and TCR is sum of distances between digits
- □ Calibrated by fitting mouse data
 - T-cell repertoire
 - number of responding clones per epitope

Avidity and Affinity

avidity (== recruitment rate) of a naïve T-cell into Activated T-cell is saturating function of affinity and epitope density e:

recruitment rate = γ Stimulation

with γ = maximum recruitment rate (1 per day)

Stimulation =
$$\frac{\sum \frac{e_i I_i}{K_i}}{1 + \sum \frac{e_i I_i}{K_i}}$$

constant K implemented in model as a function of distance MHC/peptide <-> TCR so as to match experimental data on mouse

> $K_{xor} = 5,000 + 15,000 \times e^{(D_{xor} - 115)/3}$ $K_{H} = 5,000 + 5,000 \times e^{2 \times (D_{H} - 31)}$ $K_{L1'} = 5,000 + 10,000 \times e^{2 \times (D_{L1'} - 15)}$

source: Dennis Chao's dissertation

The Complete Model

 $\hfill\square$ One separate sub-model for each CTL clone

- multiple T-cell populations are modelled as distinct populations
- all CTLs in one clone have identical TCRs

 \Box Complete model (for one clone) is

$$S = (T, I, V, N_T, M_T, A_T^j, A_{MT}^k, E_{T_A}^i, E_{MT_A}^i, E_{T_B}^{il}, E_{MT_B}^{il}, W_{MT}^m)$$

with $i = 0 \cdots 17$ number of times a T-Cell can divide $j = 0 \ldots (19 \cdot tsph) - 1$ delay from the activation of a T-cell to effectiveness $k = 0 \ldots tsph - 1$ delay from activation of a memory T-cell to effectiveness $l = 0 \ldots (5 \cdot tsph) - 1$ delay before cell division finishes $m = 0 \ldots (14 \cdot tspd) - 1$ delay before cells converting to memory become inactivated memory T-cells

source: Eric Winnington, EPFL

Evolution of Model State is Random

composition of T-cell clone (number of T-cells in each category) evolves randomly, based on presence of antigen and affinity

- eg: naïve T-cell
- □ same for viral load and number of infected tissue cells
- \square laws of evolution are based on the increment functions given next

□ Example

- Recruitment rate of naïve T-cells is given by avidity formula seen earlier; call it μ; (is a function of I, number of infected cells)
 - proba that a given cell becomes recruited between t and t+dt is $\mu dt + o(dt)$
- N_T: number of naive T-cells in one clone is thus random
 - we have a markov process with state $S = (T, I, V, N_T, ...)$

The Simulator Approximates the Markov Process using the Stage Structured Approach

□ The simulator advances time by increments $\delta = 10$ mn □ For example, the value of N_T is updated according to

$$N_T(t+1) = N_T(t) - B\left(N_T(t), 1 - e^{-\mu\delta}\right)$$

where B is the binomial distribution

□ See next for the complete list of evolution equations

 \Box This is an approximation valid for small δ

• the approx is that μ depends on state S, assumed constant during 10 mm

$$I_{t+1} = I_t + B(T_t, 1.0 - e^{(-2 \cdot 10^{-7}/TSPD) \cdot V_t}) - B(T_t, 1.0 - e^{-0.7/TSPD}) - P(\frac{(Tclear/TSPD) \cdot \sum E_* \cdot I_t \cdot Pl}{Affinity + I + \sum E_*})$$

