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A MODEL OF DEMAND RESPONSE
1.
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Le Boudec, Tomozei, Satisfiability of Elastic Demand in the Smart Grid, Energy 2011 
and ArXiv.1011.5606



Demand Response

=	distribution	network	
operator may interrupt /	
modulate power

elastic loads support	graceful
degradation

Thermal	load (Voltalis),	
washing machines	(Romande	
Energie«commande
centralisée»)
e‐cars,

Voltalis Bluepod switches	off	
thermal	load for	60	mn
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Our Problem Statement

Does demand response work ?
Delays
Returning load

Problem Statement
Is	there a	control	mechanism that can
stabilize demand ?

We leave out	for	now the	details of	
signals and	algorithms
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Macroscopic Model of Cho and Meyn [1], 
non elastic demand,

mapped to discrete time 
Step	1:	Day‐ahead	
market
Forecast	demand:	

Forecast supply:	

Step	2:	Real‐time	market
Actual	demand

Actual supply		
1deterministic

randomcontrol

We now add the	effect of	elastic demand /	
flexible	service
Some demand can be «frustrated»	(delayed)



Our Macroscopic Model with Elastic Demand
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Backlogged Demand
We	assume	
backlogged demand
is subject to	two
processes:	update	
and	re‐submit
Update	term
(evaporation):	 	
with 0 or	 0
is the	evaporation

rate	(proportion	lost
per	time	slot)
Re‐submission term
	 	

1/ (time	slots)	is
the	average delay
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Supply
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Assumption	:	 	– 	 	 ARIMA(0,	1,	0)
typical	for	deviation	from	forecast

1 1 ≔ 1 ∼ 0,

2‐d	Markov	chain on	continuous state	space
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Macroscopic Model, continued

S. Meyn
“Dynamic Models and Dynamic Markets
for Electric Power Markets”



The Control Problem
Control	variable:		

1
production	bought one	
time	slot	ago in	real	time	
market
Controller	sees only supply

	and	expressed
demand
Our	Problem:
keep backlog stable
Ramp‐up	and	ramp‐down	
constraints
	 	 	⎼	 1 	 	
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Threshold Based Policies

Forecast supply is adjusted to	
forecast demand

R(t)	:=	reserve =	excess of	
demand over	supply
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Threshold	policy:	
if 	 	 ∗	increase supply to	come	as	close	
to ∗as	possible	(considering ramp up	
constraint)

else decrease supply to	come	as	close	to	 ∗as	
possible	(considering ramp down	constraint)



Simulation
Large	
excursions	
into negative
reserve and	
large	
backlogs are	
typical
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ODE Approximation

13

r*



Findings : Stability Results
If	evaporation is positive,	
system	is stable	(ergodic,	
positive	recurrent Markov	
chain)	for	any threshold ∗

If	evaporation is negative,	
system	unstable for	any
threshold ∗

Delay	does not	play a	role in		
stability
Nor do	ramp‐up	/	ramp
down	constraints or	size	of	
reserve
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Evaporation
Negative evaporation means:
delaying a	load makes the	
returning load larger than the	
original	one.

Could this happen ?

Q.	Does letting your house	cool	down	
now imply
spending more	heat in	total	
compared to	
keeping temperature constant	?	

return	of	the	load:
Q.	Does letting your house	
cool	down	now imply
spending more	heat later ?
A.	Yes
(you	will	need	to	heat	up	
your	house	later	‐‐ delayed	
load)
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Assume	the	house	model	of	[6]

0
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leakiness inertia

heat provided
to building outside

efficiency

E, total energy provided
achieved t

Scenario Optimal Frustrated
Building	
temperature

∗ , 0… , 0… ,
		 ∗

Heat
provided ∗ 1

	
∗ ∗ ∗ 0 	

∗



Findings
Resistive	heating system:
evaporation is positive.
This	is why Voltalis bluepod is
accepted by	users

