

# Real-Time Control of Electrical Distribution Grids

Jean-Yves Le Boudec<sup>1,2</sup> EPFL

> NREL 2018 March 23

<sup>1</sup> https://people.epfl.ch/105633/research

<sup>2</sup> http://smartgrid.epfl.ch

#### Credits

#### Joint work

EPFL-DESL (Electrical Engineering) and LCA2 (Computer Science)

#### Supported by







#### **Contributors**

Jagdish Achara

Andrey Bernstein

Niek Bouman

**Benoit Cathiard** 

**Andreas Kettner** 

Maaz Mohiuddin

Mario Paolone

Marco Pignati

Lorenzo Reyes

Roman Rudnik

Erica Scolari

Wajeb Saab

**Cong Wang** 

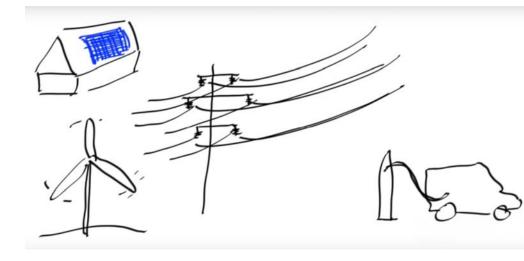
#### Contents

1. Real-time operation of distribution grids

2. V-control

# 1. Real-Time Operation of Microgrid: Motivation

Absence of inertia (inverters)
Stochastic generation (PV)
Storage, demand response
Grid stress (charging stations, heat pumps)



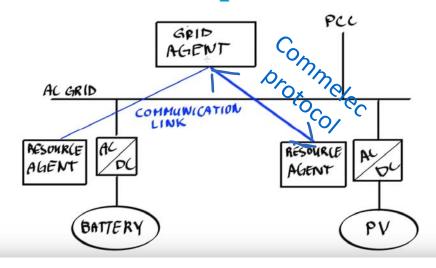
Support main grid (frequency, AGC)

⇒ Agent based, real-time control of microgrid

### **COMMELEC Uses Explicit Power Setpoints**

Grid Agent = software agent, manages grid, uses PMUs

Resource Agent = software agent, manages device



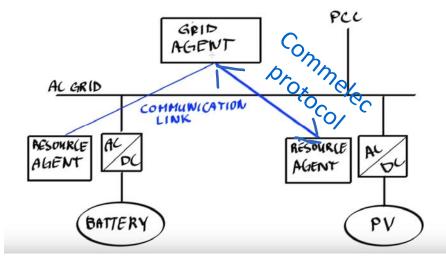
Grid Agent sends explicit power setpoints to Resource Agents

Goal: manage quality of service in grid; support main grid; use resources optimally. [Bernstein et al 2015, Reyes et al 2015]

### **COMMELEC Principle of Operation**

#### Every 100 msec

- Resource agent sends to grid agent:
   PQ profile, Virtual Cost and
   Belief Function
- Grid agent sends power setpoints



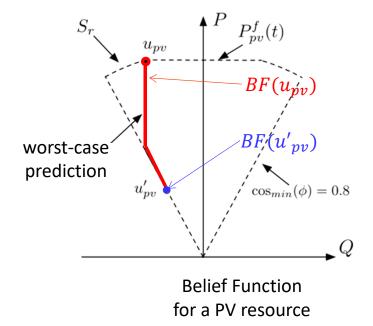
PQ profile = set of setpoints that this resource is willing to receive Virtual cost = cost attached to receiving a setpoint

#### **Belief Function**

Say grid agent requests setpoint  $(P_{\text{set}}, Q_{\text{set}})$  from a resource; actual setpoint (P, Q) will, in general, differ.

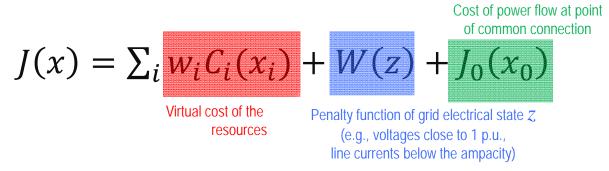
Belief function exported by resource agent means: the resource implements  $(P,Q) \in BF(P_{set}, Q_{set})$ 

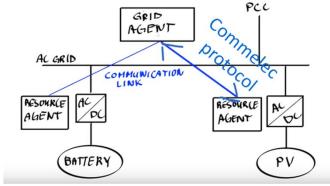
Quantifies uncertainty Essential for safe operation



