REAL-TIME STORAGE AND DEMAND MANAGEMENT

Jean-Yves Le Boudec (EPFL)

,

joint work with

Nicolas Gast (EPFL)

Alexandre Proutière (KTH)

Dan-Cristian Tomozei (EPFL)

Energy Systems Week: Management of Variability and Uncertainty in Energy Systems April 2013, Newton Institute, Cambridge, UK

1

INTRODUCTION

:

Storage and Demand Response can be used to mitigate volatility of renewables

- Motivation: Swiss Nanotera S^3 grid (M. Kayal, M. Paolone) use of storage in active distribution network as in [Bianchi et al, 2012]
- In this talk:
 - 1. can we use storage to compensate for renewable forecast errors?

 2. can we control storage with
 - 2. can we control storage with prices?
 - 3. can demand response substitute for storage?

3

1

USING STORAGE TO COPE WITH RENEWABLE VOLATILITY

[Bejan et al 2012] Bejan, Gibbens, Kelly, "Statistical aspects of storage systems modelling in energy networks," 46th Annual Conference on Information Sciences and Systems 2012

[Gast et al 2012] Gast, Tomozei, Le Boudec. "Optimal Storage Policies with Wind Forecast Uncertainties", *GreenMetrics* 2012

[Gast et al 2013] Gast, Tomozei, Le Boudec. "Optimal Energy Storage Policies with Renewable Forecast Uncertainties", *submitted*, 2013

Production scheduling w. forecasts errors Base load production scheduling ▶ Deviations from forecast ► Use storage to compensate Social planner point of view ▶ Quantify the benefit of storage renewables ▶ Obtain performance baseline ▶ what could be achieved ewables + stora ▶ no market aspects Compare two approaches 1. Deterministic approach ▶ try to maintain storage level at e.g. ½ of its capacity using updated forecasts 2. Stochastic approach ▶ Use statistics of past errors.

Full compensation of fluctuations by storage may not be possible due to power / energy capacity constraints

- Fast ramping energy source (CO_2) rich is used when storage is not enough to compensate fluctuation
- Energy may be wasted when
 - ► Storage is full
 - ► Unnecessary storage (cycling efficiency < 100%)
- Control problem: compute dispatched power schedule $P_t^f(t+n)$ to minimize energy waste and use of fast ramping

D(t+n)

 $\Delta(t+n)$

fast ramping

Example of scheduling policy: Fixed Offset Fixed Offset policy: u > 0 means excess production (expect to store) u < 0 means deficit of production (expect to draw from storage) Offset uPlanned Actual Planned Actual Stored energy Stored energy Stored energy Stored energy

Example of scheduling policy: Fixed Level target a fixed storage level (e.g. $\lambda = \frac{1}{2}$ Max) [Bejan et al 2012] Planned load $P_t^f(t+n)$ renewables $P_t^f(t+n)$ renewables $P_t^f(t+n)$ stored energy stored energy

Fixed offset is optimal for large storage

$$\begin{array}{ll} \text{Let} & \begin{array}{ll} \ell(u) \coloneqq \mathbb{E}\left[\left(\varepsilon + u\right)^+\right] - f(u) \\ g(u) \coloneqq \mathbb{E}\left[\left(\varepsilon + u\right)^-\right] - f(u) \end{array} \text{ with } & f(u) \coloneqq \min\left(\eta \mathbb{E}\left[\min\left(\left(\varepsilon + u\right)^+, C_{\max}\right)\right], \mathbb{E}\left[\min\left(\left(\varepsilon + u\right)^-, D_{\max}\right)\right]\right) \end{array}$$

- **Theorem.** *If the forecast error is distributed as* ε *Then:*
 - 1. (ℓ, g) is a **lower bound**: for any policy π , there exists u such that: $\bar{G}^{\pi}(T) \ge g(u) - \frac{B_{\max}}{T}$ $\bar{L}^{\pi}(T) \ge \ell(u) - \frac{B_{\text{max}}}{T}$
 - FO is optimal for large storage if a B_{δ} , then
 - Problem solved for large capacity What about small / medium capacity?

