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Title: Time Sensitive Networks and Network Calculus
Abstract: Time Sensitive Networks offer guarantees on worst-case delay, worst-case delay variation and zero 
congestion loss; in addition, they provides mechanisms for packet duplication in order to hide residual losses due 
to transmission errors. They find applications in many areas such as factory automation, embedded and vehicular 
networks, audio-visual studio networks, and in the front-hauls of cellular wireless networks. In this talk we 
describe recent results that can be used to analyze time sensitive networks with components such as packet 
ordering and duplicate removal functions, schedulers, regulators, dampers. We explain why clock non-idealities 
matter and how to take them into account. 

Joint work with: Anne Bouillard, Marc Boyer, Damien Guidolin-Pina, Jörn Migge, Ahlem Mifadoui, Ehsan 
Mohammadpour, Stephan Plasssart, Eleni Stai, Hossein Tabatabaee and Ludovic Thomas.
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1. Time Sensitive Networks (IEEE TSN, IETF DetNet)
Deterministic service: upper bounds on end-to-end delay and delay jitter, buffer sizing 
to achieve zero congestion loss. Proven bounds are required, simulation is not 
sufficient.

Every flow is constrained at source.

Network nodes offer a guaranteed
service. 

synchronous: e.g Time Triggered CAN bus: (not our focus today)
asynchronous: e.g.  switch/router network: Flows are assigned to classes; at every 
node, traffic of a given class is FIFO; a scheduler shares bandwidth and buffer 
between classes (e.g. CBS, Burst Limiting Shaper, WRR, DRR, Static Priority, etc)
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2. Nodal Analysis: Delay Bound

Assume
• Node is FIFO for this flow aggregate
• Service guarantee with service curve 𝛽
• Flow aggregate is constrained by arrival curve 𝛼 at input

(total number of bits in any 𝑡 seconds is≤ 𝛼(𝑡))

Delay bound ? 
•  Delay ≤ ℎ(𝛼, 𝛽) 
• Jitter bound = ℎ(𝛼, 𝛽) − delay lower bound
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Improved Delay Bound

Assume in addition
• Data is packetized at input
• Output serves entire packets, with rate 𝑐 

For a packet of size ℓ, delay ≤ ℎ 𝛼! − ℓ, 𝛽 + ℓ
#

If 𝛽	is 𝑐-Lipschitz (slope≤ 𝑐), for a flow within the aggregate 
that has minimum packet size 𝐿$%&, 

  delay ≤ ℎ 𝛼 − 𝐿$%&, 𝛽 + '!"#

#
  

[Mohammadpour 2023] 
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How is this improvement obtained ?

1. Use arrival curve characterization for a point process 
model: 

saying that the flow has arrival curve 𝛼	is equivalent to
𝐴- −𝐴. ≥ 𝛼↓ ℓ. +⋯+ ℓ- , ∀𝑚, 𝑛, 1 ≤ 𝑚 ≤ 𝑛

which is also equivalent to 
ℓ. +⋯+ ℓ- 	≤ 𝛼! 𝐴- −𝐴. , ∀𝑚, 𝑛, 1 ≤ 𝑚 ≤ 𝑛

where 𝛼↓ is the lower-pseudo inverse of 𝛼 and 𝛼!is the 
right-limit of 𝛼

2. An upper bound on queuing delay for a packet of 
length ℓ is ℎ(𝛼! − ℓ, 𝛽) 

[Mohammadpour 2023]
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TSN Source Constraint (𝜏, 𝐾, 𝐿)

During an interval of duration 𝜏, up to 𝐾 packets of size ≤ 𝐿 can be sent.

Is this equivalent to an arrival curve constraint ?
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TSN Source Constraint (𝜏, 𝐾, 𝐿): sliding window interpretation

During any interval of duration 𝜏, up to 𝐾 packets of size ≤ 𝐿 can be sent.

⟺ packet-level arrival curve: at most	𝛼4(𝑡) packets in any interval of 
duration 𝑡, with
  

𝛼4 𝑡 = 𝐾
𝑡
𝜏
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TSN Source Constraint (𝜏, 𝐾, 𝐿) : fixed window interpretation

During repeating intervals of duration 𝜏, up to 𝐾 packets of size ≤ 𝐿 can be sent.