# Operation of Grid Agent

Grid agent computes a setpoint vector x that minimizes





subject to admissibility.

x is admissible  $\Leftrightarrow$  ( $\forall x' \in BF(x)$ , x' satisfies security constraints)

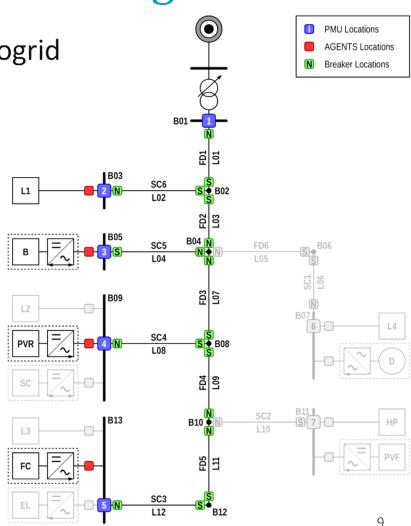
# Implementation / EPFL Microgrid

Topology: 1:1 scale of the Cigré low-voltage microgrid benchmark TF C6.04.02 [Reyes et al, 2018]

- Phasor Measurement Units: nodal voltage/current syncrophasors
- Phasor Data Concentrator
- Discrete Kalman Filter State estimator
- PVs, Battery, Load (flex house)

PMU and PDC data frame rate: 50 fps

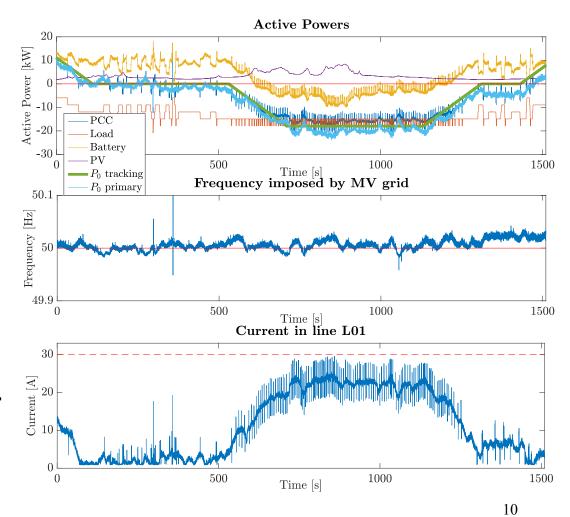




### Dispatch and Primary-Frequency Support

Superposition of dispatch and primary frequency control (i.e., primary droop control) with a max regulating energy of 200 kW/Hz

In parallel, keep the internal state of the local grid in a feasible operating condition.



# COMMELEC Uses iPRP for UDP Packet Duplication

Controllers and sensors are connected to 2 independent networks

iPRP software duplicates packets at source and removes duplicates at

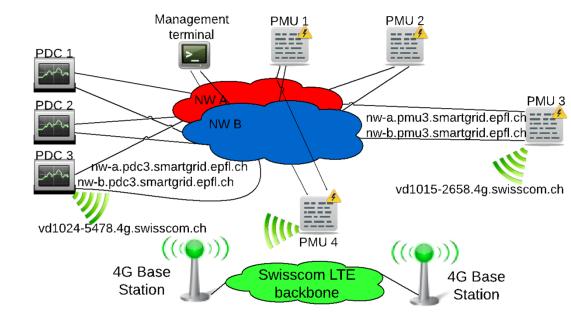
destination

fully transparent to application

– works with any application that streams UDP packets [Popovic et al 2016]

Open-source implementation:

https://github.com/LCA2-EPFL/iprp

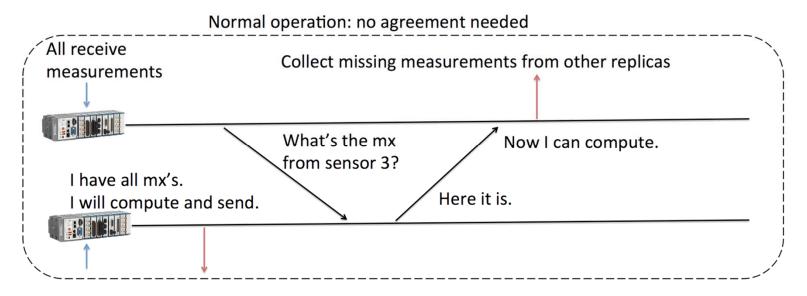


# COMMELEC Uses Active Replication with Real-Time Consensus

Axo: makes sure delayed messages are not used

Quarts: grid agents perform agreement on input

Added latency ≤ one RTT – compare to consensus's unbounded delay [Mohiuddin et al 2017, Saab et al 2017]