$$V_{t+1} = V_t + P(I_t \cdot 100/TSPD) - B(T_t, 1.0 - e^{-2.3/TSPD})$$

$$\begin{split} & N_{T_{t+1}} = N_{T_t} - B(N_{T_t}, 1.0 - e^{\frac{I_{t} + Pl}{H_{T_t} + Pl} \cdot NtE/TSPD}}) \\ & N_{T_{t+1}} = N_{T_t} - B(N_{T_t}, 1.0 - e^{\frac{I_{t} + Pl}{H_{T} + Pl}} \cdot NtE/TSPD}) \\ & A_{T_{t+1}}^0 = B(N_{T_t}, 1.0 - e^{\frac{I_{t} + Pl}{H_{T} + Pl}} \cdot NtE/TSPD}) \\ & A_{T_{t+1}}^i = A_{T_t}^{j-1} - B(A_{T_t}^{j-1}, 1.0 - e^{-0.6/TSPD}) \\ & A_{T_{t+1}}^E = A_{T_t}^{E-1} - B(A_{T_t}^{E-1}, 1.0 - e^{-0.6/TSPD}) \\ & A_{T_{t+1}}^0 = A_{T_t}^E + E_{T_{A_t}}^0 - B(E_{T_{A_t}}^0, 1.0 - e^{-0.6/TSPD}) \\ & B(E_{T_{A_{t+1}}}^0 = A_{T_t}^E + E_{T_{A_t}}^0 - B(E_{T_{A_t}}^0, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{A_t}}^0, 1.0 - e^{\frac{-1.0}{(Ct-Bd) \cdot TSPH}}) - B(E_{T_{A_t}}^0, 0.02) \\ & E_{T_{A_{t+1}}}^i = E_{T_{A_t}}^i + 2 \cdot E_{T_{B_t}}^{i-1E} - B(E_{T_{A_t}}^i, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{A_t}}^i, 1.0 - e^{\frac{-1.0}{(Ct-Bd) \cdot TSPH}}) - B(E_{T_{A_t}}^i, 0.02) \\ & E_{T_{A_{t+1}}}^i = E_{T_{A_t}}^i + 2 \cdot E_{T_{B_t}}^{i-1E} - B(E_{T_{B_t}}^{i-1E}, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{A_t}}^i, 0.02) \\ & E_{T_{A_{t+1}}}^i = E_{T_{A_t}}^i + 2 \cdot E_{T_{B_t}}^{i-1E} - B(E_{T_{B_t}}^{i-1E}, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{A_t}}^i, 0.02) \\ & E_{T_{B_{t+1}}}^i = E_{T_{A_t}}^i + 2 \cdot E_{T_{B_t}}^{i-1E} - B(E_{T_{B_t}}^{i-1E}, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{A_t}}^i, 0.02) \\ & E_{T_{B_{t+1}}}^i = E_{T_{A_t}}^{i-1} - B(E_{T_{B_t}}^{i-1}, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{A_t}}^i, 0.02) \\ & E_{T_{B_{t+1}}}^i = E_{T_{A_t}}^{i-1} - B(E_{T_{B_t}}^{i-1}, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{A_t}}^i, 0.02) \\ & E_{T_{B_{t+1}}}^i = E_{T_{B_t}}^{i-1} - B(E_{T_{B_t}}^{i-1}, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{B_t}}^{i-1}, 0.02) \\ & E_{T_{B_{t+1}}}^i = E_{T_{B_t}}^{i-1} - B(E_{T_{B_t}}^{i-1}, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{B_t}}^{i-1}, 0.02) \\ & E_{T_{B_{t+1}}}}^i = E_{T_{B_t}}^{i-1} - B(E_{T_{B_t}}^{i-1}, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{B_t}}^{i-1}, 0.02) \\ & E_{T_{B_{t+1}}}^i = E_{T_{B_t}}^{i-1} - B(E_{T_{B_t}}^{i-1}, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{B_t}}^{i-1}, 0.02) \\ & E_{T_{B_{t+1}}}^i = E_{T_{B_t}}^{i-1} - B(E_{T_{B_t}}^{i-1}, 1.0 - e^{-0.6/TSPD}) - B(E_{T_{B_t}}^{i-1}, 0.02) \\$$

