STOCHASTIC ANALYSIS OF REAL AND VIRTUAL STORAGE IN THE SMART GRID

Jean-Yves Le Boudec EPFL, Lausanne, Switzerland

joint work with Nicolas Gast Alexandre Proutière Dan-Cristian Tomozei

Outline

1. Introduction and motivation

- 2. Managing Storage
- 3. Impact of Storage

4. Impact of Demand Response

Wind and solar energy make the grid less predictable

Mean error: 1-2%

Mean error: 20%

Storage can mitigate volatility

Batteries, Pump-hydro

Limberg III, switzerland

Switzerland (mountains)

Projects: artificial islands (north sea)

Belgium

Copenhagen A Manmade Island to Store Wind Energy

Belgium has plans for an artificial "energy atoll" to store excess wind power in the North Sea.

Demand Response = Virtual Storage

Voltalis Bluepod switches off thermal load for 60 mn

Questions addressed in this talk

- 1. How to manage one piece of storage
- 2. Impact of storage on market and prices
- 3. Impact of demand response on market and prices

2. MANAGING STORAGE

N. G. Gast, D.-C. Tomozei and J.-Y. Le Boudec. Optimal Generation and Storage Scheduling in the Presence of Renewable Forecast Uncertainties, IEEE Transactions on Smart Grid, 2014.

Storage

Stationary batteries, pump hydro

Cycle efficiency $\approx 70 - 85\%$

Operating a Grid with Storage

1a. Forecast load $D_t^f(t+n)$ and renewable suppy $W_t^f(t+n)$ 1b. Schedule dispatchable production $P_t^f(t+n)$

2. Compensate deviations from forecast by charging / discharging Δ from storage

Full compensation of fluctuations by storage may not be possible due to power / energy capacity constraints D(t+n)

- Fast ramping energy source $(CO_2 \text{ rich})$ is used when storage is not enough to compensate fluctuation
- Energy may be wasted when
 - Storage is full
 - Unnecessary storage (cycling efficiency < 100%)

Control problem: compute dispatched power schedule $P_t^f(t+n)$ to minimize energy waste and use of fast ramping

Example: The Fixed Reserve Policy

Set $P_t^f(t+n)$ to $D_t^f(t+n) - W_t^f(t+n) + r^*$ where r^* is fixed (positive or negative)

Metric: Fast-ramping energy used (x-axis)

Lost energy (y-axis) = wind spill + storage inefficiencies

Aggregate data from UK (BMRA data archive <u>https://www.elexonportal.co.uk/</u>) scaled wind production to 20% (max 26GW)

A lower bound

Theorem. Assume that the error $e(t+n) = W(t+n) - W_t^f(t+n)$ conditioned to \mathcal{F}_t is distributed as \mathcal{E} . Then for any control policy:

(i)
$$\bar{G} \ge \mathbb{E}[(\varepsilon + \bar{u})^{-}] - \operatorname{ramp}(\bar{u})$$

 $\bar{L} \ge \mathbb{E}[(\varepsilon + \bar{u})^{+}] - \operatorname{ramp}(\bar{u})$

where $\operatorname{ramp}(\bar{u}) := \mathbb{E}[\min(\eta(\varepsilon + \bar{u})^+, \eta C_{\max}, (\varepsilon + \bar{u})^-, D_{\max})]$

(ii) The lower bound is achieved by the Fixed Reserve when storage capacity is infinite.

Assumption valid if prediction is best possible

Lower bound is attained for $B_{\text{max}} = 100 \text{GWh}$

Concrete Policies

BGK policy [Bejan et al, 2012] = targets fixed storage level

Dynamic Policy (Gast, Tomozei, L. 2014) minimizes average anticipated cost using policy iteration

Efficiency $\eta = 0.8$

[Bejan et al, 2012] Bejan, Gibbens, Kelly, Statistical Aspects of Storage Systems Modelling in Energy Networks. 46th Annual Conference on Information Sciences and Systems, 2012, Princeton University, USA.