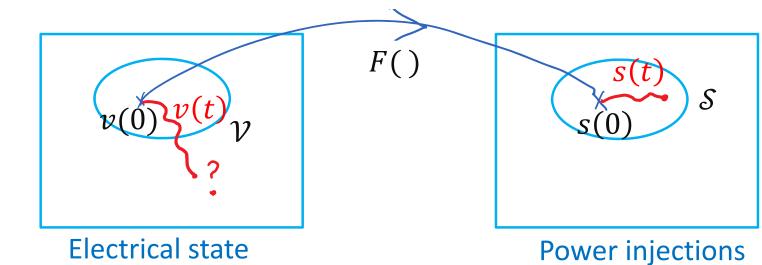
# 2. Controlling the Electrical State with Uncertain Power Setpoints [Wang et al 2017b]

Admissibility test: when issueing power setpoint x, grid agent tests whether the grid is safe during the next control interval for all power injections in the set S = BF(x).

The abstract problem is:

- given an initial electrical state v of the grid
- given that the power injections s remain in some uncertainty set s can we be sure that the resulting state of grid satisfies security constraints and is non-singular?

#### $\mathcal{V}$ -Control



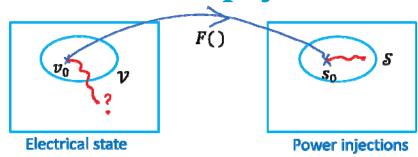
 $\mathcal{S}$  is a domain of  $\mathcal{V}$ - control  $\Leftrightarrow$  whenever  $t \mapsto v(t)$  is continuous, knowing that  $v(0) \in \mathcal{V}$  and  $\forall t \geq 0, F(v(t)) \in \mathcal{S}$  ensures that  $\forall t \geq 0, v(t) \in \mathcal{V}$ .

3-phase grid with one slack bus and N PQ buses; v = electrical state = complex voltage at all non slack buses; s = power injection vector at all non slack buses

s = F(v) is the power-flow equation

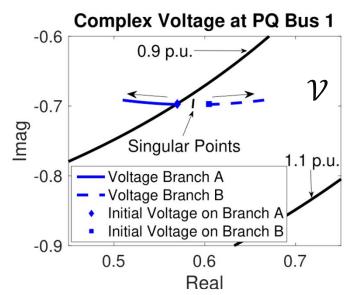
 ${\mathcal V}$  is typically defined by voltage and ampacity constraints + non-singularity of  ${\mathcal V} F$ 

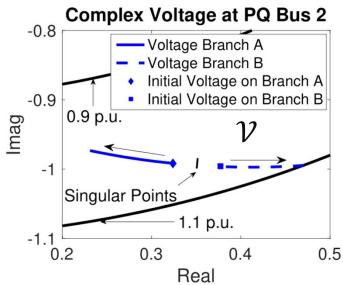
# Existence of Load Flow Solution Does not Imply V-control

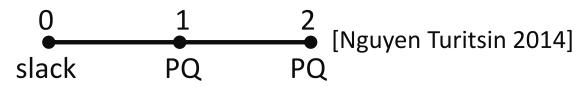


For S to be a domain of V-control it is necessary that every  $s \in S$  has a load-flow solution in V.

But this is not sufficient.

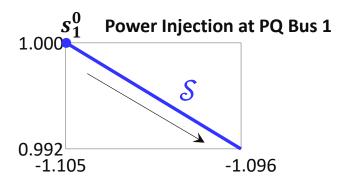


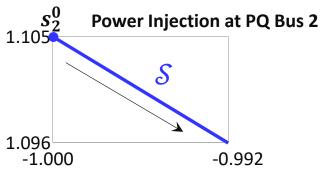




Every  $s \in S$  has a load-flow solution in V.

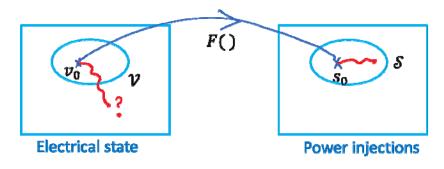
But starting from  $s^0$  and  $v = \diamond$  we exit  $\mathcal{V}$ .





