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WHAT IS DEMAND RESPONSE ? 

3

Terminology
Demand Response (DR)

Demand Side Management (DSM)
Demand	Side	Management
=	electric	utility	manipulates	user	
appliance
Demand	Response
=	Demand	Side	Management	as	a	
response	to	price
in	practice	both	phrases	often	
used	interchangeably
100	years	old	(“Load	

Management”,	inband tones	
“ripple	control”,	AM	signal)

4

A clothes dryer connected to a load control 
"smart" switch (Wikimedia Commons)
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Demand Response (DR)
= Demand Side Management 

(DSM)
Why invented ?

5
1 2 3 4 5

7%
4%4%

82%

4%

1. To	reduce	costs	for	
consumers

2. To	save	energy
3. To	optimize	management	

of	the	electrical	grid
4. To	prevent	night	operation	

of	noisy	equipment
5. Je	ne	sais	pas

Why invented ?

electrical	systems	must	balance	energy	instantly
energy	balance	in	electrical	grid	is	mainly	done	by	adjusting	
supply	to	demand	:	

scheduling	and	forecasting	+	large	scale	interconnection	;	frequency	
response;	reserves

demand	response	=	adjust	demand to	supply
is	one	of	the	tools	used	to	manage	the	power	grid
energy	efficiency is	obtained	by	managing	demand	efficiently	
but	is	outside	the	scope	of	this	tutorial

6
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Examples of Use of Demand Response

peak	shaving

response	to	failures	(avoid	blackout)
mitigate	volatility	of	wind	and	solar	energy
mitigate	network	problems	(congestion,	voltage)

7

France’s comsumption on cold and average november week; Xavier Brossat (EDF), Energy Systems Week, 2013

What can be subject to Demand 
Response ?

Demand	response	applies	to	
elastic loads	(load	=	
consumer	of	electricity)
Non	elastic	loads

lighting,	watching	TV,	hair	
drying

Elastic	loads
boiler,		car	or	bicycle	battery,	
data	center,	fridges	and	
freezers,	air	conditioner,	
washing	machine

8
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Demand Response Example 1
Norway’s pilot study [Saele and Grande 2011 ]

tariff	is	increased	at	pre‐defined	
times	(8‐10,	17‐19)
users	made	aware	of	high	tariffs	
and	times
In	some	homes	heating	is	also	
directly	controlled
study	concludes	that	it	works

9

Norway’s pilot study [Saele and Grande 2011 ]
Demand Response may reduce prices

120	EUR/MWh difference	between	2	areas	inside	Norway
[Saele and	Grande	2011]	claims	that	the	price	peak	would	be	
suppressed	with	demand	response

10
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A similar example (GulfPower, USA)

11

[Borenstein et al 2002]

Example 2 : Romande Energie

Time	of	Use	tariff
Night	tariff	is	lower

Interruptible	Supply:	
interruptible	supply
(service	is	available	e.g.	20	
hours	per	day)
[Le	Boudec and	Tomozei 2011]

12
http://www.romande‐energie.ch/images/File/Tarifs/2013_tarifs_RE.pdf
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Example 3 :Voltalis
Widely deployed in	France
Interruptible	Load
Voltalis device stops	electrical
resistive heating /	boiler	for	at most
60	mn	per	day
Device («Bluepod»)	receives GSM	
signal	and	stops	thermal	loads
No	charge	/	no	payment
Acceptance based on

Voltalis claims		energy usage	reduction
Good	citizens

Similar schemes with incentive
payment to	users:	PeakSaver
(Canada),	www.pge.com	(USA),	New	
Zealand,	NGT	frequency service	(UK)

13

www.voltalis.com

Voltalis does not pay nor charge anything to 
consumers but claims that consumers benefit by 
seeing a reduced electricity bill. Do you think this 

is true ?