source: Eric Winnington, EPFL

$$\begin{split} W^0_{MT_{t+1}} &= \sum B(E_*, 0.02) \\ W^m_{MT_{t+1}} &= W^{m-1}_{MT_t} \\ W^m_{MT_{t+1}} &= W^{E-1}_{MT_t} \\ M_{T_{t+1}} &= W^E_{MT_t} + M_{T_t} - B(M_{T_t}, 1.0 - e^{\frac{I_t \cdot Pl}{1 + M_{T_{t}} \cdot Pl} \cdot NtE/TSPD}}{\frac{M_{T_{t+1}}}{1 + Pl}})^{\frac{I_t \cdot Pl}{1 + M_{T_{t}} \cdot Pl} \cdot NtE/TSPD}} \\ M_{T_{t+1}} &= B(M_{T_t}, 1.0 - e^{\frac{1 + Pl}{1 + M_{T_{t}} \cdot Pl} \cdot NtE/TSPD}}) - B(A^0_{MT_t}, 1.0 - e^{-0.4/TSPD}) \\ A^M_{MT_{t+1}} &= A^{k-1}_{MT_t} - B(A^{k-1}_{MT_t}, 1.0 - e^{-0.4/TSPD}) \\ A^K_{MT_{t+1}} &= A^{E-1}_{MT_t} - B(A^{K-1}_{MT_t}, 1.0 - e^{-0.4/TSPD}) \\ E^0_{MT_{A_{t+1}}} &= A^E_{MT_t} - B(A^{M-1}_{MT_t}, 1.0 - e^{-0.4/TSPD}) \\ E^0_{MT_{A_{t+1}}} &= A^E_{MT_t} - B(A^0_{MT_t}, 1.0 - e^{-0.4/TSPD}) \\ E^0_{MT_{A_{t+1}}} &= B^E_{MT_{A_t}} + 2 \cdot E^{-1E}_{MT_{B_t}} - B(E^i_{MT_{A_t}}, 1.0 - e^{-0.4/TSPD}) - B(E^0_{MT_{A_t}}, 1.0 - e^{-0.4/TSPD}) \\ E^i_{MT_{A_{t+1}}} &= E^i_{MT_{A_t}} + 2 \cdot E^{i-1E}_{MT_{B_t}} - B(E^i_{MT_{A_t}}, 1.0 - e^{-0.4/TSPD}) - B(E^i_{MT_{A_t}}, 1.0 - e^{-0.4/TSPD}) \\ E^E_{MT_{A_{t+1}}} &= E^M_{MT_A_t} + 2 \cdot E^{E-1E}_{MT_{B_t}} - B(E^E_{MT_{A_t}}, 1.0 - e^{-0.4/TSPD}) - B(E^E_{MT_{A_t}}, 0.02) \\ E^i_{MT_{B_{t+1}}} &= E^{M}_{MT_{A_t}}, 1.0 - e^{-(0.4/TSPD}) - B(E^E_{MT_{A_t}}, 0.02) \\ E^i_{MT_{B_{t+1}}} &= B(E^i_{MT_{A_t}}, 1.0 - e^{-0.4/TSPD}) - B(E^i_{MT_{A_t}}, 0.02) \\ E^i_{MT_{B_{t+1}}} &= E^{M-1}_{MT_{B_t}} - B(E^{i1-1}_{MT_{B_t}}, 1.0 - e^{-0.4/TSPD}) - B(E^{i1}_{MT_{B_t}}, 0.02) \\ E^i_{MT_{B_{t+1}}} &= E^{M-1}_{MT_{B_t}} - B(E^{i1-1}_{MT_{B_t}}, 1.0 - e^{-0.4/TSPD}) - B(E^{i1}_{MT_{B_t}}, 0.02) \\ E^i_{MT_{B_{t+1}}}} &= E^{M-1}_{MT_{B_t}} - B(E^{i1-1}_{MT_{B_t}}, 1.0 - e^{-0.4/TSPD}) - B(E^{i1}_{MT_{B_t}}, 0.02) \\ E^i_{MT_{B_{t+1}}} &= E^{M-1}_{MT_{B_t}} - B(E^{i1-1}_{MT_{B_t}}, 1.0 - e^{-0.4/TSPD}) - B(E^{i1}_{MT_{B_t}}, 0.02) \\ E^i_{MT_{B_{t+1}}} &= E^{M-1}_{MT_{B_t}} - B(E^{i1-1}_{MT_{B_t}}, 1.0 - e^{-0.4/TSPD}) - B(E^{i1}_{MT_{B_t}}, 0.02) \\ E^i_{MT_{B_{t+1}}} &= E^{M-1}_{MT_{B_t}} - B(E^{M-1}_{MT_{B_t}}, 1.0 - e^{-0.4/TSPD}) - B(E^{i1}_{MT_{B_t}}, 0.02) \\ E^i_{MT_{B_{t+1}}} &= E^{M-1}_{M$$

How the model is run

- □ generate one or several pMHC complexes
- □ generate the T-cell clones that cross-react to them
 - only those CTLs that can react to pathogen are explicitly created in the simulator (this is called « Lazy Evaluation »)
- □ submit clones to positive and negative selection (thymus)
- □ start one stage-structured instance per T-cell clone and run the model step by step