⟹	 packet-level arrival curve : 𝛼4 𝑡 = 𝐾 3
5
+𝐾

Not an equivalence.

However: for every 𝜀 > 0, there is a greedy source that has packet-level arrival 
curve  𝛼46 𝑡 = 𝐾 376

5
+𝐾 

and satisfies the TSN constraint fixed-window (𝜏, 𝐾, 𝐿)
[Mohammadpour 2023]
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Delay Bound with Packet-level Arrival Constraints

Assume
• Node is FIFO for this flow aggregate
• Service guarantee with service curve 𝛽
• Flow 𝑖 within aggregate is constrained by packet level arrival curve 
𝛼4,9 at input

• Data is packetized at input, line rate 𝑐, 𝛽	is 𝑐-Lipschitz

Delay bound ? 

• Derive bit-level arrival curve for aggregate 𝛼 𝑡 = ∑9 𝐿9$:;𝛼4,9 (𝑡) 

• For flow 𝑓, delay ≤ ℎ 𝛼 − 𝐿($%&, 𝛽 +
'$
!"#

#
12



Improved Delay Bound with Packet-level Arrival Constraints

A better bound is [Mohammadpour 2023]:

For flow 𝑓, delay ≤ ℎ 𝛼 − 𝐿($:;, 𝛽 +
'$
!'(

#

Example: 2 flows, 𝛽 𝑡 = 𝑅 𝑡 − 𝑇 !, 𝛼4,9 𝑡 = 𝐾9
3
5)
, 𝑖 = 1,2;

𝑐 ≥ 𝑅 ≥ <*'*!'(

5*
+ <+'+!'(

5+

Delay bound for flow 1:       𝑇 + <*'*!'(!<+'+!'(

+
− 𝐿,$:;

,
+
− ,

=

Compare to bound derived from bit-level arrival curve: 𝑇 + <*'*!'(!<+'+!'(

+
− 𝐿,$%&

,
+
− ,

=

Packet-level arrival curve is more constraining than bit-level ! Better bounds can be found by 
exploiting packet-level constraints ! 
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• Every flow 𝑖 is constrained 
by packet level arrival 
curve 𝛼!,# at input

• 𝛼 𝑡 = ∑( 𝐿()*+𝛼,,( (𝑡)
• Data is packetized at input, 

line rate 𝑐, 𝛽	is 𝑐-Lipschitzstandard NC bound



Delay Bounds for TSN Sources

• For a flow 𝑖	that is constrained by TSN sliding window (𝜏9 , 𝐾9 , 𝐿9) let 𝛼4,9 𝑡 = 𝐾9
3
5)

• For a flow 𝑖	that is constrained by TSN fixed window (𝜏9 , 𝐾9 , 𝐿9) let 𝛼4,9 𝑡 = 𝐾9
3
5)
+𝐾9

• Let 𝛼 𝑡 = ∑9C,- 𝐿9$:;𝛼4,9 (𝑡)

• Delay bound for a tagged flow 𝑖 is ℎ 𝛼 − 𝐿9$:;, 𝛽 + ')
!'(

#
 

This delay bound is tight [Mohammadpour 2023].
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Network Calculus delay bound can be slightly 
improved

The analysis combines min-plus (service curve) 
and max-plus (point process)

TSN T-spec is at packet level, regulators (ATS) are 
at bit level ⟹ packet-level theory ?



3. Clock Non-Idealities
Standard theory assumes perfect time 
everywhere. In reality, nodes use local clocks 
that are not ideal.
• tight sync (PTP, White Rabbit, GPS) : 

timestamping error ≤ 𝜔 ≈ 10ns–1𝜇s
• loose sync (NTP): 𝜔 ≈ 1ms – 1s
• no sync: timestamping error unbounded; 

measurement of time interval on same
system: 
error is bounded by clock drift, jitter and 
wander.

