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Storage and Demand Response can be
used to mitigate volatility of renewables

M Motivation: Swiss Nanotera S3grid (M. Kayal, M. Paolone)
use of storage in active distribution network as in [Bianchi et al,
2012]

B In this talk:

1. canwe use storagenoy ™t

errors ?

2. can we control
storage with
prices ?

3. can demand response
substitute for storage ?

1

USING STORAGE TO COPE WITH
RENEWABLE VOLATILITY

[Bejan et al 2012] Bejan, Gibbens, Kelly, “Statistical aspects of
storage systems modelling in energy networks,” 46th Annual
Conference on Information Sciences and Systems 2012

[Gast etal 2012] Gast, Tomozei, Le Boudec. “Optimal Storage
Policies with Wind Forecast Uncertainties”, GreenMetrics 2012

[Gast et al 2013] Gast, Tomozei, Le Boudec. “Optimal Energy
Storage Policies with Renewable Forecast Uncertainties ”,
submitted, 2013




Production scheduling w. forecasts errors

. . adda, Addd
M Base load production scheduling g yg;‘-,,qj;h' T
L EERRENUHE AR R R
» Deviations from forecast gzi_mm:.:mw..n. Pud
B
» Use storage to compensate ' 5 "
B Social planner point of view load

» Quantify the benefit of storage
» Obtain performance baseline
» what could be achieved
» no market aspects

M Compare two approaches -

1. Deterministic approach

ren;wables i Q\Q

reyewables + storage

~
T

Pump hydro, Cycle efficiency ~ 80%

» try to maintain storage level at e.g. % of its capacity using updated forecasts
2. Stochastic approach

» Use statistics of past errors.

Production scheduling with delays

1a. Forecast load D{(t +n)
and renewable suppy

w/ (t +n)
1b. Schedule dispatchable 2. Compensate
production P/ (t + n) deviations from
forecast by
charging /
load
N /,th(t +n) load / D(t +n) discharging A
/\/\/\ [/ At + 1) from storage
renewables renewables
P VaN Ptf(t +n)
TTf
W, (t +
CT T 1,

T+

stored energy
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Full compensation of fluctuations by storage may
not be possible due to power / energy capacity

constraints D(t +m)

fast ramping
A(t +n)

load

B Fast ramping energy source (CO,
rich) is used when storage is not
enough to compensate fluctuation

renewables

P/t +n)

B Energy may be wasted when T+
» Storage is full
» Unnecessary storage (cycling
efficiency < 100%)
renewables
B Control problem: compute
dispatched power schedule
Ptf (t + n) to minimize energy
waste and use of fast ramping

spilled ener;

Example of scheduling policy: Fixed Offset
B Fixed Offset policy:

u > 0 means excess production (expect to store)
u < 0 means deficit of production (expect to draw from storage)

offset u
Planned Actual
Df(t4—n) ioady D(t+n)
renewables renewables
Pl (t+m)
(t + n%
I:+ " t

stored energy

stored energy
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Example of scheduling policy: Fixed Level

B target a fixed storage level (e.g. 4 = % Max )
M [Bejan etal 2012]

Planned Actual
Md Haem o
}(&{a/bles\ Ptf(t +n) renewables

A
W, (t+
t | - ns
T+

stored energy stored energy

target level 4
target level 4

Metric and performance (large storage)

Fixed Offset

load f
M Energy may be wasted when " XY ol +m
. renewables
» Storage is full
. a 8
» Unnecessary storage (cycling ~ %
efficiency < 100%) 3
<
]
. Fixed Level
e 2
B Fastramping energy sources , stored energy
(COZ riCh) iS used When ¢ fast—rimping gnergy (gznl AWBP) target level A
storage is not enough to / AWP = average wind power [
compensate fluctuation
Numerical evaluation: data from the UK .
(BMRA data archive hps://www.elexonportal.co.uk/) QueStlons .
National data (wind prod & demand
Y para dota tuindprod & demand) e Can we do better?
Corrected day ahead forecast: MAE = 19%

¢ How to compute optimal offset?
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Fixed offset is optimal for large storage

lu):=FE u)t] — flu
Let un; —E {:Ziu;’% B ﬁ“; with f():=min (rp]E [min ((e4+u)*, Crnax)| . E [min ((+2) 7, Dipax )] )

B Theorem. If the forecast error is distributed as £ Then:

1. (¥, g)isalower bound: for any policy w, there exists u such that:

: B"i'x ¥ max
G*(T) = glu) — =5 L7(T) = 6(u) — BT-

2. FOis optimal for large sto

ge .Capac.‘tv

solved for lar

ity?

medium capac

3.