14
1 2 3 4

59%

0%

7%

34%

1. Yes,	there	must	be	a	
reduction	in	total	
energy	consumed

2. No,	there	cannot	be	
any	reduction	in	total	
energy	consumed

3. Total	energy	
consumed	is	
increased

4. Ich weiss nicht
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Example 4: Dynamic Demand

also	called	frequency	service
smart	fridges,	smart	boilers,	
smart	heaters	/	HVACs
recall	that	frequency	is	the	
first	signal	of	power	
imbalance

15

primary	frequency	control	
traditionally	done	with	
dynamic	generators	‐‐ fossil	
fuel	generators,	using	droop	
control

[Molina‐Garcia et al 2011] [Mario Paolone]

Example 4: Dynamic Demand

dynamic	demand is	an	alternative	to	
dynamic	generators
How	it	works:(“grid	friendly	
controller”)	
(underfrequency):	fridge	delays	
compressor	when	frequency	drops	
and	anticipates	when	freq.	increases	
[Molina‐Garcia	et	al	2011]	

16
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Is something missing with this 
algorithm ?

17

1 2 3 4 5

3%

7%7%

38%

45%

1. Nothing
2. Timers	need	to	be	randomized
3. Internal	temperature	needs	to	

be	taken	into	account
4. Outside	temperature	needs	to	be	

taken	into	account
5. Non	lo	so

Avoid	synchronized	
response	⇒ [Molina‐Garcia	
et	al	2011]	uses	
randomized	Tdelay
Internal	temperature	
should	be	accounted	for
‐‐ See	[Christakou et	al	
2012]	for	a	variant	that	
accounts	for	internal	
temperature

18
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Dynamic Demand
Simulation	results	for	[Molina‐Garcia	et	al	2011]	with	10%	of	
loads	implementing	dynamic	demand	in	a	hypothetical	country	
grid

dynamic	demand	 doubles	the	reserve

19

Dynamic Demand
Simulation	results	for	[Molina‐Garcia	et	al	2011]	with	10%	of	
loads	implementing	dynamic	demand	in	a	hypothetical	country	
grid	– dynamic	demand	 doubles	the	reserve

Fridges	as	primary/secondary	response	could	provide	ca 1	GW	
of	reserve	to	UK	grid	[Milborrow 2009]

70%	of	secondary	regulation	power	(8	sec	to	3	mn)	in	the	US	
can	be	provided	by	building	air	conditioning	and	heating	fans
alone	[Hao et	al	2012]

20
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Example 5: Boilers as Tertiary Reserve
[Sundstrom et al 2012]

Primary	reserve	=	real	time
Secondary	reserve	=	within	
minutes
Tertiary	reserve	=	starts	
after	15	mn
Thermal	loads	can	be	
anticipated	or	delayed
Upper	and	lower	energy	
curves	for	one	boiler	give	
bounds	on	feasible	energy	
provision	schedules

21[Sundstrom et al 2012]

upper bound: deliver  3kW for 1.71h then 200 W

lower bound: deliver  0W for 6h then 200 W

Boilers as Tertiary Reserve
Assume	operator	(“Service	
aggregator”)	controls	a	
large	set	of	boilers	and	can	
predict	the	upper	and	lower	
bounds	for	the	aggregate	
energy	curves.

Service	aggregator	can	
select	a	middle	trajectory	
and	therefore	obtain	some	
reserve	that	can	be	sold	to	
grid.	

Can	be	implemented	with	
pricing	and	/or	smart	
meters

22

total energy
delivered

upper bound

lower bound

time15 mn

grid calls for reserve

4h

300 MW of boilers 
stop heating for 4 

hours
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Example 6: Island with Large 
Penetration of Renewables

[James‐Smith	and	Togeby 2007]
Bornholm	(DK)	object	of	EcoGrid
EU	project
Electricity	:	Peak	demand	55	MW,	Supply	30MW	
wind	turbines,	60MW	AC	cable	to	mainland,	one	
Combined	Heat	and	Power	plant	(coal,	35	MW	
total)
Issue:	operation	in	islanded	mode	due	to	
frequent	cable	cuts

Wind	volatility
Generation	may	become	large
Coal	plant	is	not	fast	enough
3	MW	of	additional	fast	response	

(within	15	mn)	is	required
23

[James-Smith and Togeby 2007]

Example 6: Findings in
[James‐Smith and Togeby 2007]

24

Demand	response	in	homes	(heating,	
hot	water,	refrigerators)	can	provide	
3MW	of	capacity	in	winter
Positive	demand	response	(homes,	
district	heating	system)	can	avoid	
spilling	wind	energy

[James-Smith and Togeby 2007]
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Example 7: Impact of e‐car charging on 
distribution network [Clement‐Nyns et al 2010] 
E‐car	charges	are	high	power	(4kW),	stress	electrical	
distribution	network	– peak	demand	at	nights