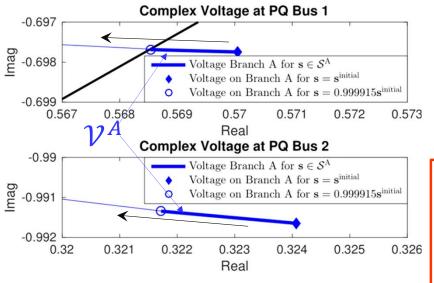
$$\mathcal{V} = \{v: |v_1|, |v_2| \in [0.9; 1.1] \text{ and } \nabla F_v \text{ non singular} \}$$
  
 $\mathcal{S} = \{s = \kappa(s_1^0, s_2^0), \kappa \in [0.992; 1]\}$   
 $v = \delta$  is in interior of  $\mathcal{V}$ , close to boundary (in  $s_1$ )

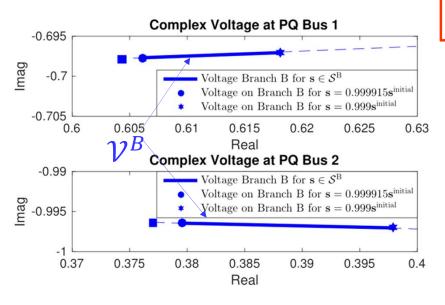
# Unique Load Flow Solution Does not Imply V-control

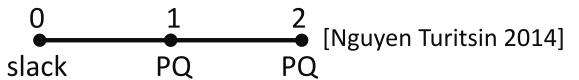


Assume that every  $s \in S$  has a unique load-flow solution in V.

This is not sufficient to guarantee that S is a domain of V-control.

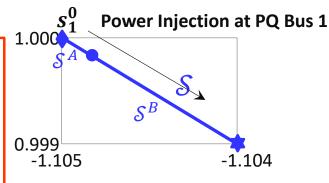


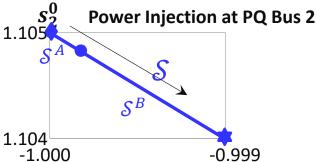




Every  $s \in S$  has a unique load-flow solution in V.

But starting from  $s^0$  and  $v = \diamond$  we exit  $\mathcal{V}$ .





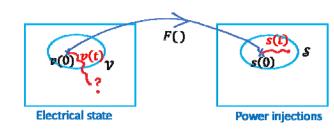
$$\mathcal{V} = \mathcal{V}^{A} \cup \mathcal{V}^{B}$$

$$\mathcal{S} = \left\{ s = \kappa(s_{1}^{0}, s_{2}^{0}), \kappa \in [0.999; 1] \right\} = \mathcal{S}^{A} \cup \mathcal{S}^{B}$$

$$\mathcal{S}^{A} = \left\{ s = \kappa(s_{1}^{0}, s_{2}^{0}), \kappa \in (0.999915; 1] \right\}$$

$$\mathcal{S}^{B} = \left\{ s = \kappa(s_{1}^{0}, s_{2}^{0}), \kappa \in [0.999; 0.999915] \right\}$$

#### Sufficient Condition for V-control

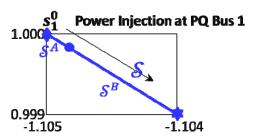


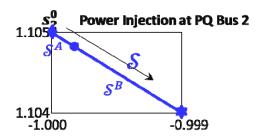
#### Theorem 3 in [Wang et al 2017b]

If

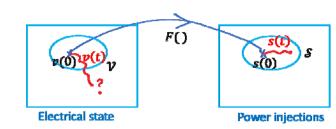
- 1.  $\mathcal{V}$  is open in  $\mathbb{C}^{3N}$
- 2. S is open in  $\mathbb{C}^{3N}$
- 3.  $\forall s \in S$  there is a unique load-flow solution in V then S is a domain of V-control.

In the previous example, neither  $\mathcal{V}$  nor  $\mathcal{S}$  is open.





# V-control and Non-Singularity



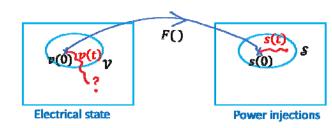
We call v non-singular if  $\nabla F_v$  is non-singular.

Theorem 3 in [Wang et al 2017b]

If

- 1.  $\mathcal{V}$  is open in  $\mathbb{C}^{3N}$
- 2. S is open in  $\mathbb{C}^{3N}$
- 3.  $\forall s \in \mathcal{S}$  there is a unique load-flow solution in  $\mathcal{V}$  then  $\mathcal{S}$  is a domain of  $\mathcal{V}$ -control. Furthermore, every  $v \in \mathcal{V}$  such that  $F(v) \in \mathcal{S}$  is non-singular.