[ITU-T 1996]

What is the effect of clock non ideality ?
16

Initial offset

drift 
(fre

quency offset)

jitter + wander



Clock Model in Network Calculus [Thomas 2020]
Measurement of a time interval is performed with one clock → d 
and with another clock→ 𝑑′
 Time synchronization error: 𝑑′ − 𝑑 ≤ 2𝜔 
 Clock jitter and wander: 𝑑) ≤ 𝜌𝑑 + 𝜂

This gives the change-of-clock inequalities [Thomas 2020]

max 0,
𝑑 − 𝜂
𝜌 , 𝑑 − 2𝜔 ≤ 𝑑′ ≤ min 𝜌𝑑 + 𝜂, 𝑑 + 2𝜔

Model is symmetric, i.e. same inequalities if we exchange d′ ↔ d

Relative error on estimation of  delays is, in general, ≈ 107D, i.e. 
negligible. However there are some corner cases.
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𝜔 = time error bound 
= 1𝜇s in TSN with PTP; 
= +∞ if no 
synchronization

𝜌 = clock-stability 
bound 
=1.0001 (e.g. in TSN) 

𝜂 = timing-jitter bound 
= 2ns (e.g. in TSN)



Change of Clock: Arrival Curves
Assume a flow satisfies a token bucket constraint (𝑟, 𝑏) when observed with clock ℋLMN
i.e. arrival curve constraint 𝛼ℋ,-. 𝑡 = 𝑟𝑡 + 𝑏
When observed with some other clock ℋ, it satisfies the arrival curve constraint 
𝛼ℋ 𝑡 = min(𝜌𝑟𝑡 + 𝑏 + 𝑟𝜂 , 𝑟𝑡 + 𝑏 + 2𝑟𝜔) [Thomas 2020]
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Regulators (aka Shapers, ATS)

Regulator delays packets in order to limit burstiness to a prescribed value 
(i.e. enforces an arrival curve constraint).
Non work-conserving.
Per flow regulator: one state + one queue per flow.
Interleaved regulator: one state per flow + one global queue, packets not at 
head of queue wait behind [Specht 2016].
Regulators avoid burstiness cascade, do not increase worst-case end-to-
end delay (in principle).
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Consequences for Regulators
• Perfect clocks:

Regulator does not increase
worst-case delay

• Non-synchronized network:
Per-flow and interleaved 
regulator unstable
(unbounded delay).

• Synchronized network:
Per-flow regulator incurs delay
penalty up to 4𝜔;
Interleaved regulator is unstable.

Regulators must use safety margins (be adapted) using e.g. rate and burst cascade or 
ADAM [Thomas 2020]
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Source Network 
Elements

Non adapted
Regulator
(PFR or IR)

In regulator’s clock,
flow satisfies this 

constraint at source

Implements constraint 
𝛼 𝑡 = 𝑟𝑡 + 𝑏
in local clock

Flow constrained 
by 𝛼 𝑡 = 𝑟𝑡 + 𝑏

in local clock



Dampers

Damper delays a packet by “earliness” read from packet header.
Removes most of jitter, with some residual jitter dependent on tolerance, not on 
traffic ⟹ also removes burstiness cascade.
Non work-conserving. Like a per-flow regulator, does not exist in isolation, is 
combined with queue at next hop.
Unlike regulator, is stateless.
[Cruz 1998] RCSP [Zhang  1993], RGCQ  [Shoushou 2020], ATS with Jitter Control 
[Grigorjew 2020].
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Consequences for Dampers 

Residual jitter is somehow affected by clock inaccuracies

Timing inaccuracies may lead to mis-ordering

⇒ Some dampers enforce per-flow packet order (e.g. FOPLEQ, ATS with 
Jitter Control [Grigorjew 2020]) - work properly only if all network elements 
are FIFO per flow 
[Mohammadpour 2022]
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Two consecutive 
packets should be 
released by
damper at ca. the 
same time, timing 
inaccuracies may
lead to inversion of 
order



4. Packet Re-Ordering

Time Sensitive Networks may cause packet mis-ordering due to e.g. 
parallel paths in switching fabrics, dampers, packet replication and 
elimination etc.
Re-sequencing buffer may be needed before delivery:
 stores packets until in-sequence delivery or timeout