25
Simulation of 34‐bus residential grid  [Clement‐Nyns et al 2010] 

Scheduled Charging

problem	can	be	solved	by	scheduling the	loads	(e‐cars),	i.e.	
coordinate	them
e‐cars	communicate	with	a	scheduler,	through	smart	meter	or	
other	communication	means
coordinator	solves	optimization	problem	and	sends	schedule	to	
e‐car	chargers

requires	:	model	of	grid;	of	state	and	availability	of	e‐cars;	is	
frequently	recomputed	to	address	stochastic	changes

26

power loss

power scheduled to car  at time 
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Scheduled charging can eliminate need to upgrade 
distribution network

27

Say what 
is true

28
1 2 3 4 5 6 7 8 9

0%

3%

0% 0%0%

7%

0%

3%

86%

1. 1
2. 2
3. 3
4. 1	and	2
5. 1	and	3
6. 2	and	3
7. All
8. none
9. N’ouzhon ket
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Say what is true

29

1 2 3 4 5 6 7 8 9

3%

0% 0% 0%0%

62%

7%

14%14%

1. 1
2. 2
3. 3
4. 1	and	2
5. 1	and	3
6. 2	and	3
7. All
8. None
9. I	don’t know

Taxonomy of Demand Response

Type	of	user	contract
1. Time	of	use	(e.g day	versus	

night)
2. Control	by	tariff	(dynamic	

prices)
3. Control	by	quantity	

(interruptible	supply,	
schedules)
Mode	of	communication

1. inband tones	(Ripples)
2. powerline communication	

and	smart	meters
3. radio	communication

Time	scale	of	operation
1. Static
2. Dynamic	

5mn‐24	hours	(smart	meters)

3. Real	time
(frequency	response)

Global	Effect
4. Shift	the	load	(delay	or	

anticipate)	
5. Reduce	demand	

(emergency,	shave	the	peak	
on	exceptional	days)

30
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QUESTIONS ?

31

ELEMENTS OF THEORY

1. Demand	and	Supply	Curves
2. Elasticity
3. Evaporation
4. Earliest	and	latest	schedules

32
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1. The Economic Theory of Demand Response
Consumer Side

The	economic	theory	of	Demand	Response	is	based	on	the	
following	model.
Assume	consumers	are	willing	to	consume	some	amount	of	
energy	 at	a	price	 ;	in	a	given	time	slot,	the	utility of	 is	
assumed	to	be	measurable	and	equal	to	 ;	the	consumer	
chooses	the	value	of	 	that	maximizes		

33

non elastic load elastic load elastic load with minimum requir’t

The Economic Theory of Demand Response
Supplier Side

Assume	suppliers	users	are	willing	to	sell	some	amount	of	
energy	 at	a	price	 ;	in	a	given	time	slot,	the	 running	cost of	
generating	 is	assumed	to	be	measurable	and	equal	to	 ;	
the	supplier	chooses	the	value	of	 	that	maximizes	

34

wind supplier flexible supplier flexible supplier with maximum capacity
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Demand and Supply Curves

Demand	Curve	=	how	much	consumer	is	willing	to	buy	at	a	given	price
Supply	curve =	how	much	supplier	is	willing	to	sell	at	a	given	price

Consumer	maximizes	 therefore	
Supplier	maximizes therefore

demand curve	is	 ↦
supply curve is	 ↦

concave	⇒
′is	decreasing
convex	⇒
′is	increasing

35

′

supply curve, flexible supplier

′

elastic load

Market Equilibrium

Assume	there	is	a	perfect	market	to	fix	prices;	the	supplier	and	
consumer	prices	are	equal
Price	and	quantity	are	given	by	intersection	of	supply	and	
demand	curves

36

demand curve

market values  ∗, ∗

supply curve

∗

∗
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Supply and Demand Curves Without Demand Response 
[Kirschen 2003]

No	demand	response	means	loads	
are	inelastic	;generation	or	grid	
outages	cause	prices	to	surge

Elastic	loads	may	avoid	price	
peaks

37

demand curve for
flexible load

demand curve for
flexible load

Assume some loads disconnect when price becomes 
Which curve could be a demand curve for the aggregate 

demand  ?