# Uniqueness and Non-Singularity

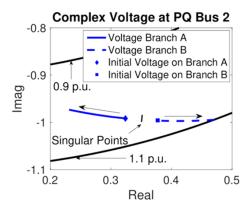


We call  $\mathcal{V}$  a domain of uniqueness iff  $\forall v \in \mathcal{V}, \forall v' \in \mathcal{V}, v \neq v' \Rightarrow F(v) \neq F(v')$ 

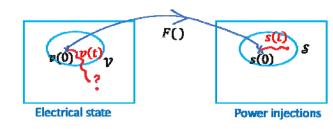
Theorem 1 in [Wang et al 2017b]

If  $\mathcal{V}$  is open in  $\mathbb{C}^{3N}$  and is a domain of uniqueness then every  $v \in \mathcal{V}$  is non-singular.

In this previous example,  $\mathcal{V}$  is not a domain of uniqueness



#### Other Sufficient Condition for V-control

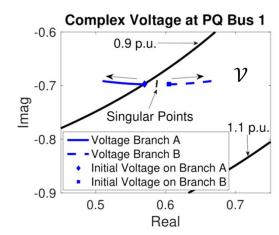


#### Lemma 2 in [Wang et al 2017b]

If

- 1.  $\mathcal{V}$  is open in  $\mathbb{C}^{3N}$
- 2.  $\mathcal{V}$  is non-singular
- 3.  $\forall s \in S$  there is a unique load-flow solution in  $\mathcal{V}$  then S is a domain of  $\mathcal{V}$ -control.

In the previous example  $\mathcal{V}$  is open but has singularities.



# Grid Agent's Admissibiliy Test, Re-Visited

Problem (P): Given a set of power injections  $S^{uncertain}$ , find a set of electrical states V such that

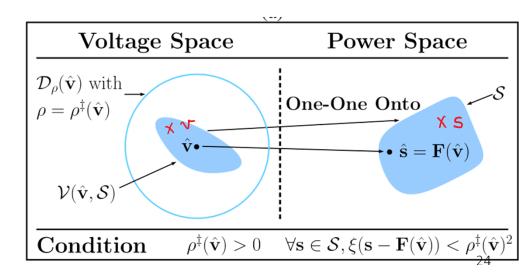
- 1.  $v(0) \in \mathcal{V}$
- 2.  $\mathcal{V}$  is open
- 3.  $\mathcal{V}$  is a domain of uniqueness
- 4.  $\mathcal{V}$  satisfies security constraints (voltages and line currents)
- 5.  $S^{uncertain} \subseteq F(V)$

By Theorems 1 and 3 (applied to  $\mathcal{V}$  and  $\mathcal{S} = F(\mathcal{V})$ ), this will imply that  $\mathcal{V}$  is non singular and  $\mathcal{S}^{uncertain}$  is a domain of  $\mathcal{V}$ -control.

# Solving (P): Part A

Use sufficient conditions for uniqueness and existence of load flow. **Theorem 1** in [Wang et al 2017a]

Given is a load-flow pair  $(\hat{v}, \hat{s})$ . If  $\xi(s - \hat{s}) < \rho^{\ddagger}(\hat{v})^2$  then s has a unique load flow solution in a disk around  $\hat{v}$  with radius  $\rho^{\ddagger}(\hat{v})$ . The norm  $\xi()$  and  $\rho^{\ddagger}$  are derived from the Y matrix.

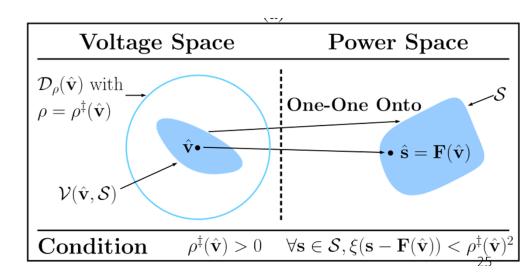


# Solving (P): Part A

Given is a set S and a load-flow pair  $(\hat{v}, \hat{s})$  such that  $\hat{s} \in S$ .