If	heat =	heat pump,	coefficient	of	
performance	 may be variable
negative evaporation is possible

Electric	vehicle:	delayed charge	
may have	to	be faster,	less efficient,	
negative evaporation is possible
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Conclusions
A	first	model	of	demand response with volatile	demand
and	supply

Suggests that negative evaporation makes system	
unstable
Existing demand‐response positive	experience (with
Voltalis/PeakSaver)	might not	carry	over	to	other loads

Model	suggests that large	backlogs are	possible
Backlogged load is a	new	threat to	grid operation
Need to	measure and	forecast backlogged load
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COPINGWITH WIND VOLATILITY
2.	
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Gast, Tomozei, Le Boudec.  Optimal Storage Policies with Wind Forecast Uncertainties, 
GreenMetrics 2012



Problem Statement

Model
20%	wind	penetration	+	prediction	
Schedule	P(t+n)
Imperfect	storage	(80%	efficiency)

Questions:
Optimal	storage	size
Lower	bound	when	efficiency	<	100%.
Scheduling	policies	with	small	storage
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Mismatch:
To	compensate	the	mismatch:
1. Storage	system

2. Fast‐ramping	generation	(gas)	/	Loss

Power constraints

Capacity constraintsEfficiency of cycle (~70‐80%)

Storage Model, from [Bejan, Gibbens Kelly 2011]
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time

set

Demand forecast Wind forecast

1

set



Basic scheduling policy & metrics
Mismatch:
Basic	schedule:

Ex:	fixed	reserve

Metric:				Fast‐ramping	energy	used	(x‐axis)
Lost	energy	(y‐axis)	=	wind	spill	+	storage	inefficiencies
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Wind data & forecasting
Aggregate	data	from	UK	 (BMRA	data	archive	https://www.elexonportal.co.uk/)

Key	parameter:	prediction	error
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Demand perfectly predicted

3 years data

Scale wind production to 20% (max 26GW)

Relative error

Day ahead forecast   =  24%
Corrected day ahead forecast    =   19% 



Depends	on	storage	characteristics
Efficiency,	maximum	power	(but	not	on	size)

Assumption	valid	if	prediction	error	is	Arima

Theorem.		Assume	that	the	error																																			
conditioned	to								is	distributed	as					.	Then:

(i)

where

(ii)	The	lower	bound	is	achieved		by	the	Fixed	Reserve	
when	storage	capacity	is	infinite.

A lower bound
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Lower bound is attained for                      .
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The BGK policy [Bejan, Gibbens, Kelly 2011]
BGK	[7]	:	try	to	maintain	storage	in	a	fixed	level

Compute	estimate	of	storage	size	

Close	to	lower	bound for	large	storage
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Small storage capacity?
BGK	is far	from lower bound:
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Scheduling policies for small storage

Fixed	reserve

BGK	[7] :	try	to	maintain	storage	in	a	fixed	level	
Compute	estimate	of	storage	size	

Dynamic	reserve
Based	on	a	simplified	Markov	Decision	Process	(one	time	step	evolution)

cost	=	energy	loss		+					fast‐ramping

Optimal	policy	

Apply								to																				:

28Level of storage
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Control law for the Dynamic Reserve
Effective	algorithm	to	the	Dynamic	Reserve	policy
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The Dynamic Reserve policies outperform BGK
Trying	to	maintaining	a	fixed	level	of	storage	is	not	optimal	
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BGK: maintain 
fixed storage lvl

Fixed 
Reserve

Lower bound

Dynamic 
reserve



Conclusion
Maintain	storage	at	fixed	level:	not	optimal

worse	for	low	capacity
There	exist	better	heuristics

Lower	bound (valid	for	any	type	of	policy)
depends	on						and	maximum	power
Tight for	large	capacity	(>50GWh)
Still	gap	for	small	capacity

50GWh	and	6GW	is	enough	for	26GW	of	wind

Quality	of	prediction	matters
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