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WHAT IS DEMAND RESPONSE ?

Terminology
Demand Response (DR)
~ Demand Side Management (DSM)

B Demand Side Management
= electric utility manipulates user
appliance

B Demand Response
= Demand Side Management as a
response to price

M in practice both phrases often
used interchangeably

M > 100 years old (“Load
Management”, inband tones
“ripple control”, AM signal)

e
A clothes dryer connected to a load control
“smart" switch (Wikimedia Commons)
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Demand Response (DR)
= Demand Side Management
(DSM)
Why invented ?

1. To reduce costs for
consumers

To save energy

82%

3. To optimize management
of the electrical grid

4. To prevent night operation
of noisy equipment
5. Je ne sais pas

Why invented ?
%w*&& ZAWAN

power producers.

B electrical systems must balance energy instantly

Electric transmission

is the vital link between

power production and i
power usage. Transmission

lines carry electricity at high
voltages over long distances

from power plants to communities.

“\; *

TRANSMISSION ‘ %‘
Ao

B energy balance in electrical grid is mainly done by adjusting
supply to demand :
» scheduling and forecasting + large scale interconnection ; frequency
response; reserves
B demand response = adjust demand to supply
is one of the tools used to manage the power grid

B energy efficiency is obtained by managing demand efficiently
but is outside the scope of this tutorial
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Examples of Use of Demand Response

M peak shaving

82000
77000
[\
72000 -
67000 - N\
i A
2 62000 -
G}
57000 -
52000 -
47000 -
42000 T T T T T
Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche

France’s comsumption on cold and average november week; Xavier Brossat (EDF), Energy Systems Week, 2013

M response to failures (avoid blackout)
M mitigate volatility of wind and solar energy
M mitigate network problems (congestion, voltage)

What can be subject to Demand
Response ?

B Demand response applies to M Elastic loads

elastic loads (load = » boiler, car or bicycle battery,
consumer of electricity) data center, fridges and
. freezers, air conditioner,
M Non elastic loads washing machine
» lighting, watching TV, hair 53 4

drying




Demand Response Example 1
Norway’s pilot study [Saele and Grande 2011 ]

M tariff is increased at pre-defined | —— D s s
times (8-10,17-19)

B users made aware of high tariffs
and times

M [n some homes heating is also
directly controlled

B study concludes that it works

kwh/hour

13 s 7 9 momwm o’ v ow a2
Hour

Fig. 8. Load profile for a houschold customer with hot water space heating
system and RLC [13].

Norway’s pilot study [Saele and Grande 2011 ]
Demand Response may reduce prices

M 120 EUR/MWh difference between 2 areas inside Norway

M [Saele and Grande 2011] claims that the price peak would be
suppressed with demand response

Supply
s

01 2 3 4 5 6 7 8 9 101 1213 14 1516 17 18 19 20 21 22 3 24
[Hours]

Volume Fig. 3. Hourly spot prices in two price areas in Norway. 6 February 2007 (data

\
a source: NordPool).

Fig. 2. Different bid curves for demand response.

10

31.05.2013



A similar example (GulfPower, USA)

[Borenstein et al 2002] 7/17/02 1-Hour Critical
(139 Homes)

55
5.0 | — No Critical

4.5 ® 1-Hour Critical
4.0

3.5
3.0
25
2.0
1.5
1.0
0.5
0.0

123 456 7 8 910111213 141516 17 18 19202122 23 24
Time

kw

Figure 3-h. Average Load and Load Reduction in Gulf Power CPP program. The TOU rate (11 a.m. to 8
p.m.) was 9.3 ¢/kWh. The 1- and 2-hour CPP was 29 ¢/kWh, an extra 20 ¢/kWh. The 1-hour CPP dispatch
was at hour 17.

|__Source: Brian White, Gulf Power 11

Example 2 : Romande Energie

Famille vivant dans un logement de 6 piéces
avec cuisiniére électrique et séche-linge

HP 22.54-23.94 ct/kWh'|
4500 kWh/an 1
[sans chauffe-sau). 13.99:15.39 ctskWh|

= . m‘w«-
tas Autorites

veltadouble,

B Time of Use tariff
Night tariffis lower — ©-

Horaire hebdomadaire, heures pleines/heures creuses

1B Horss Pares 0 Hewss Oss | LB personnes qui souhaitent apler pc

B ver

b I 1ot | (heures pleines/heures.creuses) doive
012345067 8910MI1213KI1BBITIBIY020222324 ledﬂ!mb‘e.ﬁbﬂ“esl’iﬁd'mﬂn
Samedh et dmarche charge. Pour les locataires, 'accord du
[ e S LI L L S T B t astndicessil
0123466789101 I121314151617 18192021 222324 | logement est nocessare.

|
. In terrup tlble Supply: Interruptible Court, Interruptible Court

Ce tarif est desting particuliérement au chauffe-eau électrique (boiler).
Il dispose d'une fourniture journaliére de 8 heures sur 24.

lnte rru p tlb l es up p ly Cette application nécessite un compteur additionnel qui engendre des frais supplémen-

taires de branchement, mais pas de frais de location de compteur.

