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Goal of Modelling

Q Predict quantitative behaviour of a complex system
® (« What if ») Analyze hypotheses in silico
@ Interprete conclusions from experiment

« Mean proliferation and death rates of CD4 + T cells are elevated threefold or more with HIV-
infection, but subsequently reduce to nearly normal levels after 1 year of antiretroviral therapy 93.
These quantitative results strongly indicate that the CD4 + lymphocyte depletion observed in AIDS is

primarily a consequence of increased cellular destruction, and not decreased production » [Alan
Perelson 02]

O Understand role of microscopic components in emergent behaviour

“A means of asking questions about the behaviour of a biological system that may not be answerable
by conventional experimental approach”

[Robin Callard 02]

« Modelling indicated that the [HIV] virus could quickly become resistant to any single drug,
particularly those that required one mutation to generate resistance. » [ Alan Perelson 02]

O Assist in the formulation of the complete behaviour

“The process of building the model highlights gaps and inconsistencies in our understanding
of the immune response” [Chao03].

Ex: TCR affinity to MHC/peptide complex is the sum of binding to MHC and to peptide



Modeling Methods

O Deterministic
® ODE, PDE
® Low numerical complexity

® Provides answers to: kinetics, stability

O Stochastic
® model complexity and emerging behaviour more truly
® May have very large numerical complexity

@ techniques:

¢ Simulator
® Cellular Automaton

® Markov Process

e Stage structured population



Immune System Modelling at EPFL

0 An emerging interest in I&C school of EPFL

® cxploratory phase (feasibility)
U Prof Le Boudec + Martinoli + others

® Successful experience in modeling engineered systems
O Scientific interest

@ stochastic models, rare events

@ contribute to understanding of Immune System

J What we would like to do

@ contribute to the understanding of biology by quantitative modelling and simulation



Case Studies

[ Some examples of the kind of research we can pursue

L List of case studies planned for student seminar
® Chao: Modelling the Cytotoxic T Cell Response

® Van Den Berg, Rand and Burroughs: A Reliable and Safe T Cell Repertoire based on
Low-affinity T Cell Receptors

Van den Berg and Rand: Foreignness as a matter of degree: the relative
immunogenicity of peptide/MHC ligands

Robin Callard ODE models
Rob de Boer 1 general model

Rob de Boer 2 HIV
Castiglione’s application of simulator

@ Alan Perelson’s overview 2002

U Today: a glimpse of one of them



Chao: « Modelling The Cytotoxic T-Cell

Response »
O PhD Thesis by Dennis Chao, U. New Mexico, Prof. Stephanie Forrest. Joint
work with Alan Perelson (Santa Fe) and Miles Daveport (Sidney, AUS)
O Further studied by Eric Winnington, EPFL Master Thesis, due March 2005

d Contents
1. Chao’s model
2. Results in Chao’s dissertation
3. Results by Eric Winnington



1. Chao's Model Focuses on CTL
response

O Goal: model CTL response
® dynamics
@ role of affinity
@ role of distribution of naive/memory CTLs

L Macroscopic model

@ no detail on tissue, lymphocyte trafficking, immune system elements other than CTLs

® model is: number of cells of each type (tissue, infected, various CTLs) + virus load as
a function of time

@ stochastic model; randomness is in T-cell repertoire, binding and lifetime and
reproduction

® stage structured approach == numerical approximation of Markov process



Elements present in Model

virus

@ O

target cell infected cell
l 19 hoursl
infected cell clearance :.'_'. | - @

source: Dennis Chao's dissertation

naive T cell

antigenic stimulation

proliferating
effector T cells

memory T cells



TCR Matching

L Affinity is measured by 1 out of 3 hypothetical bit matching rule
1. Hamming distance (alphabet size =3, string length=32+48)

2. Xor distance (an ad-hoc distance ??? : d(3,1)=2 d(3,0)=3 d(2,1)=3 d(5,10)=15)
alphabet size = 128, string length=4+6

3. Modified L! (Manhattan) distance: sum of distances modulo » ; n =16 d(1,5)=4,
d(0,15)=1; alphabet size = 32, string length=4+6

