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Mean Field  

A model introduced in Physics 
interaction between particles is via distribution of states of all particle 
 

An approximation   method for a large collection of particles 
assumes independence in the master equation 

 

Why do we care in I&C? 
Model interaction of many objects:  

Distributed systems, communication protocols, game theory, self-
organized systems 
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Mean Field Interaction Model 

Time is discrete 

 

N objects, N large 

Object n has state Xn(t) 

(XN
1(t), …, XN

N(t)) is Markov 
 

Objects are observable only 
through their state 

“Occupancy measure” 
MN(t) = distribution of object states 
at time t 
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Mean Field Interaction Model 

Time is discrete 

 

N objects, N large 

Object n has state Xn(t) 

(XN
1(t), …, XN

N(t)) is Markov 
 

Objects are observable only 
through their state 

“Occupancy measure” 
MN(t) = distribution of object states 
at time t 

 

Theorem  [Gast (2011)] 
 MN(t) is Markov 

 

Called “Mean Field Interaction 
Models” in the Performance 
Evaluation community 
[McDonald(2007), Benaïm and Le 
Boudec(2008)] 
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A Few Examples Where Applied 

Never 

again ! 

E.L. 
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Example: 2-Step Malware 

Mobile nodes are either 

`S’  Susceptible 

`D’ Dormant 

`A’ Active 

Time is discrete 

Nodes meet pairwise (bluetooth) 

One interaction per time slot,  
I(N) = 1/N; mean field limit is an ODE  
 

State space is finite  
= {`S’ , `A’ ,`D’} 

 

Occupancy measure is 
M(t) = (S(t), D(t), A(t)) with  
S(t)+ D(t) + A(t) =1 

S(t) = proportion of nodes in state `S’ 
 
[Benaïm and Le Boudec(2008)] 

Possible interactions: 
 

1. Recovery 

D -> S 

2. Mutual upgrade  

D + D -> A + A 

3. Infection by active 

D + A -> A + A 

4. Recovery 

A -> S 

5. Recruitment by Dormant 

S + D -> D + D 

 Direct infection 

S -> D 

6. Direct infection 

S -> A 



A(t) 
Proportion of nodes  

In state i=2 

9 

Simulation Runs, N=1000 nodes 
Node 1 

Node 2 

Node 3 

D(t) 
Proportion of nodes  

In state i=1 

State = D 

State = A 

State = S 
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Sample Runs with N = 1000 



Example: TCP and ECN 

[Tinnakornsrisuphap and 
Makowski(2003)] 
 
 
 
 
 
 
 
 
 
 
At, every time step, all connections 
update their state: I(N)=1 

 

Time is discrete, mean field limit is 
also in discrete time (iterated map)  

 

  

Similar examples:  
 HTTP Metastability 
[Baccelli et al.(2004)Baccelli, 
Lelarge, and McDonald] 
 
 Reputation System [Le Boudec et 
al.(2007)Le Boudec, McDonald, 
and Mundinger]  
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ECN router 

queue length R(t) 

ECN Feedback q(R(t)) 

N  connections 

1 

n 

N 



The Importance of Being Spatial 

Mobile node state = (c, t) 
c = 1 … 16 (position) 

     t  ∊ R+ (age of gossip) 
 

Time is continuous, I(N) = 1 

Occupancy measure is  
Fc(z,t) = proportion of nodes that at 
location c and have age ≤ z 
 
[Age of Gossip, Chaintreau et 
al.(2009)]  
 

  

12 
Qqplots simulation vs mean field 

no class           16 classes 
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What can we do with a Mean Field 
Interaction Model ? 

Large N asymptotics, 
Finite Horizon 

 fluid limit of occupancy 
measure (ODE) 

decoupling assumption 

 (fast simulation) 

Issues 

When valid 

How to formulate the 
fluid limit 

Large t  asymptotic 

Stationary approximation 
of occupancy measure 

Decoupling assumption 
  

Issues 
When valid 



CONVERGENCE TO ODE 
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E. L. 