 - Uses distribution of error
- Fixed reserve is Pareto-optimal

Scheduling Policies for Small Storage

- Dynamic offset policy:
 - ▶ choose offset as a function of forecasted storage level
- Stochastic optimal control (general idea)
 - \blacktriangleright Compute a value V(B) of being at storage level B

- Computation of V: depends on problem
 - ► Here: solution of a fixed point equation:

$$V(b) = g + \inf_{u \in \text{offset}} \mathbb{E}[\cot(u) + V(\phi(b, u))]$$

- ▶ Approximate dynamic programming if state space is too large
- ► Can be extended to more complicated state V(t,B,B',...)

Dynamic Offset outperforms other heuristics Large storage capacity (=20h ■ Small storage capacity (=3h of of average production of wind energy) average production of wind energy) ▶ Power = 30% of average wind power Power = 30% of average wind power Fixed storage level Fixed storage level energy (in % of AWP) lost energy (in % of AWP) Fixed Offset Fixed offset Dynamic offset Dynamic offset Lower 2 4 6 8 fast-ramping energy (% of AWP) fast-ramping energy (% of AWP) bound ► Fixed Offset & Dynamic offset ▶ D0 is the best heuristic are optimal Maintaining storage at fixed level: not optimal There exist better heuristics

2.

PRICES AND STORAGE IN REAL-TIME ELECTRICITY MARKETS

[Gast et al 2013] Gast, Le Boudec, Proutière, Tomozei, "Impact of Storage on the Efficiency and Prices in Real-Time Electricity Markets", ACM e-Energy 2013, Berkeley, May 2013

15

Storage and Real Time Prices

- Impact of volatility on prices in real time market is studied by Meyn and co-authors, e.g.
 [Cho and Meyn, 2010] I. Cho and S. Meyn Efficiency and marginal cost pricing in dynamic competitive markets with friction, Theoretical Economics, 2010
- We add storage to the model
- Q1: how does storage impact volatility? what is the required storage capacity?
- Q2: does the market provide optimal control?

Definition of a Dynamic Competitive Equilibrium (Storage at Supplier) [Cho and Meyn 2010]

- \blacksquare (P, E, G, u) such that
 - 1. E maximizes welfare (= expected discounted payoff) of consumer
 - 2. E, G, u maximizes welfare of supplier (given friction constraints) for the same price process P
- Without storage, there exists such an equilibrium [Cho and Meyn 2010]

19

Scenario B: Storage at Consumer

- Consumer's payoff
 - $=v(D^{a}(t)\wedge[E(t)+u(t)+g^{da}(t)])$

$$-c^{bo} \big(D^a(t) - E(t) - u(t) - g^{da}(t) \big)^+ - P(t) E(t) - p^{da}(t) g^{da}(t)$$

Supplier's payoff

$$= P(t)E(t) + p^{da}(t)g^{da}(t) - cG(t) - c^{da}g^{da}(t)$$

- Dynamic Competitive Equilibrium: (P, E, G, u) such that
 - 1. E, u maximizes consumer's welfare
 - *2. E*, *G* maximizes supplier's welfare for the same price process *P*

Scenario C: Stand-Alone Storage Operator

- Consumer's payoff

$$=v\big(D^a(t)\wedge \big[E_D(t)+g^{da}(t)\big]\big)-c^{bo}\big(D^a(t)-E_D(t)-g^{da}(t)\big)^+-P(t)E_D(t)\\-p^{da}(t)g^{da}(t)$$

- Supplier's payoff = $P(t)E_S(t) + p^{da}(t)g^{da}(t) cG(t) c^{da}g^{da}(t)$
- Storage Op's payoff = u(t)P(t)
- Dynamic Competitive Equilibrium: (P, E_D, E_S, G, u) such that
 - 1. E_D maximizes consumer's welfare
 - 2. E_S , G maximizes supplier's welfare
 - 3. u maximizes storage op's welfare
 - 4. $E_D(t) + u(t) = E_S(t)$

for the same price process *P*

21

Dynamic Competitive Equilibria exist and are essentially the same for the 3 Scenarios [Theorem 3, Gast et al 2013]

1 u.e. = 360 MWh 1 u.p. = 600 MW σ^2 = 0.6 GW2/h ζ = 2GW/h

Cmax=Dmax= 3 u.p.