O Distance between pMHC and TCR is sum of distances between digits

O Calibrated by fitting mouse data
® T-cell repertoire T cell

@® number of responding clones
per epitope
peptide

13330210 mHC

TCR

Infected cell
source: Dennis Chao's dissertation



Avidity and Affinity

O avidity (== recruitment rate) of a naive T-cell into Activated T-cell is saturating
function of affinity and epitope density e:

recruitment rate =y Stimulation

with y = maximum recruitment rate (1 per day)

A
L +Y %

t’:‘..'f,'

Stimulation =

 constant K implemented in model as a function of distance MHC/peptide <->
TCR so as to match experimental data on mouse

Kior = 5,000+ 15,000 x g!Pror=113)/3
Ky = 5,000+ 5,000 x ¢>*(Pr=31)

Kiyv = 5,000+ 10,000 x ¢ Prir=15)

source: Dennis Chao's dissertation



The Complete Model

L One separate sub-model for each CTL clone
® multiple T-cell populations are modelled as distinct populations
@ all CTLs 1n one clone have identical TCRs

U Complete model (for one clone) is

_ J k i i il il m
S = (Ta LV, Np, My, AT: AMT: E:E;lt EM:E;lr Eﬁf‘Bf EM:!‘B: WMT)

with 2 = 0--- 17 number of times a T-Cell can divide

j=0...(19-tsph) — 1 delay from the activation of a T-cell to effectiveness
k=0...tsph — 1 delay from activation of a memory T-cell to effectiveness
[=0...(5-tsph) — 1 delay before cell division finishes

m =0...(14- tspd) — 1 delay before cells converting to memory become inacti-
vated memory T-cells

source: Eric Winnington, EPFL



Evolution of Model State is Random

L composition of T-cell clone (number of T-cells in each category) evolves
randomly, based on presence of antigen and affinity

® cg: naive T-cell
1 same for viral load and number of infected tissue cells

O laws of evolution are based on the increment functions given next

O Example

@® Recruitment rate of naive T-cells is given by avidity formula seen earlier; call it u ;
(is a function of I, number of infected cells)
® proba that a given cell becomes recruited between t and t+dt is
u dt + o( dt)
® N, : number of naive T-cells in one clone is thus random
e we have a markov process with state S= (T, I, V, N, ...)



The Simulator Approximates the Markov
Process using the Stage Structured
Approach

L The simulator advances time by increments 6 =10 mn
O For example, the value of N is updated according to

Np(t+1) = Np(t) — B (NT(t), 1— e_“5>

where B 1s the binomial distribution
O See next for the complete list of evolution equations

O This is an approximation valid for small &
® the approx is that p depends on state S, assumed constant during 10 mn
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How the model is run

L generate one or several pMHC complexes
 generate the T-cell clones that cross-react to them

® only those CTLs that can react to pathogen are explicitly created in the simulator (this
1s called « Lazy Evaluation »)

L submit clones to positive and negative selection (thymus)
(] start one stage-structured instance per T-cell clone and run the model step by step

11



Parameters of Model

attribute value

time step (Af) 10 minutes
naive cell clone size 10 cells™
maximum T cell recruitment rate () 1 day !
delay before a stimulated naive cell becomes an effector (1,) 19 hours'
delay before a stimulated memory cell becomes an effector (1,,) 1 hour?
naive-derived active CTL death rate (0r) 0.6 day ¥
memory-derived active CTL death rate (8g,,) 0.4 day ¥
time in B phase for CTL 5 hours!
average CTL cell cycle time 6 hours!
infected cell clearance rate (k) 12 day 1

* Casrouge et al. (2000)

" Oehen and Brduscha-Riem (1998); Gett and Hodgkin
Veiga-Fernandes et al. (2000); van Stipdonk et al. (2001)

* Bachmann et al. (1999); Barber et al. (2003)

Y Veiga-Fernandes et al. (2000)

| van Stipdonk et al. (2001)

¥ Barchet et al. (2000)

Table 3.1: A summary of model parameters.

source: Dennis Chao's dissertation

(2000);
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Model is fitted to the mouse