Assume (C1) 
$$\sup_{s \in \mathcal{S}} \xi(s - F(\hat{v})) < \rho^{\ddagger}(\hat{v})^2$$

Then  $\mathcal{V}(\hat{v},\mathcal{S})=\{v\in\mathbb{C}^{3N},\ F(v)\in\mathcal{S}\}\cap D_{\rho^{\ddagger}(\hat{v})}(\hat{v})\ \text{is a domain of uniqueness.}$ 



# Solving (P): Part A

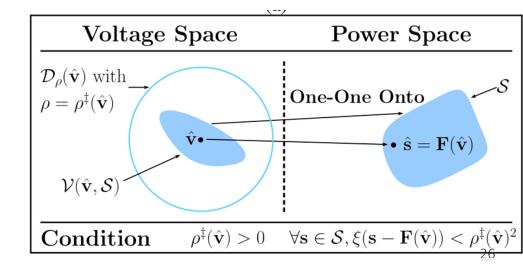
Given is a set S and a load-flow pair  $(\hat{v}, \hat{s})$  such that  $\hat{s} \in S$ .

Assume (C1) 
$$\sup_{s \in \mathcal{S}} \xi(s - F(\hat{v})) < \rho^{\ddagger}(\hat{v})^2$$

Assume in addition (C2) (Def.3 in [Wang et al 2017b])  $\sup \delta_j(s, \hat{v}) < \kappa_j \text{ for } j = 1 \dots 6N$ 

Then  $\mathcal{V}(\hat{v}, \mathcal{S})$  is secured domain of uniqueness.

If  $S^{uncertain} \subseteq S$  then Problem (P) is solved!



#### **Notation [Wang et al 2017b]**

$$\boldsymbol{\delta}_{j}(\hat{\mathbf{v}}, \mathbf{s}) \triangleq \frac{\sum_{\ell=1}^{N} |\mathbf{\Gamma}_{j,\ell}| |\mathrm{diag}(\mathbf{w}_{\ell})^{-1}| \boldsymbol{\eta}_{\ell}(\hat{\mathbf{v}}, \mathbf{s})}{u_{\min}(\hat{\mathbf{v}})(u_{\min}(\hat{\mathbf{v}}) - \rho^{\dagger}(\hat{\mathbf{v}}, \mathbf{s}))}; \qquad (6)$$

zero-load nodal voltage  $\mathbf{w} \triangleq -\mathbf{Y}_{LL}^{-1}\mathbf{Y}_{L0}\mathbf{v}_0$ 

•  $\Gamma_{j,\ell}$ ,  $j,\ell \in \mathcal{N}^{PQ}$  is the  $3 \times 3$  submatrix formed by rows  $\{3j-2,3j-1,3j\}$  and columns  $\{3\ell-2,3\ell-1,3\ell\}$  of  $\mathbf{Y}_{LL}^{-1}$ ;

| Notation                                           | Definition                                                                                                                                          |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{W}$                                       | $\mathrm{diag}(\mathbf{w})$                                                                                                                         |
| $\xi(\mathbf{s})$                                  | $\ \mathbf{W}^{-1}\mathbf{Y}_{LL}^{-1}\overline{\mathbf{W}}^{-1}\mathrm{diag}(\overline{\mathbf{s}})\ _{\infty}$                                    |
| $u_{\min}(\mathbf{v})$                             | $\min_{j \in \mathcal{N}^{PQ}, \gamma \in \{a,b,c\}} \  v_j^{\gamma}/w_j^{\gamma} $                                                                 |
| $\rho^{\ddagger}(\mathbf{v})$                      | $\frac{1}{2} \left( u_{\min}(\mathbf{v}) - \xi(\mathbf{F}(\mathbf{v})) / u_{\min}(\mathbf{v}) \right)$                                              |
| $\rho^{\dagger}(\mathbf{v},\mathbf{s}')$           | $ ho^{\ddagger}(\mathbf{v}) - \sqrt{ ho^{\ddagger}(\mathbf{v})^2 - \xi(\mathbf{s}' - \mathbf{F}(\mathbf{v}))}$                                      |
| $\boldsymbol{\eta}_{\ell}(\mathbf{v},\mathbf{s}')$ | $u_{\min}(\mathbf{v}) \mathbf{s}'_{\ell} - \mathbf{F}_{\ell}(\mathbf{v})  + \rho^{\dagger}(\mathbf{v}, \mathbf{s}') \mathbf{F}_{\ell}(\mathbf{v}) $ |

### Recap: Part A

Solve 6N + 1 optimization problems over the set  $S^{uncertain}$ .

The optimization problems are quasiconvex and maximum is always at a vertex.

If conditions (C1) and (C2) hold, then problem (P) is solved and admissibility test succeeds

(i.e. we can be certain that the grid will remain secured and non-singular as long as the power injections are in  $S^{uncertain}$ )

# Solving (P): Part B: Patching

Step A succeeds if we find an S that covers  $S^{uncertain}$ , which often works, but may fail when  $S^{uncertain}$  is large.