2. 



Intensity I(N) 

I(N)  = expected number of transitions per object 
per time unit 

 

A mean field limit occurs when we re-scale time by 
I(N) 
i.e. we consider XN(t/I(N)) 

 

 

I(N) = O(1): mean field limit is in discrete time  
 [Le Boudec et al (2007)] 
 
I(N) = O(1/N): mean field limit is in continuous time 
[Benaïm and Le Boudec (2008)] 
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The Mean Field Limit 

Under very general conditions (given later) 
the occupancy measure converges,  in law, to a 
deterministic process, m(t),  called the mean 
field limit 
 

 
 

Finite State Space => ODE 
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Mean Field Limit 
N = +∞ 

Stochastic  

system 
N = 1000 
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Sufficient Conditions for Convergence 

[Kurtz 1970], see also [Bordenav et al 2008], [Graham 2000] 

Sufficient conditon verifiable by inspection: 
 
 
 
 
 
 
 
Example: I(N) = 1/N 
Second moment of number of objects  
affected in one timeslot = o(N) 

Similar result when mean field limit is in discrete time  
[Le Boudec et al 2007] 
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Example: Convergence to Mean Field 

Rescale time such that one time 
step = 1/N 

 

Number of transitions per time 
step is bounded by 2, therefore 
there is convergence to mean field 
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= 

= 

= 



Formulating the Mean Field Limit 
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drift = 

= 

= 

= 

Drift = sum over all transitions of 
   
  proba of transition 
 x 
Delta to system state MN(t) 
 

Re-scale drift by intensity 
 

Equation for mean field limit is 
 

    dm/dt  = limit of  
         rescaled drift  

 

Can be automated 
 
http://icawww1.epfl.ch/IS/tsed 



Convergence to Mean Field 

For the finite state space 
case, there are many simple 
results, often verifiable by 
inspection 
 
For example [Kurtz 1970] or 
[Benaim, Le Boudec 2008] 

For the general state space, 
things may be more complex 
(fluid limitz is not an ODE, 
e.g. [Chaintreau et al, 2009]) 

21 E.L. 

E. L. 



 FINITE HORIZON : 
FAST SIMULATION AND 
DECOUPLING ASSUMPTION 

3. 
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Convergence to Mean Field Limit is 
Equivalent to Propagation of Chaos  
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Propagation of Chaos  =  
Decoupling Assumption 

(Propagation of Chaos) 
 
k objects are asymptotically independent with common law equal to the 
mean field limit, for any fixed k 
 
 
 

 

 

(Decoupling Assumption)  
(also called Mean Field Approximation, or Fast Simulation)  
The law of one object is asymptotically as if all other objects were drawn 
randomly with replacement from  m(t) 

24 



25 

The Two Interpretations of the Mean Field 
Limit 

At any time t 
 
 
 
 
 
 
 

Thus for large t : 

Prob (node n is dormant) ≈ 0.3 

Prob (node n is active) ≈ 0.6  

Prob (node n is susceptible) ≈ 0.1 

 

m(t)  approximates both 

1. the occupancy measure MN(t) 

2. the state probability for one object at time 
t, drawn at random among N  

 

 

 



« Fast Simulation » 
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pdf of node 1 

pdf of node 2 

pdf of node 3 

occupancy measure 

(t) 

pN
j(t|i)  is the probability 

that a node that starts in 
state i is in state j at time t: 

 

Then 

 where p(t|i) is a continuous 
time, non homogeneous 
process 

 

 

 

 Same ODE as mean field 
limit, but with different 
initial condition 
 
 
 
 
 



The Decoupling Assumption 

The evolution for one object  as if the other 
objects had a state drawn randomly and 
independently from the distribution m(t) 

 

Is valid over finite horizon whenever mean field 
convergence occurs 

 