What this suggests about Storage

A lower bound exists for any type of policy

- Tight for large capacity (>50GWh)
- Open issue: bridge gap for small capacity

(BGK policy:) Maintain storage at fixed level: not optimal

- Worse for low capacity
- There exist better heuristics, which use error statistics

Can be used for sizing UK 2020: 50GWh and 6GW is enough for 26GW of wind

3.

IMPACT OF STORAGE ON MARKETS AND PRICES

[Gast et al 2013] N. G. Gast, J.-Y. Le Boudec, A. Proutière and D.-C. Tomozei. Impact of Storage on the Efficiency and Prices in Real-Time Electricity Markets. e-Energy '13, Fourth international conference on Future energy systems, UC Berkeley, 2013.

We focus on the real-time market

Most electricity markets are organized in two stages

Compensate for deviations from forecast

Inelastic demand satisfied using:

- Thermal generation (ramping constraints)
- Storage (capacity constraints)

Real-time Market exhibit highly volatile prices

Efficiency or Market manipulation?

The first welfare theorem

Impact of volatility on prices in real time market is studied by Meyn and co-authors: price volatility is expected

Theorem (Cho and Meyn 2010). When generation constraints (ramping capabilities) are taken into account:

- Markets are efficient
- Prices are never equal to marginal production costs.

What happens when we add storage to the picture ?

Does the market work, i.e. does the invisible hand of the market control storage in the socially optimal way ?

[Cho and Meyn, 2010] I. Cho and S. Meyn *Efficiency and marginal cost pricing in dynamic competitive markets with friction*, Theoretical Economics, 2010

A Macroscopic Model of Real-time generation and Storage

Macroscopic model

At each time: generation = consumption $G^{a}(t) + u(t) = D^{a}(t)$

A Macroscopic Model of Real-time generation and Storage

Definition of a competitive equilibrium

Assumption: agents are price takers P(t) does not depend on players' actions

Both users want to maximize their average expected payoff:

Consumer: find *E* such that $E \in \operatorname{argmax}_E \mathbb{E} \left[\int W_D(t) e^{-\gamma t} dt \right]$

Supplier: find *E, G, u* such that

G and u satisfy generation constraints and $E, G, u \in \operatorname{argmax}_E \mathbb{E} \left[\int W_S(t) e^{-\gamma t} dt \right]$

Question: does there exists a price process *P* such that consumer and supplier agree on the production ?

(P,E,G,u) is called a *dynamic competitive equilibrium*

Dynamic Competitive Equilibria

Theorem. Dynamic competitive equilibria exist and are essentially independent of who is storage owner [Gast et al, 2013]

For all 3 scenarios, the price and the use of generation and storage is the same.

Parameters based on UK data: 1 u.e. = 360 MWh, 1 u.p. = 600 MW, σ^2 = 0.6 GW2/h, ζ = 2GW/h, Cmax=Dmax= 3 u.p.

The social planner problem

The social planner wants to find G and u to maximize total expected discounted payoff

$$\max_{G,u} \mathbb{E} \int (W_{S}(t) + W_{D}(t))e^{-\gamma t} dt$$

$$v \min(D^{a}(t), E(t) + g^{da}(t)) - c^{bo} (D^{a}(t) - G^{da}(t) - -u(t))^{+} - cG(t) - c^{da}g^{da}(t)$$
satisfied demand Frustrated demand Cost of generation

The solution does not depend on storage owner, and depends on the relation between the reserve R(t) and the storage level B(t)(where reserve = generation – demand : R(t): = $G^{a}(t) + u(t) - D^{a}(t)$)

Theorem [Gast et al 2013] The optimal control is s.t.: if $R(t) < \Phi(B(t))$ increase G(t)if $R(t) > \Phi(B(t))$ decrease G(t)

(a) Function $b \mapsto \phi(b)$ for various values of the storage energy the optimal reserve and storage capacity $B_{\rm max}$.