(service is available e.g. 20 Interruptible Long, Intermuptible Long

Ce tarif peut étre utilisé pour des applications pompe & chaleur et chauffe-
hOurS p er day) eau électrique. |l dispose d'une fourniture journaliére de 20 heures sur 24
(4 x 1 heure de délestage réparties sur la journée)
. Cette application nécessite un compteur additionnel qui engendre des frais supplémen-
[Le BOudeC and Tomozei 201 1] taires de branchement, mais pas de frais de location de compteur. Mous déconseillons ce

tarif pour les pompes & chaleur situées en altitude.

http://www.romande-energie.ch/images/File/Tarifs/2013_tarifs_RE.pdf

12
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Example 3 :Voltalis

B Widely deployed in France
B Interruptible Load

BluePod

Voltalis device stops electrical —
resistive heating / boiler for at most pe ]
60 mn per day -

M Device («Bluepod») receives GSM :
signal and stops thermal loads Acosrats dectraues

M No charge / no payment V( JLTALIS

M Acceptance based on
The e-power conipany

» Voltalis claims energy usage reduction

» Good citizens www.voltalis.com

B Similar schemes with incentive
payment to users: PeakSaver
(Canada), www.pge.com (USA), New
Zealand, NGT frequency service (UK)

13

Voltalis does not pay nor charge anything to
consumers but claims that consumers benefit by
seeing a reduced electricity bill. Do you think this

is true ? s

1. Yes, there mustbe a
reduction in total
energy consumed

2. No, there cannot be V( JLTALIS
any reduction in total The e-pawer company
energy consumed www.voltalis.com

3. Total energy ==
consumed is
increased [

4. Ich weiss nicht 7oc

14
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Example 4: Dynamic Demand

M also called frequency service g primary frequency control

B smart fridges, smart boilers, traditionally done with
smart heaters / HVACs dynamic generators -- fossil

M recall that frequency is the fuel generators, using droop
first signal of power control

Primary frequency Secondary frequency Terfiary frequency

1mbalance Power plant cutage confrol confrol centrol
1 P!
4 1

50.065 Hz

G

50 Hz

A(AP )< 200 MHz [Af,J= 20 mHz

Fig 1. UCTE specification for primary fioquéncy (exens.

49.935 Hz

[Molina-Garcia et al 2011] [Mario Paolone]

15min

1200 MW

Power plant p
before outa

Example 4: Dynamic Demand

M dynamic demand is an alternative to_
A
dynamic generators Contratragin

B How it works:(“grid friendly
controller”)
(underfrequency): fridge delays
compressor when frequency drops: e s s
and anticipates when freq. increases

Control region

[Molina-Garcia et al 2011] . _
Delay i Tpe
|4 # Control region) & l (4 € Control ragion] < - -
Time > Todsy N s g Tomin_oN ﬁ%mﬁ-_
. § I min_ON (Tin_0Fr),
5 » e Toin_orr
é T OFF
© > Tmax_OFF . e
oFF
[AF5] € Control Region [AL1] ¢ Control Region
(4« Control region] & Time > Touncwr & ) ) 100 150
Tie > Toess (4 # Control region] OR Time > Towuxn Time (s)
Swihng OFF

M Fig. 5. Example of energy recovery time periods. Underfrequency.

16
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Is something missing with this

algorithm ?
1. Nothing ot

Control region
Timers need to be randomized
3. Internal temperature needs to : =]
be taken into account AR

4. Outside temperature needs t0 be.. . w s
taken into account

oN T, :
Delay C Toels
5. Nonloso - i Tt
" Tomin_ON (-ﬂm—sss.l.
as9% 2
2 Tomin_ox (Tin_0rF))
-
38% & T -
8 - g T OFF
§ Tonin_0FF
- Toax_orr |
oFF
[Af1] & Control Region | [at1] « Control Region
7% 7% _
3% o 50 100 150
Time (s)

Fig. 5. Example of energy recovery time periods. Underfrequency.

17

Is something missing with this

algorithm ?
1. Nothing
2. Timers need to be randomized

1 3 3. Internal temperat ds t
M Avoid synchronized botdkea o scoomt.
response = [Molina_Garcia 4. Outside temperature needs to b, mew e i ca
taken into account

etal 2011] uses
randomized Tdelay

mx oamx 2k m%

B Internal temperature
should be accounted for
-- See [Christakou et al -
2012] for a variant that
accounts for internal
temperature

3 Fasmple of cncrgy rocemery e permade, Unerfroquency

18
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Dynamic Demand
M Simulation results for [Molina-Garcia et al 2011] with 10% of
loads implementing dynamic demand in a hypothetical country
grid

Frequency deviation 0.4
o T T T T T

wweees Average Frequency Deviation 0.3

Af(Hz)

— Considering DR

-0.150 Without DR

1 1 1 1 Y
0. 0. N ‘. " N i N . [
0 50 100 150 200 250 300 008 Y06 004 002 0 002 004 006 008
Time (s) Power contingency (pu)

ated values with different amounts of primary fre-
cration.

dynamic demand = doubles the reserve

19

Dynamic Demand

M Simulation results for [Molina-Garcia et al 2011] with 10% of
loads implementing dynamic demand in a hypothetical country

grid — dynamic demand ~ doubles the reserve

M Fridges as primary/secondary response could provide ca 1 GW
of reserve to UK grid [Milborrow 2009]

B 70% of secondary regulation power (8 sec to 3 mn) in the US
can be provided by building air conditioning and heating fans
alone [Hao et al 2012]

20
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Example 5: Boilers as Tertiary Reserve
[Sundstrom et al 2012]

M Primary reserve = real time
Secondary reserve = within
minutes
Tertiary reserve = starts
after 15 mn

M Thermal loads can be
anticipated or delayed

B Upper and lower energy
curves for one boiler give
bounds on feasible energy
provision schedules

Figure 8. Flexibility of a sample boiler with 6 kWh equivalent energy storage.
an initial energy level of 1.2 kWh, and an average consumption of 200W.

[Sundstrom et al 2012] 21

upper bound: deliver 3kW for 1.71h then 200 W

lower bound: deliver OW for 6h then 200 W

energy [kWh]
=
o]

0 6 12 18 24
4
; 3
= '\ B
5
g P
-9 1 / boile P
0 /
6 12 18 24

time [h]

Boilers as Tertiary Reserve

B Assume operator (“Service
aggregator”) controls a
large set of boilers and can
predict the upper and lower
bounds for the aggregate
energy curves.

Service aggregator can
select a middle trajectory
and therefore obtain some
reserve that can be sold to
grid.