Th problem

« \Whatab

out small /

ST=E [min ((e4+2) ", Diax )]

WP)

e Uses distribution of error

(¢, 9) curve:
Lower bound

"

energy (in %

@

/* Target=80%

t‘(i Target=50%

*

* Fixed reserve is Pareto-optimal ?
Optimal fixed offset /‘”"/A\p**
u = 2% AWP g2
FO
0
0 2 4 6 8

fast-ramping energy (% of AWP)
i1

Scheduling Policies for Small Storage
B Dynamic offset policy:

» choose offset as a function of forecasted storage level

B Stochastic optimal control (general idea)
» Compute a value V(B) of being at storage level B

u = arginf E[ cost (w) + V(¢(b,u))]

u €off;

Expectation on

! Instant cost (losses or Storage level at
possible errors

fast-ramping energy) next time-slot
B Computation of V: depends on problem
» Here: solution of a fixed point equation:
V(b)) =g+ 3 ElglﬁfsetIE[ cost (u) + V(d)(b, u))]
» Approximate dynamic programming if state space is too large

» Can be extended to more complicated state V(t,B,B’,...)
12
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Dynamic Offset outperforms other heuristics

B Large storage capacity (=

20h

of average production of wind energy)

» Power = 30% of average wind power
10

Fixed storage level

e

n
=
]
S
=]

@  Fixed offset

R(100)

&

lost energy (in % of AWP)

FR(-100) FR(-200)

0 2 4 6 8
fast-ramping energy (% of AWP)

j N

Dynamic offset

Lower
bound

» Fixed Offset & Dynamic offset

are optimal

B Small storage capacity (=3h of

average production of wind energy)

» Power = 30% of average wind power
10 -

ost energy
N
v
!
!
!
1
!

-

Lower bound DO

A\

0 2 4 6 8
fast-ramping energy (% of AWP)

» DO is the best heuristic

Maintaining storage at fixed level: not optimal
There exist better heuristics

g 8 '. Q Fixed storage level
z ' /

o 6 ! Fixed Offset
£ ! ?0..

= ! ~ ©

Dynamic

~ N / offset

13
Take Home Message
M For “large” (i.e. one 10
: FO(8%
day) storage, there is ®%) \
an optimal value of g 8 BKG, W™
ﬁxgd offset reserve, 5 g P—
which can be &
=] 0(3%,
computed from 2 4 (%)
forecast error 5 | eof
statistics 3 2 é FO(-5%)
FO = 2% AWP FO(-
% 2 4 6 8
B Can be used to use of reserves (% of wind)
dimension secondary
reserve
14
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2

PRICES AND STORAGE IN
REAL-TIME ELECTRICITY MARKETS

[Gast et al 2013] Gast, Le Boudec, Proutiére, Tomozei, “Impact of
Storage on the Efficiency and Prices in Real-Time Electricity
Markets”, ACM e-Energy 2013, Berkeley, May 2013

15

Storage and Real Time Prices

B Impact of volatility on prices in real time market is studied by
Meyn and co-authors, e.g.
[Cho and Meyn, 2010] I. Cho and S. Meyn Efficiency and
marginal cost pricing in dynamic competitive markets with
friction, Theoretical Economics, 2010

B We add storage to the model

B Q1: how does storage impact volatility ? what is the required
storage capacity ?
M Q2: does the market provide optimal control ?

16
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A Macroscopic Model of Real Time Market with Storage
Extension of [Cho and Meyn 2010]

r-e
1
1%
Doy ahead =
Demand
DA(t) = d(t)
extracted (or stored) power
Storage ,——— Storage constraints

oB A
i _u(t)(lu(t)>0+n11£(t)<0) 'g: Power Capacity
Storage cycle efficiencd = | ~Crax S () < Dpay
(Eg9.n =08 )\/ IW' Energy Capacity
—— - u(t)ZO(.dc_B(t)=Bmax
H: (D — ') ~ brownian motion u(®) <0f B(t) =0
17

. { Consumer 7 AR
Scenario A: N

Y ey ey
i g% | & Supplh
Storageat B @ o
. Demand |
Supplier om0 @) |
buy E(t e
Storage i t
ap - — -
a0 = ~tO0u@>0+nlugo) : . 1
U
\ | IS ) ;