Social Optimality Supply $G^{a}(t) = g^{da}(t) + G(t) + \Gamma(t)$ Assume a social planner wants to maximize total payoff Total payoff is same for all 3 scenarios and is independent of price process P(t)extracted (or stored) power Structure of optimally social $= -u(t) \mathbf{1}_{u(t)>0} + \eta \mathbf{1}_{u(t)}$ control G, uLet $R(t) := \Gamma(t) + G(t) - D(t) +$ optimal control is such that if $R(t) < \Phi(B(t))$ increase G(t)(B(t),R(t)) if $R(t) > \Phi(B(t))$ decrease G(t)Storage level B(t) (in u.e.) Storage level B(t) (in u.e.) (a) Function $b \mapsto \phi(b)$ for vari-(b) Sample of a trajectory of ous values of the storage energy the optimal reserve and storage capacity B_{max} . processes. $B_{\text{max}} = 5 \text{ u.e.}$

What this suggests about storage:

- with a free and honest market, storage can be operated by prices
- however, there may not be enough incentive for storage operators to install the optimal storage size
- perhaps preferential pricing should be directed towards storage as much as towards PV

27

3.

A MODEL OF REAL TIME DEMAND RESPONSE

[Le Boudec and Tomozei 2013] Le Boudec, Tomozei, "Stability of a stochastic model for demand-response", *Stochastic Systems 2013*, also available at http://infoscience.epfl.ch/record/185991

Issue with Demand Response: Grid Changes Load Widespread demand response may make load hard to predict Toad with demand response (analyzal» load Real Intention

Threshold Based Policies

$$G^f(t) = D^f(t) + r_0$$

Forecast supply is adjusted to forecast demand

$$R(t) = G^a(t) - E^a(t)$$

R(t) := reserve = excess of demand over supply

Threshold policy:

if R(t) < r * increase supply to come as close to r^* as possible (considering ramp up constraint)

else decrease supply to come as close to r^* as possible (considering ramp down constraint)

33

Simulations (evaporation $\mu > 0$)

Findings: Stability Results

- If evaporation μ is positive, system is stable (ergodic, positive recurrent Markov chain) for any threshold r *
- If evaporation μ is negative, system unstable for any threshold r *
- Delay does not play a role in stability
- Nor do ramp-up / ramp down constraints or size of reserve

What this suggests about Demand Response:

- Positive evaporation is essential occurs with thermal loads, might not always occur for all load
- Model suggests that large backlogs are possible and unpredictible

■ Backlogged load is a new threat to grid operation Need to measure and forecast backlogged load

Thank You!

- [Cho and Meyn, 2010] I. Cho and S. Meyn *Efficiency and marginal cost pricing in dynamic competitive markets with friction*, Theoretical Economics, 2010
- [Bejan et al 2012] Bejan, Gibbens, Kelly, "Statistical aspects of storage systems modelling in energy networks," 46th Annual Conference on Information Sciences and Systems 2012
- [Gast et al 2012] Gast, Tomozei, Le Boudec. "Optimal Storage Policies with Wind Forecast Uncertainties", *GreenMetrics 2012*
- [Gast et al 2013] Gast, Tomozei, Le Boudec. "Optimal Energy Storage Policies with Renewable Forecast Uncertainties", submitted, 2013
- [Gast et al 2013] Gast, Le Boudec, Proutière, Tomozei, "Impact of Storage on the Efficiency and Prices in Real-Time Electricity Markets", ACM e-Energy 2013, Berkeley, May 2013
- [Le Boudec and Tomozei 2013] Le Boudec, Tomozei, "Stability of a stochastic model for demand-response", Stochastic Systems 2013, also available at http://infoscience.epfl.ch/record/185991
- [Bianchi et al. 2012] Bianchi, Borghetti, Nucci, Paolone and Peretto, "A Microcontroller-Based Power Management System for Standalone Microgrids With Hybrid Power Supply", *IEEE Transactions on Sustainable Energy*, 2012