Mouse Human | Hamming Xor L
# of self peptides 10 —10°" 30,000 30,000 30,000
# of MHC types 3 4 3 3 3
universe of TCRs (or # 1057 | 1.47x10% [ 1.18 x 102! | 1.13 x 10"
of possible TCR strings)
# of pre-selection clones | < 107 1013 8 x 107 2.5 %108 2.5x% 108
# of naive clones 10 —107+ | 1078 3.17x 104 | 2.02x10° | 1.95x10°
foreign peptide response | 107> —107° 839x107° | 1.27x107° | 1.43x 1077
frequency
thymic selection win- | 1-3% 3.96% 0.807% 0.778%
dow size
% killed in negative se- | 50-66% 46% 61% 70%
lection
# of clones per epitope | 10-20/ 26.6 25.7 27.9

* Bevan (1997); Miiller and Bonhoeffer (2003); Bandeira and Faro (2003)
" Davis and Bjorkman (1988)
* Pannetier et al. (1993); Casrouge et al. (2000)

¥ Arstila et al. (1999)
I Blattman et al. (2002)

source: Dennis Chao's dissertation
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Other Modelling Assumptions

(J CTLs do not interact with non infected self cells

O Virus can mutate
® implemented as change in one digit of the peptide in MHC/peptide complex

® implemented by probability p that a virus in newly infected cell undergoes one
mutation

1 T-cell exhaustion

14



2. Chao's Result Example
Impact of CTL clone size

IE"H:B T T T | T T T T | T T T T | T T T T
leD8 -
smaller
nitial 1eH07 -
clone size
induces a 1e+06 -
larger virus E 1e+05
load peak \
and then a Let04
faster 1403 L/
decay '
le+2
16401
1 A+
0 5 10 % 20
time (days)

Figure 5.9: The effect of increasing the number of naive cells. One model run was initial-
ized with 50 naive cells (/) and a viral load of 500 (o). The other model run started with
50,000 naive cells (A) and the same initial virus load (e).

source: Dennis Chao's dissertation
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Example: Clonal Composition of CTL
Response

1@"‘03 T | I T | T
O secondary  jouml
response
le+Hb6 —
has a
higher 1e+05 —
affinity E 1er04
E 1e+H)3
leH)2 —
leH0XE—E
10

Figure 5.11: Primary and secondary CTL responses to a viral infection. 500 viral units
were injected on days 0 and 28. The virus levels are indicated by e and the number of
CTLs in the three highest-affinity clones as [, /A, and ¢ (in decreasing order of affinity).
Lower-affinity clones are represented by Lines with no markers. Each CTL clone initially
has 10 unstimulated naive cells. 16



3. Eric Winington's Result Example
The Immune Response is Random

L The same model can be run more extensively and one finds random results

® randomness dye to naive T-cell repertoire
10 ¢

1
10 |

10" b

10 |

10" 4
10° |f
10" |

o
10 |

0 L

10

10 & f

Viral load

ca. 20% of simulation
runs do not clear virus
in 20 days

0
source: Eric Winnington, EPFL

10 15 20 25 30 35
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Secondary reaction without re-infection

may occur with small probability
O Not cleared by primary

reaction (after 20 days) o’
B ]
5h  Hamming 15.0% '9F memory T-cells E
Manhattan 31.7% t =
Xor 31.0% 0¥
]
lk  Hamming 22.5% 10
Manhattan 31.5% o
Xor 37.0% 10 ]
104;—
10°F
102;—
101;—
100_ ! ! !
0 5 10 15
source: Eric Winnington, EPFL 1kHN
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Conclusion

1 The examples show what we can do and what a stochastic model can tell us

L We would like now to apply this and other types of modelling to specific cases of
interest

19



OO0 O

DO 0O

Checklist

how many TCRs per CTL?

How 1s avidity computed in the model ?

How i1s epitope mapped to MHC/peptide complex ?

Multiple epitopes / antigen specificity: how does the model reflect this ?

® how are the original T-cells created from the model ?

@ H: all T cells are same, I different pathogen types

® what does « T-cell specific to a particular antigen » mean ?

@ is there more than one antigen specificity anywhere in the applications of the model ?
Replace : in effector mediated clearance Poisson by Binomial
Compare to ODE method (mean values)

Can auto-immunity occur in this model ? (a peptide—MHC complex close to
many self complexes)

20