Solution: patching!

**Theorem 6** in [Wang et al 2017b]: Assume we find a collection of pairs  $(\hat{v}_k, \mathcal{S}_k)$  such that  $\mathcal{S}^{uncertain} \subseteq \bigcup_k \mathcal{S}_k$  + condition (11) in [Wang et al 2017b]. Then the patching is consistent, i.e. the patchwork is a domain of uniqueness, secured, and non-singular and problem (P) is solved.

#### Condition (11) in [Wang et al 2017b]

**Definition 4.** Candidate pairs  $(\hat{\mathbf{v}}, \mathcal{S})$ ,  $(\hat{\mathbf{v}}', \mathcal{S}')$  are *consistent* if

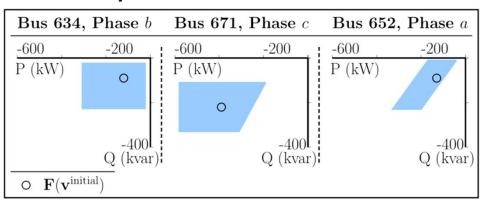
$$\|\mathbf{W}^{-1}(\hat{\mathbf{v}} - \hat{\mathbf{v}}')\|_{\infty} < \max\{\rho^{\dagger}(\hat{\mathbf{v}}) - \sup_{\mathbf{s}' \in \mathcal{S}'} \rho^{\dagger}(\hat{\mathbf{v}}', \mathbf{s}'), \rho^{\dagger}(\hat{\mathbf{v}}') - \sup_{\mathbf{s} \in \mathcal{S}} \rho^{\dagger}(\hat{\mathbf{v}}, \mathbf{s})\}.$$
(11)

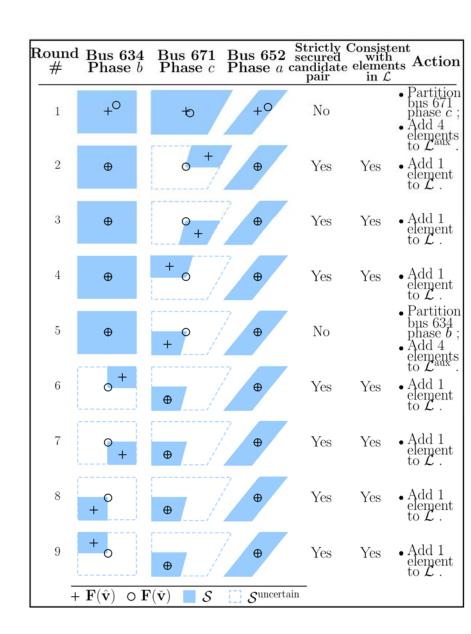
# The Patching Algorithm, Example

The algorithm tries if a single  $(\hat{v}, \mathcal{S})$  works, else breaks the set  $\mathcal{S}$  into pieces and patches them.

IEEE 13-bus feeder, 3-phase configuration 602.

#### **Uncertainty set**





#### **Performance Evaluation**

IEEE 37 bus feeder.  $\mathcal{S}^{uncertain} = [0, \kappa] \times$  benchmark values on all loaded phases. For  $0 \le \kappa \le 1.15$  algorithm declares  $\mathcal{S}^{uncertain}$  safe in one partition and <20 msec runtime on one i7; for  $\kappa > 1.15$  the algorithm needs multiple partitions but lowest voltage bound is close to limit.

IEEE 123 bus feeder.  $\mathcal{S}^{uncertain} = \left[1 - \frac{\kappa}{2}, 1 + \frac{\kappa}{2}\right] \times \text{benchmark values}$  on all loaded phases. For  $0 \le \kappa \le .31$  algorithm declares  $\mathcal{S}^{uncertain}$  safe in one partition and <30 msec runtime; for  $\kappa > .31$  the algorithm needs multiple partitions but highest branch current is close to limit.