Can be implemented with
pricing and /or smart
meters

upper bound
total energy
delivered -
-
-
-
- /
ﬁ lower bound
I I

t;—=15mn  t; ty +4h time

grid calls for reserve

300 MW of boilers
stop heating for 4
hours

22
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Example 6: Island with Large
Penetration of Renewables G, 00
M [James-Smith and Togeby 2007] F i
M Bornholm (DK) object of EcoGrid 3 A I
EU project S

M Electricity : Peak demand 55 MW, Supply 30MW |
wind turbines, 60MW AC cable to mainland, one
Combined Heat and Power plant (coal, 35 MW
total)

M [ssue: operation in islanded mode due te-

30.000

frequent cable cuts oo
» Wind volatility 7|
» Generation may become large -

5,000

» Coal plantis not fast enough

» +3 MW of additional fast response
(within 15 mn) is required

o
01012007 01.03.2007 01.05.2007,

[James-Smith and Togeby 2007]

23
Example 6: Findings in i’é.
[James-Smith and Togeby 2007]
B Demand response in homes (heating, : % ;
hot water, refrigerators) can provide B e .
3MW of capacity in winter e

B Positive demand response (homes,
district heating system) can avoid
spilling wind energy

¥ Elctric heating less
W Elctric heating more
 Dump load

Temperature

Qriitiiddy

mMw
L O - T T C I Y]

01.01.2007 01.03-2007 01.05-2007,

[James-Smith and Togeby 2007] 4

31.05.2013
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Example 7: Impact of e-car charging on
distribution network [Clement-Nyns et al 2010]

B E-car charges are high power (4kW), stress electrical

distribution network - peak demand at nights

TABLE 1
S RATIO OF POWER LOSSES TO TOTAL POWER [%] FOR THE 4 kW
" CHARGER IN CASE OF UNCOORDINATED CHARGING

Charging period | Penetration 0% 0% | 20% | 30%
level
Summer 1.1 1.4 1.9 22
21000-06h00 Winter 14 1.6 2.1 24
$hoo Summer 1.5 24 iz 5
! 2100 Winter 24 34 48 | 6
Summer 1.3 1.8 26 32
! 1600 Winter 1.7 22 3.0 36
-l
“ e TABLE Il
go8 dactoin MAXIMUM VOLTAGE DEVIATIONS (%] FOR THE 4 kW
7777777777 CHARGER IN CASE OF UNCOORDINATED CHARGING
226 ST
Charging period | Penetration || 0% [ 10% | 20% | 30%
Fom level
§ 2 T Summer 3T | 35 | 44 | 50
a L 21400-06h00 Winter 42 4.4 49 55
220 Summer 30 44 6.5 8.1
‘ 19000-21000 Winter 48 | 63 | 85 | 103
218 23
6h00 Summer 30 4.1 56 69
218 10h08-1 Winter 37 4.9 6.4 1.7
2m 2 oOon  0ih Gen on  0an Osh O6h
Time (h]
Fig 4. Vohage profile in & node with 30% PHEVs compared to the volage Simulation of 34-bus residential gnd [Clement'NynS et al 2010]
profile with % PHEV. 25

Scheduled Charging

B problem can be solved by scheduling the loads (e-cars), i.e.
coordinate them

B e-cars communicate with a scheduler, through smart meter or
other communication means

B coordinator solves optimization problem and sends schedule to

e-car chargers —
Ly lines ~ g tson ,-"“.“ o
. ~ power loss £
min Z Z Iy H
t=1 I=1 e
] !
Vi, Vne{nodes} : 0 < Prax i ;
s.t. Vﬂf{ﬂ-()(l(is} . Z;;‘lu N\ T = Crnas /
Tn€]0,1}. :
2h 23h 0Oh O1h O2h 031 O4h  OSh  O6h
power scheduledto car n at time t Time (]
Fig. 7. Load profile of the 4 kW charger for the charging period from 21h00

until 06K00 during winter,

B requires : model of grid; of state and availability of e-cars; is
frequently recomputed to address stochastic changes

26

31.05.2013
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Scheduled charging can eliminate need to upgrade
distribution network

TABLE 111
230 RATIO OF POWER LOSSES TO TOTAL POWER [%] FOR THE 4 KW
——30% PHEVs CHARGER IN CASE OF COORDINATED CHARGING
- = -10% PHEVs
228 -=-—0% PHEVs Charging period | Penetration | 0% | 10% | 20% | 30%
________________________ - level
296 e Summer L[ 13 17 [ 19
L emm T 21h00-06h00 Winter 14 | 15 | s | 20
,, 9
< Ve Summer 1.5 23 37 4.7
% 224 P 18h00-21h00 Winter 24 | 33 | a7 | ss
o - Summer 1.3 1.7 23 28
k| e 10h00-16h00 Winter 17 | 21 | 27 | 32
S 222+
>
TABLE IV
220 MAXIMUM VOLTAGE DEVIATIONS [%] FOR THE 4 kW
CHARGER IN CASE OF COORDINATED CHARGING
218 Charging period | Penctration | 0% | 10% | 20% | 30%
level
216 L L L L L L L L Summer 31 31 33 37
22h  23h  00h Oth 02h 03h 04h OSh  OBh 21h00-06h00 Winter 42 | 42 | 42 | 43
Time [h] Summer 30 | 41 | 58 | 72
18h00-21n00 Winter 48 | 60 | 78 | o
Fig. 6. Voltage profile in a node with 30% and 10% PHEVs compared to the 10h00-16h00 Summer 30 33 4.1 4.7
voltage profile with 0% PHEV for coordinated charging. Winter 37 ] 40 4.9 3.5

27
Say what
. Demand Response can be used...
Is true 1. ...to mitigate the impact of a weak grid
2. ...to compensate for energy imbalance
_ 3. ...as an alternative to nuclear energy
2. 2
3. 3
4. 1and?2
5. 1and3
6. 2and3
7. All
8. none
9. N’ouzhon ket e 2 =
Lo e

14



Say what is true

1. Demand response can decrease the cost of electricity by
reducing the required peak capacity

2. Voltalis makes money by selling Negawatts

Demand response may increase the cost of electricity in some

time slots.