Questions: Buffer size ? Minimal timer value ? Effect on worst-case 
delay bounds ?
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Reordering late Time Offset (RTO)

[RFC 4737, Mohammadpour 2021]
Defined between two observation points, and for a flow of interest
First observation point defines the reference order of packets
RTO = largest time by which a mis-ordered packet is late

RTO = 0means no re-ordering 24
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Resequencing Buffer Calculus

1. Re-sequencing buffer timeout 𝑇 minimum value is 𝑇!"# = 𝜆 = RTO
2. Required size of resequencing buffer is 𝐵!"# = 𝛼 𝑉 + 𝑇

[Mohammadpour 2021]
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Calculus of RTO (1)

For a system that may re-order packets and has 
known delay jitter 𝑉, the best RTO bound for a flow 
with arrival curve 𝛼 is 𝜆 = 𝑉 − 𝛼↓ 2𝐿$%& !

.

Example: (token bucket)  𝛼 𝑡 = 𝑟𝑡 + 𝑏

If 𝑏 < 2𝐿$%& and 𝑉 ≤ \'!"#7*
]

 then 𝜆 = 0 (no reorder)

If 𝑏 > 2𝐿$%& then 𝜆 = 𝑉 (reordering is possible)

Other bounds exist for flow constraints at packet level. 
[Mohammadpour 2021] 
All bounds in TAI (temps atomique international)
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Calculus of RTO (2): Concatenation

Best RTO bound for concatenation is 𝜆^ +∑9C^!,< 𝑉9
[Mohammadpour 2021] 
RTO amplification by downstream jitter
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Network Calculus with Re-sequencing Buffers

Lossless network: 
𝑑$ = 𝑑, 𝑉$ = 𝑉 and 𝛼$ 𝑡 = 𝛼 𝑡 + 𝑉 (re-sequencing is for free)

Lossy network: 
𝑑$ = 𝑑 + 𝑇, 𝑉$ = 𝑉 + 𝑇 and 𝛼$ 𝑡 = 𝛼 𝑡 + 𝑉 + 𝑇 .
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Packet reordering metric of interest is the RTO

Resequencing is for free in lossless networks 

In lossy networks, timeout value (hence RTO) 
affects delay, jitter and propagated burstiness

Resequencing-at-end only may cause large re-
sequencing delay  due to RTO amplification



5. Packet Replication and Elimination

Deterministic networks guarantee 0 congestion loss, but other losses may 
occur (transient failures, reboots, transmission errors). This is mitigated by 
packet replication and duplicate elimination (FRER, PREOF).
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Packet Elimination Function Causes Mis-Ordering + 
Increased Burstiness [Thomas 2022] 
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Network Calculus Analysis of Packet Elimination Function

Arrival curve at output of PEF: 𝛼∗ = 𝛼abb⊗𝛼cde where: 
• 𝛼abb = ∑ propagated arrival curves at input of PEF;
•  𝛼cde(𝑡) = 𝛼(𝑡 + 𝐷$:f −𝐷$%&) where 𝐷$:f [resp. 𝐷$9-]  

is an upper [resp. lower] bound on delay between common 
ancestor and input of PEF and 𝛼 is arrival curve at output of 
common ancestor on any path.

Bound on RTO (amount of re-ordering)

𝜆 = 𝐷$:f −𝐷$%& − 𝛼↓ 2𝐿$%& !
 

Network Analysis implemented in 
extension of TFA (xTFA).
[Thomas 2022]
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In-network packet replication and 
elimination is present in time-sensitive 

networks

Packet elimination negatively affects 
the deterministic delay bounds and can 

be taken into account



Other Fascinating Topics…

Network analysis with TFA, PLP, PMOO…
Service curves for bandwidth sharing schedulers (WRR, DRR, …)
CQF
Quasi-deterministic bounds 
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Tools 

35copied on 2024 March 20 from https://en.wikipedia.org/wiki/Network_calculus



Thank You !

References are in the online version.
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