Parameters of Model

attribute	value
time step (Δt)	10 minutes
naïve cell clone size	10 cells*
maximum T cell recruitment rate (γ)	1 day^{-1}
delay before a stimulated naïve cell becomes an effector (τ_n)	19 hours [†]
delay before a stimulated memory cell becomes an effector (τ_m)	1 hour [‡]
naïve-derived active CTL death rate (δ_E)	$0.6 { m ~day}^{-1 \$}$
memory-derived active CTL death rate (δ_{E_m})	$0.4 \text{ day}^{-1\$}$
time in B phase for CTL	5 hours
average CTL cell cycle time	6 hours∥
infected cell clearance rate (k^c)	$12 \text{ day}^{-1\P}$
* Casrouge et al. (2000)	
[†] Oehen and Brduscha-Riem (1998); Gett and Hodgkin	(2000);
Veiga-Fernandes et al. (2000); van Stipdonk et al. (2001)	
[‡] Bachmann et al. (1999); Barber et al. (2003)	
§ Veiga-Fernandes et al. (2000)	
van Stipdonk et al. (2001)	

¶ Barchet et al. (2000)

Table 3.1: A summary of model parameters.

Model is fitted to the mouse

	Mouse	Human	Hamming	xor	L'_1
# of self peptides	$10^4 - 10^{5*}$		30,000	30,000	30,000
# of MHC types	3	4	3	3	3
universe of TCRs (or #		10^{15} [†]	$1.47 imes 10^{38}$	$1.18 imes10^{21}$	$1.13 imes 10^{15}$
of possible TCR strings)					
# of pre-selection clones	$< 10^{9}$	1013	$8 imes 10^7$	$2.5 imes 10^8$	$2.5 imes 10^8$
# of naïve clones	$10^{6} - 10^{7}$	10^{7} §	$3.17 imes 10^6$	$2.02 imes 10^6$	$1.95 imes 10^6$
foreign peptide response	$10^{-5} - 10^{-6}$		$8.39 imes10^{-6}$	$1.27 imes 10^{-5}$	$1.43 imes 10^{-5}$
frequency					
thymic selection win-	1-3%		3.96%	0.807%	0.778%
dow size					
% killed in negative se-	50-66%		46%	61%	70%
lection					
# of clones per epitope	10-20		26.6	25.7	27.9

* Bevan (1997); Müller and Bonhoeffer (2003); Bandeira and Faro (2003)

[†] Davis and Bjorkman (1988)

[‡] Pannetier et al. (1993); Casrouge et al. (2000)

§ Arstila et al. (1999)

Blattman et al. (2002)

Other Modelling Assumptions

- □ CTLs do not interact with non infected self cells
- □ Virus can mutate
 - implemented as change in one digit of the peptide in MHC/peptide complex
 - implemented by probability p that a virus in newly infected cell undergoes one mutation
- □ T-cell exhaustion

2. Chao's Result Example Impact of CTL clone size

Figure 5.9: The effect of increasing the number of naïve cells. One model run was initialized with 50 naïve cells (\triangle) and a viral load of 500 (\circ). The other model run started with 50,000 naïve cells (\blacktriangle) and the same initial virus load (\bullet).

source: Dennis Chao's dissertation

Example: Clonal Composition of CTL Response

Figure 5.11: Primary and secondary CTL responses to a viral infection. 500 viral units were injected on days 0 and 28. The virus levels are indicated by \bullet and the number of CTLs in the three highest-affinity clones as \Box , \triangle , and \Diamond (in decreasing order of affinity). Lower-affinity clones are represented by lines with no markers. Each CTL clone initially has 10 unstimulated naïve cells.

3. Eric Winington's Result Example The Immune Response is Random

The same model can be run more extensively and one finds random results
 randomness due to naïve T-cell repertoire

Secondary reaction without re-infection may occur with small probability

Conclusion

- □ The examples show what we can do and what a stochastic model can tell us
- □ We would like now to apply this and other types of modelling to specific cases of interest

Checklist

- □ how many TCRs per CTL?
- □ How is avidity computed in the model ?
- □ How is epitope mapped to MHC/peptide complex ?
- □ Multiple epitopes / antigen specificity: how does the model reflect this ?
 - how are the original T-cells created from the model ?
 - H: all T cells are same, I different pathogen types
 - what does « T-cell specific to a particular antigen » mean ?
 - s is there more than one antigen specificity anywhere in the applications of the model?
- □ Replace : in effector mediated clearance Poisson by Binomial
- □ Compare to ODE method (mean values)
- □ Can auto-immunity occur in this model ? (a peptide—MHC complex close to many self complexes)