1

2

3
1and 2
1and 3
2and3
All
None

O 0N oUW

[ don’t know

29

Taxonomy of Demand Response

B Type of user contract

1. Time of use (e.g day versus
night)

2. Control by tariff (dynamic
prices)

3. Control by quantity
(interruptible supply,
schedules)

M Mode of communication
1. inband tones (Ripples)

2. powerline communication
and smart meters

3. radio communication

M Time scale of operation
1. Static
2. Dynamic

5mn-24 hours (smart meters)

3. Real time

(frequency response)

M Global Effect
4. Shift the load (delay or
anticipate)

5. Reduce demand
(emergency, shave the peak
on exceptional days)

30

31.05.2013
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QUESTIONS ?

31

ELEMENTS OF THEORY

Demand and Supply Curves
Elasticity
Evaporation

=W e

Earliest and latest schedules

32

31.05.2013
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1. The Economic Theory of Demand Response
Consumer Side

B The economic theory of Demand Response is based on the
following model.

B Assume consumers are willing to consume some amount of
energy q at a price p ; in a given time slot, the utility of q is
assumed to be measurable and equal to U(q); the consumer
chooses the value of g that maximizes U(q) — pq

U
U U (@)
U(q)
U(q)
J q q q
9o ' qo
non elastic load elastic load elastic load with minimum requir’t

33

The Economic Theory of Demand Response
Supplier Side

B Assume suppliers users are willing to sell some amount of
energy q ata price p ; in a given time slot, the running cost of
generating g is assumed to be measurable and equal to C(q);
the supplier chooses the value of q that maximizes pg — C(q)

(@)
C C c(q) C
C(a)
‘ q q q
q1 ' a1
wind supplier flexible supplier flexible supplier with maximum cap

acit

34

31.05.2013
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Demand and Supply Curves

B Demand Curve = how much consumer is willing to buy at a given price
Supply curve = how much supplier is willing to sell at a given price

M Consumer maximizes U(q) — pq therefore U'(q) = p
Supplier maximizes pq — C(q) therefore C'(q) = p

P , P C'(@)
demand curveis q = U'(q) U'le)
supply curveis g = C'(q) x
M U concave = q .
U'is decreasing |

W ( convex= elastic load supply curve, flexible supplier

C'is increasin
g u U(q) ¢ c(q)
q q

elastic load flexible supplier

35

Market Equilibrium

B Assume there is a perfect market to fix prices; the supplier and
consumer prices are equal
Price and quantity are given by intersection of supply and
demand curves

p supply curve

p* demand curve

/

*

q
market values q¢*, p*

36
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Supply and Demand Curves Without Demand Response
[Kirschen 2003]

B No demand response means loads 4™

Demand curve

. . . . B
are inelastic ;generation or grid for gt load
outages cause prices to surge

Demand curve
for peak load

demand |curve for

flexible load
Supply
p: curve
p'\
M Elastic loads may avoid price t ] o
peaks
A Price
c Demand curve IDo?r;::I? z:r:a\/
for light load \ Supply curve
N following

outage
demang curve for

Quanlity'

mmodity. (b) Typical s
y and demand curve fol

37

Assume some loads disconnect when price becomes > p,
Which curve could be a demand curve for the aggregate

demand ?
P p p

Po
1 2 3
Po Po
q

Curve 1

Curve 2
Curve 3
Either 1 or 2
Either 1 or 3
Either 2 or 3
All

None w

O 0N ok W

Ne znam 38

31.05.2013
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Norway’s pilot study [Saele and Grande 2011 ]
Demand Response may reduce prices

M 120 EUR/MWh difference between 2 areas inside Norway

M [Saele and Grande 2011] claims that the price peak would be
suppressed with demand response

Price Load shifting

Supply .~
Pd

0 123 45 6 7 B 9 101 1213141516 17 18 1920 21 22 23 24
- [Hours)
Volume Fig. 3. Hourly spot prices in two price areas in Norway. 6 February 2007 (data

&y source: NordPool).

Fig. 2. Different bid curves for demand response.

39
Supply Curve for Industrial Customers
Hour Ahead, Large Customers
(Summer weekdays, hours 14 - 21)
0.30
$1/KWh
50.6 v $2 Price /kWh
& 3.00 4.00 5.00 6.00
E
'..'-
In(P/Pg)
Figure 3-k. Demand response of large industrial Hour-Ahead customers in Georgia Power’s RTP program.
Scales are logarithmic. We have added on the x-axis a few price levels in § per KkWh.
Source: Braithwait, Christensen and Associates
40

31.05.2013

20



2. Elasticity

load with demand response N

load with demand response

Do we get this ?

8
Normal Load ’_\c

7
is Pl i
g __— “Remaining Load Afer Set-Up .
g5 1 and Dimmed Lights i
= i
£ 4 17 A conaions / i
z ing Load Y [
3 ‘ / / ot :
3 Air Load
% |~ Fantoag s I
£z " i
Lighting Load H
1 1
Other Load :

0

10:00 11:00 12:00 13:00 14:.00 1500 16:00 17:00 18:00

Figure 3-d is & conceptual illustration of the response of a building to CPP on a hot afternoon. The example
assumes CPP is invoked from 13:00 to 17:00. The figure shows two different usage patterns in a single

sketch. Pattern 1 (Normal Load) is a typical office, where loads drop at about § p.m. For Pattern 2, the air
conditioning demand actually increases after S p.m. because the thermostat has been set back down 10 72° F.