38

1 2 3

1 2 3 4 5 6 7 8 9

0% 0% 0% 0%0%0%0%0%0%

1. Curve	1
2. Curve	2
3. Curve	3
4. Either	1	or	2
5. Either	1	or	3
6. Either	2	or	3
7. All
8. None
9. Ne	znam
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Norway’s pilot study [Saele and Grande 2011 ]
Demand Response may reduce prices

120	EUR/MWh difference	between	2	areas	inside	Norway
[Saele and	Grande	2011]	claims	that	the	price	peak	would	be	
suppressed	with	demand	response

39

Supply Curve for Industrial Customers

40
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2. Elasticity

41

Do we get this ?

load with demand response

«natural» load

load with demand response

«natural» load

… or that ?

Elasticity and Cross‐Elasticity

Demand	response	causes	demand	reduction	and	time	shifting
The	quantitative	effect	is	captured	by	

(self)‐elasticity	≔
	

and

cross‐elasticity	 , 	≔ 	

defined for	example for	 ∈ 24hours, 24	hours
42

log

log

demand curve in log-log scales

is the elasticity at 

Wikimedia Commons /File:Elasticity‐inelastic.png
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Example of Cross‐Elasticity
[Kirschen et al 2000]

Users	expect	some	prices	 based	on	historical	data
Resulting	demand	is	
assumes	two	demand	response	models	with	cross‐elasticity
Market	decides	for	different	prices,	Δ difference between	
expected	price	and	actual	price.	Demand	response	cause	users		
to	change	their	loads.	[Kirschen et	al	2000]	 assumes	that

Δ
Δ 	 	 ,

where	 , is	called	the	Cross‐Elasticity	Coefficient	
(it	slightly	differs	from	 ,

,
	 is	the	fraction	of	the	load	at	time	 that	is	moved	

to	time	 due	to	a	change	in	price	at	time	

43

Example of Cross‐Elasticity Coefficients

Δ ∑ 	 	 ,

[Kirschen et	al	2000]	considers	two	possible	scenarios
Scenario	1: (Time	Shifting,	“Inflexible”):	

, , , 0.0033
, , , 0.0033

, 0.20
i.e.	change	in	price at 	changes	load by	 0.2 %	price	increase
load is transferred to	3	hours before and	3	hours after
Scenario	2: (“Optimizer”):	

, ⋯ , , ⋯ , 0.01
, ⋯ , 0.025
, 0.20	

i.e.	change	in	price at 	changes	load by	 0.2 %	price	increase
most load is transferred to	early and	late hours of	the	day

44
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Impact on Price

Assuming	no	elasticity,	
prices	are	formed	by	
matching	demand
let	 ↦ the	
process	of	price	formation
where	 , , … ,

[Kirschen et	al	2000]	
studies	a	case	with	normal	
operation	and	with	
planned	loss	of	generator

45

Supply curve,
normal case

modified price

Supply curve,
one generator lost

expected price

Impact on Price (continued)

Assume	now	elastic	loads	
with	known	cross‐elasticity.	
The	actual	load	depends	on	
the	market	price:	let	
↦ be	the	process	

of	load	adaptation	
Assume	market	aggregator	
knows	elasticity;	she	can	
compute	market	prices	by	
solving	a	fixed	point	problem

46

[Kirschen et al 2000]
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3. Evaporation

Evaporation	 fraction	of	energy	that	is	saved	due	to	demand	
response	[Le	Boudec and	Tomozei 2013]

evaporation

47

load with demand response

«natural» load

load with demand response

«natural» load

What can we say about the evaporation for this scenario ?

48

1. 0
2. 0
3. 0
4. Nothing,	it depends

on	other factors.
5. Não sei
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Evaporation

Evaporation	 fraction	of	energy	that	is	saved	due	to	demand	
response	[Le	Boudec and	Tomozei 2013]

evaporation

with	pure	demand	shifting,	evaporation	=	0	
If	it	is	true	that	demand	response	saves	energy,	we	should	see	
evaporation	 0	
What do	we expect in	general ?

49

load with demand response

«natural» load

load with demand response

«natural» load

(Should I keep my chalet warm ?)
When I am away I interrupt heating. Does this 

save energy ?