M Consumer’s payoff

=v(D*(D) AE®) + g% (D]),— cbOQ(t) — E(t) —gf@+
—P()E(t) —p a(t)gda( frustrated demand
. satisfied demand
W Supplier’s payoff
= P(OE(t) +p*()g?* () — cG(t) — g (t)
B P(t) = stochastic price process on real time market

18
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Definition of a Consumer 2 A ‘:ﬁ
. oxs i FE
Dynamic Competitive | 3 B | Eads
Equilibrium (Storage "SIt e (O)

at Supplier) a | U
[Cho and Meyn 2010] "} |

Storage | t @ extracted (or stored) power

op N
i *"(5)(1u:r:>n+ﬂ1u[rggn) :%
M (P,E,G,u) such that Lo !

e

1. E maximizes welfare ( = expected discb‘unte,d,payoﬁ),gf,c,ans,umer/
2. E,G,umaximizes welfare of supplier (given friction constraints)
for the same price process P
B Without storage, there exists such an equilibrium [Cho and
Meyn 2010]

Supplier

19

Scenario B:

Storage at | .2 o D)
Consumer o U e

i Storage

B Consumer’s payoff |
=v(D*(t) A[E(E) + u(t) + g’m{f)}} --------------------------- !
— P (D) — E(8) —u(t) — g%4(6)) " — P(DE() — p™(t)g®(t)
B Supplier’s payoff
= P()E(t) + p®() g9 (t) — cG(t) — c?*g? (1)
M Dynamic Competitive Equilibrium: (P, E, G,u) such that
1. E,u maximizes consumer’s welfare

Z.  E,G maximizes supplier’s welfare

for the same price process P
20

23.04.2013

10



23.04.2013

. /"~ Consumer { :
Scenario C: | ﬁ
Stand-Alone &&= U@
§D§$S"f a” () +C_D—@
Storage 1 H Supplier

Operator R N O — y

:’: Storage

i am )
Coa T *"(t)(lu(r,pu“]lu(:)l " \
{ ! 1

a

eft‘racled (or stored) power

B Consumer’s payoff
= v(D4(O) AEp () + g2(D)]) — c?°(DA(E) — Ep(t) — g%4(6)) " = P(DEp (D)
- p* () g™ ()
B Supplier’s payoff = P(t)Es(t) + p9(t)g®(t) — cG(t) — ct*g?a(t)
Storage Op’s payoff = u(t)P(t)
B Dynamic Competitive Equilibrium: (P, Ep, Es, G, u) such that

1. Ep maximizes consumer’s welfare
2. Es, G maximizes supplier’s welfare
3. u maximizes storage op’s welfare
4.

Ep(t) +u(t) = Es(t) for the same price process P
21

Dynamic Competitive Equilibria exist and are essentially
the same for the 3 Scenarios [Theorem 3, Gast et al 2013]

s 5 Price
§ g = Storage level
I IS
1 1
0 0
2 T2
] 2
. s /\/\f"\/—\/\,/‘p_
H 5
@, @,
0 5 10 15 20 25 [} 5 10 15 20 25
. Time Time
(a) Without storage (b) Bumax =2u.e.,n=1.
s = Price s Price
1 u.e. =360 MWh § Storage level _§ Storage level
o a
1u.p .= 600 MW
0%=0.6 GW2/h 1 ae 1 famary_rus s 1 snnsrmm st
{ =2GW/h _o 0
210 210
Cmax=Dmax= 3 u.p. 2 H
g L—~ | —
g g
2 &
0 0

Time Time
(¢) Bmax = 10ue.,n=1  (d) Bmax = 10u.e.,, n = 0.8
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M Assume a social planner wants to
maximize total payoff

B Total payoff is same for all 3
scenarios and is independent of
price process P(t)

B Structure of optimally social
control G, u

LetR(t) =T(t) + G(t) —D(t) +
rda

optimal control is such that
if R(t) < ®(B(t)) increase G (t)
if R(t) > ®(B(t)) decrease G(t)

Supply
| &' = g (T 50 Y10)

Demand

Do) = d™(p) L

L

|

T @ extracted (or stored) power

Storage
o -
S =u(t)luy>o + Muger<o :
! |
g 7
2 2 —_— —a —a —a
~
= RL - A Thg TR W
A g SRR
£ R, RS = g
b ~ TN I
Z 0 ~ & i
g — B =1u.e. g
g, s § _yl[= = =threshoia o)
TR | e iy @ || =—m.R .
AT -B_mu5ue —= gptimal control (u g }
l e

[} 1 2 3 4 5
Storage level Bit) (inu.e.)