Source: Pat MecAuliffe, CEC 41

Elasticity and Cross-Elasticity

B Demand response causes demand reduction and time shifting
M The quantitative effect is captured by

dgp _ d(logp)

= logp
dpq d(logq)

(self)-elasticity :=

mand curve in log-log scales

1 .4 L
—— is the elasticity at p

slope
Wikimedia Commons /File%Iasticity»inelastic.png
and
.. 0
CrOSS-elaSthlty Et+h t = M&
' Pt de+h
defined for example for h € [—-24hours, +24 hours]

42

31.05.2013
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Example of Cross-Elasticity
[Kirschen et al 2000]

B Users expect some prices p; based on historical data
Resulting demand is q;
assumes two demand response models with cross-elasticity

B Market decides for different prices, Ap; = difference between
expected price and actual price. Demand response cause users

to change their loads. [Kirschen et al 2000] assumes that
+24

Ag, = Apein
qt = —p Ett+h De+h
ne=b, Pth

where & ¢, is called the Cross-Elasticity Coefficient
(it slightly differs from E; ;)

Apiyn

Ett+h X 5 is the fraction of the load at time t + h that is moved
t+h

to time t due to a change in price at time t + h

43

Example of Cross-Elasticity Coefficients ga

_ v+24  APe+n
W Agqe = 2pZios Ett+h Qt+n
Pt+h

M [Kirschen et al 2000] considers two possible scenario:
Scenario 1: (Time Shifting, “Inflexible”):
E-3¢ = E—t = &-1¢ = 10.0033
€43t = Ee42t = Er41,t = T0.0033
& = —0.20
i.e. change in price at t changes load by —0.2 X % price increase
load is transferred to 3 hours before and 3 hours after ¢

B Scenario 2: (“Optimizer”):

gO,t = eee = gz,t = 816,t = eee = 823,t — +001
g4,t S 87,1' - +0025
gt,t = _020

i.e. change in price at t changes load by —0.2 X % price increase
most load is transferred to early and late hours of the day

44

31.05.2013
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Impact on Price

B Assuming no elasticity,
prices are formed by
matching demand
let§ » B = F(§) the
process of price formation
where ﬁ = (pOJ D1, - ng)

B [Kirschen etal 2000]
studies a case with normal
operation and with
planned loss of generator

Supply curve,

modified price

c1ne generator lost

Supply curve,

expected price / normal case

q

== = Il prices.
—a—Expected prces

0 4 8 n 1] 2 -]

Fig. 5. Expected prices and initial prices.

45

Impact on Price (continued)

B Assume now elastic loads
with known cross-elasticity.
The actual load depends on
the market price: let

B+ G = G(B) be the process

of load adaptation

B Assume market aggregator
knows elasticity; she can
compute market prices by

solving a fixed point problem,

f=ﬁ@>
i=G®/)

B R 8 ® & & 8

15

10

5

Price [$/MWh]

—a—itial prices

~—4a— Pncas with inflexble customers

= i+ Prices with optimizing customers

0

4 8 12 16 2

Fig. 7. Initial prices and prices as modified by elasticities.

[Kirschen et al 2000]

46
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B Evaporation = fraction of energy that is saved due to demand
response [Le Boudec and Tomozei 2013]

N\

3. Evaporation

load with demand response N

load with demand response

47

BN KN

ut

What can we say about the evaporation for this scenario ?

>0

<0

=0

Nothing, it depends
on other factors.
Nao sei

Example of Cross-Elasticity Coefficients gy~

B Aq. = ;Slzalhs:ﬁh Ete+h9e+h
t+r
B [Kirschen et al 2000] considers two possible scenario.
Scenario 1: (Time Shifting, “Inflexible”):
Er-3¢ = fr-2¢ = &1 = 10.0033
Se43e = Era20 = Sr410 = T0.0033
£ = —020
i.e. change in price at t changes load by —0.2 X % price increase
load is transferred to 3 hours before and 3 hours after ¢

48
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Evaporation

B Evaporation = fraction of energy that is saved due to demand
response [Le Boudec and Tomozei 2013]

N\

load with demand response N load with demand response

Ey — E;

evaporation = 5
0

B with pure demand shifting, evaporation = 0

M [fitis true that demand response saves energy, we should see
evaporation > 0

M What do we expect in general ?

49

(Should | keep my chalet warm ?)
When | am away | interrupt heating. Does this
save energy ?

1. Yes, there must be a
reduction in total
energy consumed

2. No, there cannot be
any reduction in total
energy consumed

3. Total energy
consumed is
increased

4. Iweiss nid
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We have seen this question already...

Voltalis does not pay nor charge anything to
consumers but claims that consumers benefit by
seeing a reduced electricity bill. Do you think this

is true ? S

1. Yes, theremustbea |
reduction in total Ky
energy consumed

. No, there cannot be V JLTALIS

any reduction in total

N

energy cmnsumed
$ Total eneray i (Should | keep my chalet warm ?)
Consunaedtj; When | am away | interrupt heating. Does this

increased save energy ?
4. Idon'tknow

1. Yes, there must bea
reduction in total
energy consumed

%)

. No,there cannotbe
any reduction in total
energy consumed 2336 zax  zax  zax

w

. Total energy
consumed is
increased

4. ldon’tknow

46
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(Should | keep my chalet warm ?) When | am away |
interrupt heating. Does this save energy ?

Yes, there must be a
reduction in total energy
consumed 55%

59%

No, there cannot be any
reduction in total energy

34%

consumed

Total energy consumed is
increased

| weiss nid

O First Slide @ Second Slide

52
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Evaporation is not the same as “Rebound Effect”

Q1. Does shutting down the
heating today imply

reducing total energy consumption
compared to

keeping temperature constant ?

= is evaporation positive ?

A. we will see later. /\W
[ Qi ra\»load
E
Q2. Does shutting down the : 7 ~
7~

heating today (and swithing it off
tomorrow) imply increasing
tomorrow’s energy consumption?