The Social Welfare Theorem [Gast et al., 2013]

- Any dynamic competitive equilibrium for any of the three scenarios maximizes social welfare
 - the same price process controls optimally both the storage AND the production i.e. the invisible hand of the market works

Figure 6: Steady-state distribution of prices for various storage energy capacities B_{max} . For $B_{\text{max}} = 10$ u.e., we zoom on c=1 to compare $\eta = 0.8$ and $\eta = 1$.

The Invisible Hand of the Market may not be optimal

- Any dynamic competitive equilibrium for any of the three scenarios maximizes social welfare
- However, this assumes a given storage capacity.
- Is there an incentive to install storage ?
 - No, stand alone operators or consumers have no incentive to install the optimal storage

Can lead to market manipulation (undersize storage and generators)

Scaling laws and optimal storage sizing

What this suggests about storage :

- With a free and honest market, storage can be operated by prices
- However there may not be enough incentive for storage operators to install the optimal storage size
 - perhaps preferential pricing should be directed towards storage as much as towards PV
 - Storage requirement scales linearly with amount of renewables

4.

IMPACT OF DEMAND-RESPONSE ON MARKETS AND PRICES

[Gast et al 2014] N. Gast, J.-Y. Le Boudec and D.-C. Tomozei. Impact of demandresponse on the efficiency and prices in real-time electricity markets. e-Energy '14, Cambridge, United Kingdom, 2014.

Demand Response

= distribution network
operator may interrupt /
modulate power

= virtual storage

- elastic loads support graceful degradation
- Thermal load (Voltalis), washing machines (Romande Energie«commande centralisée») e-cars

Voltalis Bluepod switches off boilers / heating for ≤60 mn

Issue with Demand Response: Non Observability

Widespread demand response may make load hard to predict

Our Problem Statement

Does it really work as virtual storage?

Side effect with load prediction ?

To this end we add demand response to the previous model

Our Problem Statement

Does it really work as virtual storage ?

Side effect with load prediction

To analyze this we add demand response to the previous model

- Population of *N* On-Off appliances (fridges, buildings, pools)
- Without demand response, appliance switches on/off based
 - on internal state (e.g. temperature) driven by a Markov chain

undesirable states

possible

y=0

 $y = Y_{max}$

y=0

- Demand response action may force an off/off transition but mini-cycles are avoided
- Consumer game: anticipate or delay power consumption to reduce cost while avoiding undesirable states

undesirable states

possible

7off

x = 0

Yoff.

 $x = X_{\max}$

on

off

Results of this model with Demand Response

- Social welfare theorem continues to hold, i.e. demand response can be controlled by price and this is socially optimal, given an installed base
- We numerically compute the optimum using
 - A mean field approximation for a homogeneous population of N appliances
 - Branching trajectory model for renewable production [Pinson et al 2009]
 - ADMM for solution of the optimization problem
 - We assume all actors do not know the future but know the stochastic model

[Pinson et al 2009] P. Pinson, H. Madsen, H. A. Nielsen, G. Papaefthymiou and B. Klöckl. "From probabilistic forecasts to statistical scenarios of short-term wind power production". Wind energy, 12(1):51–62, 2009.

Non-Observability Significantly Reduces Benefit of Demand-Response

We assume that:

- The demand-response operator knows the state of its fridges
- The day-ahead forecast does not.

The Invisible Hand of the Market may not be optimal

Demand Response stabilizes prices more than storage

Large amount of 100% efficient storage or demandresponse

Storage with efficiency $\eta < 1$

What this suggests about Demand Response :

- With a free and honest market, storage and demand response can be operated by prices
- However there may not be enough incentive for storage operators to install the optimal storage size / demand response infrastructure
- Demand Response is similar to an ideal storage that would have close to perfect efficiency
- However it is essential to be able to estimate the state of loads subject to demand response (observability)

Thank You !

More details on smartgrid.epfl.ch

