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1. What it the “Smart Grid” ?

Smart Grid = IT technology for 
operation and maintenance of an 
electrical grid.

Has been deployed in many countries 
for decades in several applications.

Example : substation automation
• Real-time + multicast 

communication, small scale (Local 
area network)
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1. Circuit breaker trips a line, status
info sent to SCADA

2. SCADA/operator decides to open or 
close a switch

3. Voltage and Current measurements
sent to SCADA

Figure from
[Budka 2014]



Example: Teleprotection

Measurements at A and B can be used to infer fault conditions and quickly 
react (within 4 msec).

Existing systems use Power-Line Communication.
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Figure from
[Budka 2014]



Example: Transmission Network

High Voltage AC grid / One per 
country or per region 
Responsible for global operation / 
market
Monitors power flows and manages 
reserves
Data integrated in a decision support 
system

Reliable computing, not real-time
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Smart Meters

Smart meters allows
• Online communication with Distribution System Operator (at low bit rate)
• Dynamic pricing (e.g every 15mn)
Deployment depends on country

Support new applications
• Post failure recovery (e.g localisation of homes affected by storm)
• Demand response by price (e.g. reduce peak demand in winter days) 
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Figure elements from
particulier.edf.fr and [Budka 2014]



Emerging Challenges: Renewables + Electrification
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Variability, 
uncertainty, reduced 
inertia of renewables

Large, stochastic 
loads

More reserves

More fuel based
generators for 

regulation

Demand 
Response



Emerging Challenges: Short-
term Volatility of Renewables
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Emerging Technology: Real-Time State Estimation

State estimation: computation of electrical state of a grid (instantaneous 
values of complex voltages and currents at all nodes).
Enabled by Phasor Measurement Units (PMUs), devices that produce
synchronized measurements of phasors 
(every 16.7 or 20 msec).
Post-processed by
State-Estimation
Algorithms.

Requires reliable and
real-time network + accurate time
sync (below 𝜇sec).
[Pignati 2015]
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Applications enabled by Real-Time State Estimation

Real-time monitoring 

Fault identification, isolation, 
localization

Control of voltage / currents

Islanding and back-synchronization

Real-time control of a distribution 
grid.
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From [Zanni 2020]



Example of Real-Time Control of Microgrid: Optimal Use of Grid

Controls power injections
of battery, PVs and
charging station of electric
vehicles.
• Allows to use fluctuating PV 

production in full, by 
controlling all voltages and 
currents (no tripping when PVs 
fluctuate).

• Provides frequency support
to main grid (artificial inertia).

Real-time, one control action
every 100msec.
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Example of Emerging Fast Control System: Islanding

Real-time microgrid control supports loss of 
connection to main grid (unintentional 
islanding) and re-connection (re-
synchronization) without disruption.
• Unintentional islanding requires storage to 

be prepared.
• Resynchronization requires phasor of 

main grid and of local grid to be aligned.

Requires real-time communication (at msec 
latency) between agents, PMUs and 
synchrocheck device.

[Reyes 2018b, Fahmy 2022] 
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agent PMU synchrocheck



2. Requirements on Networking

The smart grid is becoming increasingly 
digital (smart meters, PMUs)
Monitoring and control is increasingly based 
on digital means. It requires the same 
features as most enterprise networks
• Large data sets
• Cyber-security

Plus some special features
• Some apps require low delay
• Large reliability
• Secure and accurate time sync
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Some Smart Grid Apps require Time Sensitive 
Networking
Most smart grid data does
not require low delay 
(e.g. dispatching, 
energy measurements, 
topology estimation etc.)

Some critical apps have low delay requirements:
• teleprotection, state estimation, fault localization, real-time control

They are best served by Time Sensitive Networking
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Time Sensitive Networking

IEEE TSN (local area network → substation, microgrid) and IETF Detnet
(large scale networks → distribution networks). They provide:
• Buffer sizing for 0 congestion loss + guaranteed bounds on delay and 

jitter bound, obtained with Network Calculus : source constraints (e.g. 
token bucket) + service guarantee (service curves)

• 0msec packet loss repair with packet duplication
• Time synchronization
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Network Calculus Example

A set 𝑆 of flows, each constrained
by leaky bucket 𝑟!, 𝑏! are
aggregated into one class;
𝑟"#" = ∑!∈% 𝑟! , 𝑏"#" = ∑!∈% 𝑏!

At one node, this class receives a rate-latency service curve 𝑅, 𝑇 (e.g. Non pre-
emptive static priority, DRR, AVB, CBS). FIFO inside the class; 𝑟"#" ≤ 𝑅

delay jitter bound for any packet of any flow in 𝑆:    𝐷 = &!"!
'
+ 𝑇

backlog bound for the aggregate of whole 𝑆:    𝐵 = 𝑏"#" + 𝑟"#"𝑇
output arrival curve for flow 𝑓 is leaky bucket 𝑟!, 𝑏!∗ with 

𝑏!∗ = 𝑏! + 𝑟 𝑇 +
𝑏"#" − 𝑏!

𝑅 > 𝑏!

[Le Boudec-Thiran 2001, Section 6.4]
Better bounds are obtained using more detailed modelling  [Mohammadpour 2018]
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FIFO 
System 𝑆

FIFO 
System 𝑆′𝑏, 𝑟 𝑏∗, 𝑟



Packet Duplication: 0 msec repair. 

At source (PRP, iPRP) : well deployed in 
substation automation, emerging in state 
estimation networks. Uses independent, 
replicated networks. Works with multicast.
[IEC 2013, Popovic 2016]

In-network (TSN: FRER, Detnet: PREOF): 
dramatically improves reliability:
[IEEE 802.1CB, Thomas 2022]
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Fast Reroute: 50 msec repair. 

Uses MPLS with redundant paths (e.g. one LSP is backup).

Failures are detected using a hello mechanism (BFD, Bidirectional 
Forwarding Detection sent every 3-4 msec and follow the same path as 
the data. When a path is broken, this is detected after the absence of 3 
BFD packets.
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Time Synchronization

Used for state estimation (PTP, precision sub 𝜇sec) and for time alignment 
of monitoring (msec precision).
Can be attacked by forging messages (unless authenticated).
Fast multicast authentication (msec) is a requirement [Tesfay 2017].
Some physical attacks (manipulation of physical delays) cannot be thwarted 
with authentication. Can lead to wrong state estimation even if all 
messages are encrypted and authenticated.
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Undetectable delay box can forge PTP 
errors at will [Barreto 2016]. Modifies 
phasor angles and leads to wrong 
estimation [Shereen 2019 ]. 



Fog Computing

Beyond transport of packets, smart grids also need fault tolerant + real-
time computing [Mohiuddin 2017].

Fog computing = cloud
computing for real-time
and fault-tolerant
services promises
cost-efficiency 
and reliability.
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Conclusion

The smart grid emerges as a very large scale industrial system.

Depends heavily on computer networks, with all the needs of telecom 
networks + special features
• Real-time
• Multicast
• Power line communication
• Reliability and fault-tolerance
• Accurate and secure time synchronization

It is also a critical infrastructure and of primary importance is security.

It also relies on large data streams and needs large data processing.
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Thank You !

References are in the online version.
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