A. Yes (this is the rebound effect).

load with demand response

(=

53

B Assume the house model of [McKay 2008]

heat provided:(T(f) —0(t)) —k—T(ﬂ —-T(t-1))

to building leakiness outside inertia

heal

T(E)

M gy

54
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heat provided:(T(z‘) —H(t)) —‘T(f) —T(t—1))

to building leakiness outside inertia

sumovertfrom1ltort:

efficiency

Z d(t) = KZ@D —8(t)) + C(T(z) — T(0)
=1 t=1

achieved t°

E, total energy provided

‘ Z d(t) = KZ@ —6()) + C(T(x) — T(0)
=1 t=1

efficiency
achieved t°
E, total energy provided
Scenario No interruption With
interruption
Building T*(t),t=0..1 T(),t=0..1,
temperature T(@) <T*(t)
Heat 1 T
provided | F* =— KZ(T*(t) —8() + C(T* () = T*(0))
€ *
t=1 E<E
[\u-t [.k;-t [hut [kut [-\\ut het
™ ™ ™ [—jﬂu t—jﬂﬂ w
/’\\M /’\\M /I\\M /’\\lul /l\\u /’\\ful ﬂ\\u ﬂ\\u
56
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Q1. Does shutting down the heating

today imply

reducing total energy consumption

compared to
keeping temperature constant ?
= is evaporation positive ?

A.yes, it reduces energy consumption,

due to less leakage

Voltalis does not pay nor charge anything to
consumers but claims that consumers benefit by
seeing a reduced electricity bill. Do you think this

@'es, there must be a
reduction in total

2,

. Total energy
consumed is
increased

4. Idon'tknow

is true ?

energy consumed

No, there cannot be V JLTALIS
any reduction in total The e-power compary
energy consumed www.voltalis.com

am3e  mamse e e

The French ADEME agency finds that consumers with Voltalis’s load
switching devices save =~ 10% on heating but there is no significant
saving on hot water boilers [ADEME 2012]. How do you interpret
this ?

1. The model we saw is too
simple and its finding do not
apply.

2. Boiler leakage is small, house
leakage is not.

3. House leakage is small, boiler
leakage is not.

4. Hot water boiling is negligible
consumption compared to
house heating

5. Idon’tknow.

Voltalis does not pay nor charge anything to
consumers but claims that consumers benefit by
seeing a reduced electricity bill. Do you think this

is true ?

1. Yes,theremustbea
reduction in total
energy consumed

86%

10%%

026 el 026
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Evaporation

B Resistive heating system with poorly
insulated building:
evaporation is positive.

M If heat = heat pump, coefficient of
performance € may be variable.

Evaporation may be positive or negative;
negative evaporation is possible (heat

pump operating at night in cold air).

B Electric vehicle: we expect evaporation = 0

(pure time shifting). However charge

intensity impacts losses; fast charging may

consume more energy, negative
evaporation is possible.

BluePod

4. Earliest and Latest Schedules

B Assume market aggregator
schedules energy
consumption

B Assume evaporation =0

(e.g. boilers, e-cars with not too
high charge intensity)

B Then there are always
earliest and latest schedules,
and these can be computed,
as we see next

W Thermal loads can be

Example 5: Boilers as Tertiary Reserve
[Sundstrom et al 2012]

B Primaryreserve =realtime  uspe bound deiver 36W for L71h then 200W

Secondary reserve = within

minutes

Tertiary reserve = starts - ’
F

swar Boung: deiver OV for 60 then 200W

after 15mn =

anticipated or delayed

B Upper and lower energy

curves for one boiler give Z '[

bounds on feasible energy | ‘l

provision schedules LF
e 1

Figuee 8. Fleibilty of a xample bosler with 6 LWh eqivalent c

worage.
am inital cvcrgy devel of 1.2 KWH, and an averag’ comuenpuiom of J00W,

[Sundstrom etal 2012] 2
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A Simple Storage Problem

B Assume an infinite buffer into
which we store some goods (e.g.
energy); z(t) units of good are z(t)
stored during slot; z(t) is known.

B We have to decide u(t), how
many units of good we output at
time t. We have to satisfy the
constraint u(t) < a(t), where
a(t) is known.

W Let U(t) be the total amount u(t) < a(t)
output from time 0 to time t. U@ = u(@) + -+ ut)

B What is the U() that corresponds
to the most aggressive output ?
61

Example [ v

a(t) = 1 unit of good / unit of time v ]
storage is empty at time O
Z(t) =cumulative input
= Z(l) + +Z(t) u(t) < a(t)

- U(e) = u(1) + -+ u(t)

1000 u of
goods
1??0 . z(t) =instant input
of time
1u of goods I is u, (t) a possible output ?
per u of time
— . [
1000 u at) =1
of time

62

31.05.2013

31



Is u4 () a feasible output for my storage problem ?

Example
alt) = lumtolguodfupnm oftime R e
1. Yes w1
N =2(1) + - +2(t) 5 il
o i : e,
r f
o —
3. Itdepends on other r_g
1000 uof
elements not shown on | SN
. b z(t) =instant input
plcture [lof time 2 o
4. Idon't know
1u of goods is u,(¢) 2 possbleoutput ?

peruoftime

63

Solution
a(t) = 1 unit of good / unit of time
storage is empty at time 0
Z(t) =cumulative input

0 =z(1) + -+ z(t)
amount of goods

in storage at time t;

[z(c)

L

u(t) < a(t)
U(E) = u(1) + -+ u(t)

- U,(t) = one possible output
1000 u of
goods | t
1000 u a(t) =1  z(t) =instant input
of time
1u of goods I is u, (t) a possible output ?
per u of time
— . [
1000 u a(t) =1
of time

64
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Storage system are best studied using
cumulative input and output curves
" Z(i) Z=(;L)Jr1ulatil\_/ezl(r;;))ut {zu)

amount of goods —"
in storage at time t;

U, (t) = one possible output < ate)
U = u(1) + -+ u(t)

1000 u of |
goods

B u() is a feasible output iff
0<u(t) <a(t)
U(t) < Z(t)

where U(t) = u(1) + -+ u(t)

The Most Aggressive Output U™ () fzm

a(t) = 1 unit of good / unit of time v |
Z(t) =cumulative input
=z(1)+ -+ z(t)

. u(t) < a(t)
U*(t) = most aggressive v =u() +--+ u(®

output
U, (t) = one possible output

1000 u of |
goods

1000 u a(®) =1
of time

M is the one that minimizes storage content at any time, given the
constraints on output rate a(t)

M satisfies U; (t) < U*(t) for any other feasible output U,

M can be computed online (i.e. is causal) by
u*(0) =0,
w*(t) = min{a(t), Z(t) - U*(t—1D}Lt=12,..

