SATISFIABILITY OF ELASTIC DEMAND IN THE SMART GRID

Jean-Yves Le Boudec, Dan-Cristian Tomozei EPFL May 26, 2011

1

Demand Management

Variable Supply

- Variable Demand
- Frequency Response becomes insufficient
- Demand management required in future grid

Demand Management must Be Simple, Adaptive and Distributed

- Global, optimal schedules
- But they are
 - ▶ inflexible
 - ► complex
 - Managing End-User Preferences in the Smart Grid, C. Wang and M. d. Groot, E-energy 2010, Passau, Germany, 2010

Adaptive Appliances

- Some Demand can be delayed !
- DSO provides best effort service with statistical guarantees [Keshav and Rosenberg 2010]

Voltalis Bluepod switches off thermal load for 30 mn

Programmable dishwasher

PeakSaver cycles AC for 15mn

Our Problem Statement

Is elastic demand feasible ?

We leave out (for now) the details of signals and algorithms

Problem Statement Is there a control mechanism that can stabilize demand ?

Instability can be generated by

- Delays in demand
- Higher returning demand

A very course (but fundamental) first step

Macroscopic Model

Step 1: Day-ahead market

- Forecast demand : $D_f(t)$
- Forecast supply: $G_f(t) = D_f(t) + r_0$

Step 2: Real-time market

- Actual demand : $D_a(t) = D(t) + D_f(t)$
- Actual supply: $G_a(t) = G(t-1) + G_f(t) + M(t)$

▶ Random processes : M(t), D(t)

- Control : G(t-1)
 - Ramp up, ramp down

Deterministic processes :

 $D_{f}(t), G_{f}(t)$

Macroscopic Model

$$R(t) = G(t-1) - \lambda Z(t) + M(t) - D(t) + r_0$$

$$Z(t) = Z(t-1) - \lambda Z(t) - \mu Z(t) + \mathbb{1}_{\{R(t) < 0\}} |R(t)|$$

Macroscopic Model – Normal Assumption

Assumption : (M - D) = ARIMA(0, 1, 0) $(M(t+1) - D(t+1)) - (M(t) - D(t)) = N(t+1) \sim \mathcal{N}(0, \sigma^2)$

2-d Markov chain on continuous state space

 $\begin{aligned} R(t+1) &= R(t) + \Delta G(t) + N(t+1) - \lambda [Z(t+1) - Z(t)] \\ Z(t+1) &= (1 - \lambda - \mu) Z(t) + \mathbbm{1}_{\{R(t) < 0\}} R(t) \end{aligned}$

The Control Problem

Control variable:

G(t-1) production bought one second ago in real time market

Controller sees only supply G^a(t) and expressed demand E^a(t)

Our Problem: keep backlog Z(t) stable

Ramp-up and ramp-down constraints

 $\xi \leq G(t) - G(t\text{-}1) \leq \zeta$

Threshold Based Policies

$$G^f(t) = D^f(t) + r_0$$

Forecast supply is adjusted to forecast demand

$$R(t) = G^a(t) - E^a(t)$$

R(t) := reserve = excess of demand over supply

Threshold policy:

if R(t) < r* increase supply as much as possible
(considering ramp up constraint)</pre>

else set R(t)=r*

Figure 2. 500 iterations of the Markov process (13)-(14) for $\zeta=1,r^*=10,\sigma=5,\lambda=0.3,\mu=0.1$

Findings

- If evaporation µ is positive, system is stable (ergodic, positive recurrent Markov chain) for any threshold r*
- If evaporation is negative, system unstable for any threshold r*

- Delay does not play a role in stability
- Nor do ramp-up / ramp down constraints or size of reserve

More Detailed Findings

Case 1: Positive evaporation Postponing a task = discount

Theorem 1: The Markov chain (*R*,*Z*) is Harris recurrent and ergodic. It converges to the unique steady state probability distribution, for *any threshold and any strictly positive ramp-up constraint*.

Case 2: Negative evaporation Postponing a task = penalty

Theorem 2: The Markov chain (*R*,*Z*) is non-positive, for *any threshold*.

Method of Proof: quadratic Lyapunov (case 1) or logarithmic L. (case 2)

Evaporation

Evaporation = droppedfraction of delayed demand*Negative* evaporation means:

delaying a demand makes the *returning demand* larger than the original one

Could this happen?

Does letting your house cool down now implies spending more heat later ? (vs keeping constant temperature)

Evaporation: Heating Appliances

Assume the house model of [MacKay 2009]

heat provided $d(t)\epsilon = K(T(t) - \theta(t)) + C(T(t) - T(t-1))$ to building

then delayed heating is less heating

If heat = energy, then evaporation is positive.

This is why Voltalis bluepod is accepted by users

If heat = heat pump, coefficient of performance may be variable Delayed heating with air heat pump may have negative evaporation

Batteries

Thermal loss is non linear, delayed loading causes negative evaporation

(charging at higher intensity)

Conclusions

A first model of adaptive appliances with volatile demand and supply

- Suggests that negative evaporation makes system unstable,
 - thus detailed analysis is required to avoid it
- Model can be used to quantify more detailed quantities
 - E.g. amount of backlog, optimal reserve

Questions?

[1] Cho, Meyn – *Efficiency and marginal cost pricing in dynamic competitive markets with friction*

- [2] Papavasiliou, Oren Integration of Contracted Renewable Energy and Spot Market Supply to Serve Flexible Loads
- [3] Operational Requirements and Generation Fleet Capability at 20% RPS (CAISO - 31 August, 2010)