(a) Function b — o(b) for vari-

ous values of the storage energy

capacity Buax.

0 1 2 3 4 5
Storage level B(t) (in u.e.)
(b) Sample of a trajectory of
the optimal reserve and storage
processes. Buyax = Hu.e.

23

The Social Welfare
Theorem
[Gast et al., 2013]

B Any dynamic competitive
equilibrium for any of the
three scenarios maximizes
social welfare .

" .-, 2 \
p(m

Demand

Do(0) = (0 +{p(o)

P k:‘ 1
Euppl ;
= 9'"'(: + 60 A1)

sturage ;: extracted (or stored) power
—,
|

a0 = ~uOLu@zo +0lu<o 3

0.4
g ¥
205 3
g g
[
0 1 2 3 4
N price
(a) Without storage (b) B,
1 04
g g
£ 05 S 02
g g
T | 11 12

I
L-

0.2
l BLL
5

max 72110 n=

() Bmax=10u. e r}—l (zoom) (d) Bumax=10ue, q—ﬂ 8( zoom)

Figure 6: Steady-state distribution of prices for var-
ious storage energy capacities Bya.. For Bu.. =
10u.e., we zoom on ¢=1 to compare n = 0.8 and 5 = 1.

24
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isi . 1k !g |
The Invisible Hand 3 e
of the Market may ]

(1) = d* (0 4 Diw))

not be optimal
M Any dynamic competitive storage acled (or stored) poer

e % oL b
equilibrium for any of the = 0L * Tt I%ﬂ
three scenarios maximizes Lo

social welfare
o

M However, this assumes a givel
storage capacity.

04;

M [s there an incentive to installm

wellare for storage owner

e 1)=0.8
storage ?
N R =it L
0 2 4 6 8 10
M No, stand alone operators or By (000 8" favey
(b) Crax = 3u.p. (b) Cruax = mﬁ"m =3u.p.

consumers have no incentive

. . i Expected welfare of
to install the optimal storage Expected social welfare P

stand alone operator

25

Scaling Laws

0.01

M (steepness) being closeto -~
—— O, ?
social welfare requires the ., e

optimal storage capacity

social weltare

10°
8, (nue) B, (nue)

(a) Fixed ¢ (b) Fixed &

M optimal storage capacity

4
scales like g—s

e

increase volatility and
rampup capacity by x
= increase storage by x

—+—20,2{
—&— 40, 47
—¥— 60,8,

0 10 20 30 40 50 60

Bmax (inu.e.)

social welfare |
I

26
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What this suggests about storage :

M with a free and honest market, storage can be operated
by prices

M however, there may not be enough incentive for storage
operators to install the optimal storage size

M perhaps preferential pricing should be directed towards
storage as much as towards PV

27

3

A MODEL OF REAL TIME DEMAND
RESPONSE

[Le Boudec and Tomozei 2013] Le Boudec, Tomozei, “Stability of a stochastic model
for demand-response”, Stochastic Systems 2013, also available at
http://infoscience.epfl.ch/record/185991

28
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Issue with Demand Response:
Grid Changes Load

B Widespread demand response may make load hard to
predict

load with demand response

/\J\Q /\I\r\l load
/\/\XQ_\‘ \ /\/\/EL,\/\

renewables

—
Intention Real

29

A Macroscopic Model of Demand Response

Macroscopic Model of [Cho and Meyn 2010]
Control

Ramping Constraint < _
—£SGM) -Gt-1)=(

min(E*(t), G4(t))

Evaporation Expressed
update /p(t) Demand Satisfied
E4(t) Demand

term dh | ':'_]'

u Returning Demand Frustrated Reserve
l"‘ | B(t) s AZ|t) Demand (Excess supply)
" L a a
T | — P(t) = [E*(t) - G“(O)]"|| R(t)=G"(t) - E*(t)
: load is delayed

Backlogged Demand

Z(1) demand response

30
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We obtain a 2-d Markov chain on continuous

Ramping Constraint <
—£<GH)-GE-1)<(¢

D) = Df(1)
Evaporation Expressed min(E*(t), G%(t))
nZ(t) Demand Satisfied
Et Demand
;2@ LE°(1) -]
u Returning Demand Frustrated || Reserve
" o Jie B(t) = AZ(t) Demand Excess supply)
[k e ¢ F(t) = [B°(t) - "] || [BW)]=G°()) - E“(¢)
Backlogged bemand
Z(t)