66
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The Maximum Solution Theorem [

|7 ute) s a(r)

B Consider the problem U = ut) + -+ ut)
{0 <u(t) <a(t),t=1,2,..
U) <Z(t),t=0,1,..

with U(0) < Z(0) = 0 and u(t) := U(t) — U(t — 1). Here U() is the
unknown function and the functions Z (), a() are known.

i.e. we have constraints on the function U() and its discrete time derivative u()

M This problem has one unique maximum solution U*, i.e. U* is a solution and
for any other solution U, we have U(t) < U*(t),Vt

B U*() can be defined by causal iteration on time:
u*(0) =0
w*(t) = min{a(t), Z(t) — U (t — 1)}
B The proofis based on the formula [Le Boudec and Thiran 2001]

Uu*(t) = ng)in (Z(s)+a(s+1)+---+a(t)) ]
5=0,...,t 7

Another Simple Storage Problem

B Assume an infinite buffer into which we
store some goods (e.g. energy); v(t)
units of good are stored during slot; v(t) V() =V(0)+v(1)+ -+ v(t)
is to be decided. The initial storage v(t) < a(t)
content /(0) is also to be decided.
B We have to satisfy the constraint
v(t) < a(t), where a(t) is known.
B We have to output z(t) at any time slot
t =1,..T, where z(t) is known
B Let V(t) be the total amount input from
time 0 to time ¢.

B What s the /() that corresponds to the
laziest input (i.e. as late as possible) ?

z(t)

68
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The Laziest Input V.. ()...

a(t) = 1 unit of good / unit of time

Z(t) =cumulative output
=z(1)+ -+ z(t)

V(E) = V(0) + (1) + - + v(t)

[ v(t) < a(t)

z(t)

1000 u of
goods ‘ | . t
100.0 . z(t) =instant output
of time
1u of goods |
per u of time ¢
1 ! { [ |
1000 u
of time
69
Say what is true...
V() = V(0) + v(1) + -+ v(t)
B [‘ v(t) < a(t)
RAG V, (£) A
|
F 2(t)
1. V;() is the laziest input
2. V5() is the laziest input
3. None of them is the laziest input
4. Idon’t know
P e —————
1 B i} N 70
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V(E) = V(0) + (1) + - + v(t)

Solution v(0) = a(t)
a(t) = 1 unit of good / unit of time \[
a(t) =1 Z(t) =cumulative output

=z(1)+ -+ z(t)

z(t)

V.Q), laziest input

B V() is a feasible input but is not the laziest (can be delayed)
B 1, () is not a feasible input
M The laziest input is drawn backwards in time

71

The Laziest Input V*()...

a(t) =1

U*(t) = most aggressive
output
V.Q), laziest input

M is the one that minimizes storage content at any time, given the
constraints on output rate a(t)

B satisfies V, (t) = V*(t) for any other feasible input V;

M can be computed backwards in time:
Ve(T) = Z(T),
v*(t) = minfa(t), V) -Z(t—-1)}L,t=T,T—-1,..1
V*(t—1) =V*(t) —v*(t)

72
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V() = V(0) + v(1) + - + v(t)

v(t) = a(t)
The Minimum Solution Theorem [

]

B Consider the problem
{0 <v()<a(),t=12..T 0
V) =Z(t),t=0,1,..T

with V(T) = Z(T) = Z(0) = 0 and v(t) := V(t) — V(t — 1). Here V() is the
unknown function and the functions Z (), a() are known.

M This problem has one unique minimum solution V,, i.e. V, is a solution and
for any other solution V, we have V(t) = V,(t),vt =0, ...T

B V,() can be defined by backwards iteration on time:
V.(T) = Z(T)
v, (t) = min{a(t), V,(t) - Z(t—-1)},t=T,T—1,..1
V.t —=1) =V — v
B The proofis based on the formula [Le Boudec and Thiran 2001]

V() = max (Z(s) = a(t+ 1) == a(s) )

The Energy Scheduling Example 5: Boilers as Tertiary Reserve

Problem SR L

B Assume you want to e R \ e vt e o s
schedule energy i opaanta N / )
delivery to a storage gt e M S — s
(e.g. boiler) over a
period [0, T ﬁ"“)s“(”
The problem is to —
schedule u(t), energyin (1) 0 < u(t) < a(t)
slott power limit

B The anticipated (2)J(®) < U() + By o
consumption j(t) (hot consumption constraint
water) is assumed tobe  (3) U(t) — J(t) + By < Biax
known. no overflow

M The constraints on the
system are: B, = storage levelatt = 0

Bnax = storage capacity 0y

31.05.2013
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The earliest and latest schedules

M A feasible schedule is ﬂu(c)sm)
constrained by (1) and (3) —

maximum solution theorem (1) 0 <u(®) <a(t)

* power limit
where U~ (t) is the most consumption constraint
aggressive, i.e. earliest schedule (3) y() — (o) + B, < B,
(trying to keep the storage full) no overflow