50
1 2 3 4

55%

0%

28%

17%

1. Yes,	there	must	be	a	
reduction	in	total	
energy	consumed

2. No,	there	cannot	be	
any	reduction	in	total	
energy	consumed

3. Total	energy	
consumed	is	
increased

4. I	weiss nid
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We have seen this question already…

51

52

(Should I keep my chalet warm ?) When I am away I 

interrupt heating. Does this save energy ? 

59%

34%

7%

0%

55%

17%

28%

0%

Yes, there must be a

reduction in total energy

consumed

No, there cannot be any

reduction in total energy

consumed

Total energy consumed is

increased

I weiss nid

First Slide Second Slide
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Evaporation is not the same as “Rebound Effect”

Q1.	Does shutting down		the	
heating today imply
reducing total	energy consumption
compared to	
keeping temperature constant	?
=	is evaporation positive		?	
A.	we will see later.

Q2.	Does shutting down		the	
heating today (and	swithing it off	
tomorrow)	imply increasing
tomorrow’s energy consumption?
A.	Yes	(this	is	the	rebound	effect).

53

Assume	the	house	model	of	[McKay	2008]

54

leakiness inertia

heat provided
to building outside
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sum	over	 from 1 to	 :

0efficiency

E, total energy provided
achieved t

leakiness inertia

heat provided
to building outside

0

56

efficiency

E, total energy provided
achieved t

Scenario No interruption With
interruption

Building	
temperature

∗ , 0… , 0… ,
		 ∗

Heat
provided ∗ 1

	
∗ ∗ ∗ 0 	

∗
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57

Q1.	Does shutting down		the	heating
today imply
reducing total	energy consumption
compared to	
keeping temperature constant	?
=	is evaporation positive		?	
A.	yes,	it reduces energy consumption,	
due	to	less leakage

The French ADEME agency finds that consumers with Voltalis’s load 
switching devices save  10% on heating but there is no significant 
saving on hot water boilers [ADEME 2012]. How do you interpret 

this ?

58
1 2 3 4 5

0% 0%

10%

3%

86%

1. The	model	we saw is too
simple	and	its finding do	not	
apply.

2. Boiler	leakage is small,	house	
leakage is not.

3. House	leakage is small,	boiler	
leakage is not.

4. Hot	water	boiling is negligible
consumption compared to	
house	heating

5. I	don’t know.
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Evaporation
Resistive	heating system	with poorly
insulated building:
evaporation is positive.

If	heat =	heat pump,	coefficient	of	
performance	 may be variable.	
Evaporation	may be positive	or	negative;	
negative evaporation is possible	(heat
pump operating	at night	in	cold	air).

Electric	vehicle:	we expect evaporation =	0	
(pure	time	shifting).	However charge	
intensity impacts	losses;		fast charging may
consume	more	energy,	negative
evaporation is possible.	

59

4. Earliest and Latest Schedules

Assume	market	aggregator	
schedules	energy	
consumption
Assume	evaporation	=	0

(e.g.	boilers,	e‐cars	with	not	too	
high	charge	intensity)

Then	there	are	always	
earliest	and	latest	schedules,	
and	these	can	be	computed,	
as	we	see	next

60
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A Simple Storage Problem

Assume	an	infinite	buffer	into	
which	we	store	some	goods	(e.g.	
energy);	 units	of	good	are	
stored	during	slot;	 is	known.
We	have	to	decide	 ,	how	
many	units	of	good	we	output	at	
time	 .		We	have	to	satisfy	the	
constraint	 ,	where	

is	known.
Let	 be	the	total	amount	
output	from	time	0 to	time	 .

What	is	the	 that	corresponds	
to	the	most	aggressive	output	?

61

1 ⋯ 	

Example

62

1000 u
of time

1000 u of
goods

1	unit of good / unit of time
storage is empty at time 0

1000 u
of time

1u of goods
per u of time

cumulative input
1 ⋯

instant input

1	

is  a possible output ?
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Is  a feasible output for my storage problem ?