R(t) = G(t — 1) — AZ(t) + M(t) — D(t) + 7o
Z(t) = Z(t—1) = AZ(t) — pZ(t) + 1)<} | 12(t)]

31

The Control Problem

B Control variable:
Gt—1) - LOprol
production bought one
time slot ago in real time

| L
market I E“{m i
B Controller sees only supply errnpEka
G%(t) and expressed 0=/
demand E4(t) Reapomban Satisfied
w2l Demand
M Our Problem: Returning

keep backlog Z(t) stable U  Demand

LR Cu-£1
I|“ ——|

M Ramp-up and ramp-down "y
. pL[L Frustrated Reserve
constraints Backlogged Demand Distiaiid

E<GH)-Gt—-1) <¢

Excess supply)

32
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Threshold Based Policies

GI(t) = DI (t) +ro Forecast supply is adjusted to
forecast demand

R(t) =6*(t) — E*(®) R(t) := reserve = excess of
demand over supply

Threshold policy:

if R(t) < r *increase supply to come as close
to r*as possible (considering ramp up
constraint)

else decrease supply to come as close to r*as
possible (considering ramp down constraint)

33

Simulations (evaporation u > 0)

t=10mn
T

Backlog Z(t)
2000 -

1800 -
1600 -
1400 -
1200 -
1000 -
800 -
600 -
400 -

el Reserve R(t) |

I 1 1 i | 1
-1000 -500 0 500 1000

34
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Simulations (evaporation u > 0)

B 1 > 0 means

returning
load is, in
average, less
Large
excursions
into negative
reserve and
large
backlogs are
typical

and occur at
random
times

o =100
3000

3000

*

G =120 \

2000 N,

|
|
|
|
1000 hY
|

3000

1000

2000

2000

1000

3000

00

0
-1000

-500

2000

1000

0
-1000  -500 0 500

1000

0
-1000

1 time step = 10mn| T=10000 terations, £=2=100, =300, 7.=0.3, u=0.2 |

35

Large backlogs may occur within a day, at any time

Day 1

Day 2

. 8 ¥ ¥ 88 % gy s i

(when evaporation u > 0)

t=40 mn

§ 8 8 % 88

¥

¥

- & % 8 5 B B & 8 8 %

. & ¥ %5 8 85 8 438 8§

t=400 mn

- & ¥ 658 38388}

. 8 ¥ ¥ 88 8 @38 8§

t=1280 mn

t=1280 mn

. 1 ) ) . . .
Typical delay 3 =30 mn, all simulations with same parameters as previous slide, ¢ = 160

36
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ODE Approximation (1 > 0) explain large

excursions into positive backlogs

2=03,1=02 r=300,C=%=100

3000

2500

2000

1000

5001

0
-1200 -
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Simulations (evaporation u < 0)

t=10mn

1600 '

Backlog Z(t)
1400+
1200+
1000 -
800 -
600 -

400

200

Reserve R(t)
ols . ‘ . - _
-400 -200 0 200 400 600 800 1000

38
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Simulations (ev

M 1 < 0 means

returning
load is, in
average,
more

B Backlog
grows more
rapidly

o=

aporation

< 0)

G =120

15000 15000
\ ! \ I
i i)
10000 i 10000 \ 1
\ "i i
5000 1" 5000
1
0 0
6000 4000  -2000 0 6000 4000  -2000 0
15000
10000
5000/
15000
10000
5000
0 0 s
£000 4000 -2000 0 -6000 -4000 -2000 0

&§=7=100,u = —0.15r" = 300 1 time step = 10mn
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ODE Approximation (¢ < 0) shows backlog is unstable

3000

2500

Backlogged demand

g

40

23.04.2013

20



Findings : Stability Results

M If evaporation y is positive,
system is stable (ergodic,
positive recurrent Markov
chain) for any threshold r *

M If evaporation y is negative,
system unstable for any
threshold r *

B Delay does not play a role in
stability

B Nor do ramp-up / ramp
down constraints or size of
reserve

Satisfied

() Demand

Bi(t)=AZ(1)

Flt)=E(t) - G*(u)]

Frustrated

VB‘.ac-klngged Demand Domand Reserve

Excess supply)
20

11

What this suggests about Demand Response:

B Positive evaporation is essential
occurs with thermal loads, might not always occur for all

load

B Model suggests that large backlogs are possible and

unpredictible

N load with demand response

Q “ad

\O
renewables

—

%

B Backlogged load is a new threat to grid operation
Need to measure and forecast backlogged load

42
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Thank You !
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