By = storage level att = 0
Bihax = storage capacity

U*(t) can be computed

iteratively:

u'(t) =

min{a(t)’ Bmax - BO +](t - 1) - U*(t)}

75

The earliest and latest schedules

M A feasible schedule is \ﬂ v =al)
constrained by (1) and (2) -

minimum solution theorem (1) 0 = u(t) < a(®

power limit
SUO=20E)  @osues Ve
where U, (t) is the laziest (i.e. consumption constraint
latest) schedule (trying to (3) U = J(©) + By < By
deliver energy as late as no overflow

possible)

By = storage level att = 0
Binax = storage capacity

U, (t) can be computed
iteratively backwards in time,
starting from U, (T) = J(T) — By:

u,(t) =
min{a(t), —By +J(t — 1) — U.(t)}
U, (t—1)=U,(t) —u,.(t) 76
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The earliest and latest schedules

B Theorem: A tentative schedule \ﬁ w0
u(t) is feasible if and only if it -
satisfies (1) and (1) 0 = u(t) Sl'a('t)

< < [J* power limit )
U.(6) <U®) = U7(®) @O = UO+B, VO
R consumption constraint
B  a (3) U®) —J(t) + By < Brax
,/°/ ,,e,,‘/// no overflow
Imwm By = storage levelatt = 0
e e Biax = storage capacity

grid calis for reserve stop heating ford

hours

M i.e. any schedule that satisfies the
power constraints and is Pa=
between the earliest and latest e-car charging
Schedules is feasible [Sundstrom and Binding 2012]

crgy [MWh]
\ Eﬁ

77

Conclusion

B Demand Response adapts loads to cope with variability
B [srequired as long as storage of electricity is expensive
M Can use pricing or control by quantity

B Network problem involves economic theory and
scheduling

B User problem involves model predictive control (MPC)
-- see next lecture
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BONUS
ISSUES WITH DEMAND RESPONSE

[Le Boudec and Tomozei 2013]

81

Issue with Demand Response:
Grid Changes Load

B Widespread demand response may make load hard to
predict

load with demand response
/\I\Q /\J\ﬁ%‘ram load
AU vl AN
renewables
> >
Intention Real

82
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A Macroscopic Model of Demand Response

Macroscopic Model of [Cho and Meyn 2010]
Ramping Constroint < _
—E<G(t) -Gt -1)<(¢ S~ Randomness |

Natural Demand
De(t) = DI (¢)
Evaporation Expressed min(E%(t), G*(t))
update /n (t) Demand Satisfied
E(1) Demand
term — %] =]
|—| Returning Demand Frustrated || Reserve
; I°‘ e B(t) = AZ|t) Demand (Excess supply)
e = F(t) = [E°(t) - G*O]F||  R() = G*(t) - E*(1)
ndy load is delayed
Backlogged Demand
Z(t) demand response

83

The Control Problem

M Control variable:
G(t—1)
production bought one
time slot ago in real time

market I E-ﬁ(w I
M Controller sees only supply Nl Dk
G%(t) and expressed w0)= /040
a Evaporation i
demand E%(t) - Dermand Eiﬁﬂfifﬂ
B Our Problem: Returning py B
Demand
keep backlog Z(t) stable U peman T [m@eo-ro
B Ramp-up and ramp-down [ He—oxo—l F)= 10 -Gl
. S Frustrated Reserve
constraints Backlogged Demand Demand|[gycess SUsBiY)
ESG)-G(t—1) < 7| |w
84
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Threshold Based Policies

GY(t) = DI (t) + o Forecast supply is adjusted to

forecast demand

R(t) = C*t) — E*(t) R(t) :=reserve = excess of
demand over supply

Threshold policy:

if R(t) < r *increase supply to come as close
to r*as possible (considering ramp up
constraint)

else decrease supply to come as close to r*as
possible (considering ramp down constraint)

85

Simulations (evaporation u > 0)

t=10mn

Backlog Z(t)
2000 -

1800 -
1600 -
1400 -
1200 -
1000 -
800 -
600 -
400

200 -

Reserve R(t) |

1 1 L ! Il
-1000 -500 0 500 1000
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Simulations (evaporation u > 0) ™

M 4 > 0 means

returning
load is, in
average, less

M Large

excursions
into negative
reserve and
large
backlogs are
typical

and occur at
random
times

o =100
3000

3000

¢ =120
T

2000 g

1000

3000

1000

2000

2000

1000

3000

2000

1000

0
-1000  -500 0 500

1000

0
-1000

1 time step = 10mn‘ T=10000 iterations, £={=100, r*=300, 2=0.3, u=0.2 ‘
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Large backlogs may occur within a day, at any time

Day 1

Day 2

b t=40 mn
i

)

-

-

o

-

-

»x

] 3
“

g t=40
-

.x

-

s

-

) . £

(when evaporation u > 0)

o

- 5 ¥ ¥ 3 58 %8 3%

. % ¥ ¥ 8 2 233 i

%

t =400 mn

5

=

FEEEEEEEEEN

. F ¥ ¥ U R EYE

a0

t=1280 mn

t=1280 mn

>

i

Typical delay % =30 mn, all simulations with same parameters as previous slide, ¢ = 160
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Findings : Stability Results

B [f evaporation y is positive,
system is stable (ergodic,
positive recurrent Markov
chain) for any threshold r *

M Delay does not play a role in
stability

M Nor do ramp-up / ramp
down constraints or size of

reserve
M If evaporation y is negative, -
system unstable for any
threshold r * ¥4

Satisfied

w2 Demand

[ro}-e0- £

| Bl=A200 F(t) = [E*{t) - G*(1)]

Al Frustrated
Backlogged Demand Demand

)

Reserve
Excess supply)

39

What this suggests about Demand Response:

B Positive evaporation is essential
occurs with thermal loads, might not always occur for all
load

M Model suggests that large backlogs are possible and
unpredictible

load with demand response

renewables

B Backlogged load is a new threat to grid operation
Need to measure and forecast backlogged load
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