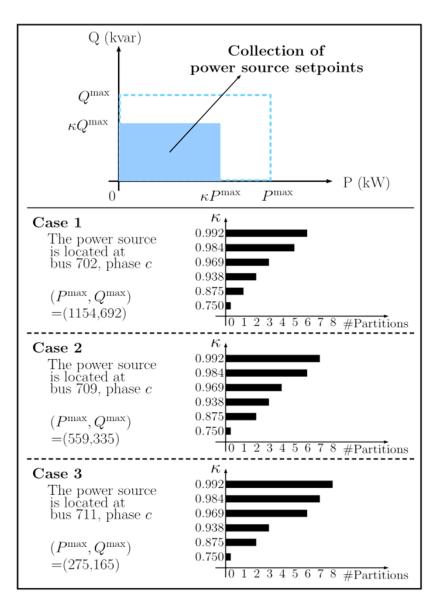
#### Performance Evaluation

IEEE 37 bus feeder. One source added to one unloaded phase. Uncertainty set as shown. We limit the number of partitions to 8.

For  $\kappa \leq 0.750$  no partition.

For  $\kappa$  =0.992, 8 partitions and runtime < 200 msec. Low voltage bound is close.

Incidentally, lowest voltage is not at (0,0) nor  $(P^{\max},Q^{\max})$  (non-monotonicity)



#### Conclusions

Controlling state of a grid by controlling power injections is needed in dynamic settings.

The theoretical problem is an inverse problem. It can be solved using the concept of V-control.

Uniqueness, existence, topological openness play an essential role.

A domain of uniqueness (of electrical states) is necessarily non-singular.

#### References

- http://smartgrid.epfl.ch
- [Bernstein et al 2015, Reyes et al 2015a] Andrey Bernstein, Lorenzo Reyes-Chamorro, Jean-Yves Le Boudec, Mario Paolone, "A Composable Method for Real-Time Control of Active Distribution Networks with Explicit Power Setpoints, Part I and Part II", in Electric Power Systems Research, vol. 125, num. August, p. 254-280, 2015.
- [Bernstein et al 2015b] Bernstein, A., Le Boudec, J.Y., Reyes-Chamorro, L. and Paolone, M., 2015, June. Real-time control of microgrids with explicit power setpoints: unintentional islanding. In PowerTech, 2015 IEEE Eindhoven (pp. 1-6). IEEE.
- [Mohiuddin et al 2017] Mohiuddin, M., Saab, W., Bliudze, S. and Le Boudec, J.Y., 2017. Axo: Detection and Recovery for Delay and Crash Faults in Real-Time Control Systems. IEEE Transactions on Industrial Informatics.
- [Nguyen Turitsin 2014] Nguyen, H.D. and Turitsyn, K.S., 2014, July. Appearance of multiple stable load flow solutions under power flow reversal conditions. In PES General Meeting | Conference & Exposition, 2014 IEEE (pp. 1-5). IEEE.
- [Pignati et al 2015] M. Pignati et al ,"Real-Time State Estimation of the EPFL-Campus Medium-Voltage Grid by Using PMUs", Innovative Smart Grid Technologies (ISGT2015)
- [Popovic et al 2016] Popovic, M., Mohiuddin, M., Tomozei, D.C. and Le Boudec, J.Y., 2016. iPRP—The parallel redundancy protocol for IP networks: Protocol design and operation. IEEE Transactions on Industrial Informatics, 12(5), pp.1842-1854.
- [Reyes et al, 2018] Reyes-Chamorro, L., Bernstein, A., Bouman, N.J., Scolari, E., Kettner, A., Cathiard, B., Le Boudec, J.Y. and Paolone, M., 2018. Experimental Validation of an Explicit Power-Flow Primary Control in Microgrids. IEEE Transactions on Industrial Informatics.
- [Saab et al 2017] W. Saab, M. M. Maaz, S. Bliudze and J.-Y. Le Boudec. Quarts: Quick Agreement for Real-Time Control Systems. 22nd IEEE International Conference on Emerging Technologies And Factory Automation (ETFA), Limassol, Cyprus, 2017.015 IEEE World Conference on (pp. 1-4). IEEE.
- [Wang et al. 2016] Wang, C., Bernstein, A., Le Boudec, J.Y. and Paolone, M., 2016. Explicit conditions on existence and uniqueness of load-flow solutions in distribution networks. IEEE Transactions on Smart Grid.
- [Wang et al. 2017b] Wang, C., Bernstein, A., Le Boudec, J.Y. and Paolone, M., 2017. Existence and uniqueness of load-flow solutions in three-phase distribution networks. IEEE Transactions on Power Systems, 32(4), pp.3319-3320.
- [Wang et al. 2017b] Wang, C., Le Boudec, J.Y. and Paolone, M., 2017. Controlling the Electrical State via Uncertain Power Injections in Three-Phase Distribution Networks. IEEE Transactions on Smart Grid.