63

1 2 3 4

0% 0%0%0%

1. Yes
2. No
3. It	depends	on	other	

elements	not	shown	on	
picture

4. I	don’t	know

Solution

64

1000 u
of time

1000 u of
goods

one possible output

1	unit of good / unit of time
storage is empty at time 0

1	

1000 u
of time

1u of goods
per u of time

cumulative input
1 ⋯

instant input

1	

is  a possible output ?

amount of goods
in storage at time 
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Storage system are best studied using 
cumulative input and output curves

is	a	feasible	output	iff
0

where 1 ⋯
65

1000 u of
goods

one possible output

cumulative input
1 ⋯

amount of goods
in storage at time 

The Most Aggressive Output  ∗ …

is	the	one	that	minimizes	storage	content	at	any	time,	given	the	
constraints	on	output	rate	
satisfies	 ∗ for	any	other	feasible	output	
can	be	computed	online	(i.e.	is		causal)	by

∗ 0 0,		
∗ min , ∗ 1 , 1,2,…
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1000 u
of time

1000 u of
goods

one possible output

1	unit of good / unit of time

1	

cumulative input
1 ⋯

∗ most aggressive
output
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The Maximum Solution Theorem

Consider	the	problem	
0 , 1, 2, …

, 0, 1, …

with 0 0 0	 and	 ≔ 1 .	Here	 is	the	
unknown	function	and	the	functions	 , are	known.

i.e.	we	have	constraints	on	the	function	 and	its	discrete	time	derivative	

This	problem		has	one	unique	maximum solution	 ∗,	i.e.	 ∗	is	a	solution	and	
for	any	other	solution	 ,	we	have	 ∗ , ∀

∗()	can	be	defined	by	causal	iteration	on	time:
∗ 0 0
	 ∗ min , ∗ 1

The	proof	is	based	on	the	formula	[Le	Boudec and	Thiran 2001]
∗ min

,…,
1 ⋯

67

Another Simple Storage Problem
Assume	an	infinite	buffer	into	which	we	
store	some	goods	(e.g.	energy);	
units	of	good	are	stored	during	slot;	
is	to	be	decided.	The	initial	storage	
content	 0 is	also	to	be	decided.
We	have	to	satisfy	the	constraint	

,	where	 is	known.
We	have	to	output	 at	any	time	slot	

1, … ,	where	z is	known
Let	 be	the	total	amount	input	from	
time	0 to	time	 .
What	is	the	 that	corresponds	to	the	
laziest	input	(i.e.	as	late	as	possible)	?

68

0 1 ⋯
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The Laziest Input  ∗ …

69

1000 u
of time

1000 u of
goods

1	unit of good / unit of time

1000 u
of time

1u of goods
per u of time

cumulative output
1 ⋯

instant output

Say what is true…

70
1 2 3 4

0% 0%0%0%

1. is	the	laziest	input
2. is	the	laziest	input
3. None	of	them	is	the	laziest	input
4. I	don’t	know
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Solution

is	a	feasible	input	but	is	not	the	laziest	(can	be	delayed)
is	not	a	feasible	input

The	laziest	input	is	drawn	backwards	in	time	

71

1	unit of good / unit of time

cumulative output
1 ⋯

∗ , laziest input

1

The Laziest Input  ∗ …

is	the	one	that	minimizes	storage	content	at	any	time,	given	the	
constraints	on	output	rate	
satisfies	 ∗ for	any	other	feasible	input	
can	be	computed	backwards	in	time:

∗ ,		
∗ min , ∗ 1 , , 1, …1
∗ 1 ∗ ∗

72

∗ , laziest input

1

∗ most aggressive
output
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The Minimum Solution Theorem

Consider	the	problem	
0 , 1, 2, … ,

, 0, 1, … ,

with 0 0	 and	 ≔ 1 .	Here	 is	the	
unknown	function	and	the	functions	 , are	known.

This	problem		has	one	unique	minimum	solution	 ∗,	i.e.	 ∗	is	a	solution	and	
for	any	other	solution	 ,	we	have	 ∗ , ∀ 0, …

∗()	can	be	defined	by	backwards	iteration	on	time:
∗

∗ min , ∗ 1 	 , , 1, …1
∗ 1 ∗ ∗ 	

The	proof	is	based	on	the	formula	[Le	Boudec and	Thiran 2001]

∗ max
,…,

1 ⋯
73

The Energy Scheduling 
Problem

Assume	you	want	to	
schedule	energy	
delivery	to	a	storage	
(e.g.	boiler)	over	a	
period	 0,
The	problem is to	
schedule ,	energy	in	
slot	
The	anticipated	
consumption	 (hot	
water)	is	assumed	to	be	
known.	
The	constraints	on	the	
system	are:

(1)	0
power	limit

(2)	J t 	
consumption	constraint

(3)		
no	overflow

storage	level	at	 0
storage	capacity

74
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The earliest and latest schedules

A	feasible	schedule	is	
constrained	by	(1)	and	(3)
maximum	solution	theorem	
⇒ ∗

where ∗ is	the	most	
aggressive,	i.e.	earliest	schedule	
(trying	to	keep	the	storage	full)

∗ can	be	computed	
iteratively:
∗

min , 	 1 ∗ 	

75

The earliest and latest schedules

A	feasible	schedule	is	
constrained	by	(1)	and	(2)
minimum	solution	theorem	
⇒ ∗
where ∗ is	the	laziest	(i.e.	
latest)		schedule	(trying	to	
deliver	energy	as	late	as	
possible)

∗ can	be	computed	
iteratively	backwards	in	time,	
starting	from	 ∗ :
∗
min , 1 ∗ 	
∗ 1 ∗ ∗ 76
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The earliest and latest schedules

Theorem:	A	tentative	schedule
is	feasible	if	and	only	if	it	

satisfies	(1)	and
∗

∗

i.e.	any	schedule	that	satisfies	the	
power	constraints	and	is	
between	the	earliest	and	latest	
schedules	is	feasible

77

e‐car charging
[Sundstrom and Binding 2012]

Conclusion

Demand	Response	adapts	loads	to	cope	with	variability
Is	required	as	long	as	storage	of	electricity	is	expensive
Can	use	pricing	or	control	by	quantity

Network	problem	involves	economic	theory	and	
scheduling

User	problem	involves	model	predictive	control	(MPC)	
‐‐ see	next	lecture
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ISSUES WITH DEMAND RESPONSE

BONUS

81

[Le Boudec and Tomozei 2013]

Issue with Demand Response: 
Grid Changes Load

Widespread demand response may make load hard	to	
predict

82

renewables

load with demand response

«natural» load
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A Macroscopic Model of Demand Response

83

Returning Demand

Expressed
Demand

Frustrated
Demand

Satisfied
Demand

Evaporation

Control

Randomness

Supply

Natural Demand

Reserve
(Excess supply)

Ramping Constraint

Backlogged Demand

min	 ,

load is delayed

update 
term

Macroscopic Model of [Cho and Meyn 2010] 

demand response

The Control Problem
Control	variable:		

1
production	bought one	
time	slot	ago in	real	time	
market
Controller	sees only supply

	and	expressed
demand
Our	Problem:
keep backlog stable
Ramp‐up	and	ramp‐down	
constraints
	 	 	⎼	 1 	 	

84



31.05.2013

43

Threshold Based Policies

Forecast supply is adjusted to	
forecast demand

R(t)	:=	reserve =	excess of	
demand over	supply

85

Threshold	policy:	
if 	 	 ∗	increase supply to	come	as	close	
to ∗as	possible	(considering ramp up	
constraint)

else decrease supply to	come	as	close	to	 ∗as	
possible	(considering ramp down	constraint)

Simulations (evaporation 0)
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Reserve 

Backlog 
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Simulations (evaporation 0)

0 means
returning
load is,	in	
average,	less
Large	
excursions	
into negative
reserve and	
large	
backlogs are	
typical
and	occur at
random
times

87

r*

1 time step = 10mn

Large backlogs may occur within a day, at any time 
(when evaporation 0)

88
Typical delay 30 mn, all simulations with same parameters as previous slide,  160

D
ay
 1

t = 40 mn t = 400 mn t = 1280 mn

t = 40 mn t = 400 mn t = 1280 mn

D
ay
 2
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Findings : Stability Results

If	evaporation is positive,	
system	is stable	(ergodic,	
positive	recurrent Markov	
chain)	for	any threshold ∗

If	evaporation is negative,	
system	unstable for	any
threshold ∗

Delay	does not	play a	role in		
stability
Nor do	ramp‐up	/	ramp
down	constraints or	size	of	
reserve
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What this suggests about Demand Response: 

Positive	evaporation is essential
occurs with thermal	loads,	might not	always occur for	all	
load
Model	suggests that large	backlogs are	possible	and	
unpredictible

Backlogged load is a	new	threat to	grid operation
Need to	measure and	forecast backlogged load
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load with demand response

«natural» load

renewables