Can be used to analyze or simulate evolution of 
k objects 
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INFINITE HORIZON: FIXED POINT 
METHOD AND  DECOUPLING 
ASSUMPTION 

4. 
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The Fixed Point Method 
Decoupling assumption says  
distribution of prob for state of one 
object is approx. m(t) with 

 

We are interested in stationary regime, 
i.e we do 

 

This is the « Fixed Point Method » 

Example: in stationary regime: 
Prob (node n is dormant) ≈ 0.3 

Prob (node n is active) ≈ 0.6  

Prob (node n is susceptible) ≈ 0.1 

 

Nodes m and n are independent 
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Example: 802.11 Analysis, Bianchi’s Formula 

  
 
802.11 single cell 

mi = proba one node is in 
backoff stage I 

= attempt rate 

 = collision proba  

 

 See [Benaim and Le 
Boudec , 2008] for this 
analysis 

Solve for  Fixed Point: 

Bianchi’s 

Fixed 

Point 

Equation 

[Bianchi 1998] 

ODE for mean field limit 
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2-Step Malware, Again 

Same as before except 
for one parameter 
value :  
h = 0.1 instead of 0.3 

 

The ODE does not 
converge to a unique 
attractor (limit cycle) 

The equation  
F(m) = 0 
has a unique solution 
(red cross) – but it is 
not the stationary 
regime ! 
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Example Where Fixed Point Method Fails                               

In stationary regime, m(t) = (D(t), A(t), 
S(t)) follows the limit cycle 

Assume you are in stationary regime 
(simulation has run for a long time) and 
you observe that one node, say n=1, is in 
state ‘A’ 

It is more likely that m(t) is in region R 

Therefore, it is more likely that some 
other node, say n=2, is also in state ‘A’ 

 

 

This is synchronization  

R 

h=0.1 
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Joint PDFs of Two Nodes in Stationary 
Regime 

Mean of Limit of N  = pdf of one node in stationary regime 

Stationary point of ODE  

pdf of node 2 in stationary 

regime, given node 1 is D 

pdf of node 2 in stationary 

regime, given node 1 is S 

pdf of node 2 

in stationary 

regime, 

given node 1 

is A 
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Where is the Catch ? 

Decoupling assumption says that nodes m and n are 
asymptotically independent  

 

There is mean field convergence for this example 

 

But we saw that nodes may not be asymptotically 
independent 

 

 

… is there a contradiction ?  



The decoupling assumption may not hold in stationary regime, 
even for perfectly regular models 
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mi(t) mj(t) mi(t) mj(t) 

Mean Field  

Convergence 

Markov chain is ergodic 

≠ 



Result 1: Fixed Point Method Holds under (H)  

Assume that 
 

(H) ODE has a unique global stable point to which all 
trajectories converge 
 

Theorem [e.g. Benaim et al 2008] : The limit of stationary 
distribution of MN is concentrated on this fixed point 

The decoupling assumption holds in stationary regime 
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Here:  
Birkhoff center = 
limit cycle  fixed 
point 

 

Theorem in [Benaim] 
says that the 
stochastic system for 
large N is close to the 
Birkhoff center,  
 
i.e. the stationary 
regime of ODE is a 
good approximation 
of the stationary 
regime of stochastic 
system 

Result 2: Birkhoff Center 



Stationary Behaviour of Mean Field Limit is 
not predicted by Structure of Markov Chain 

MN(t) is a Markov chain on  
SN={(a, b, c) ≥ 0, a + b + c =1,  a, b, c 
multiples of 1/N} 

MN(t) is ergodic and 
aperiodic 

Depending on 
parameter, there is or is 
not a limit cycle for m(t) 

 

SN (for N = 200) 

h = 0.3 

h = 0.1 



Example: 802.11 with Heterogeneous Nodes 

[Cho et al, 2010] 
 
Two classes of nodes with 
heterogeneous parameters 
(restransmission 
probability) 
 
Fixed point equation has a 
unique solution, but this is 
not the stationary proba 
 
 
There is a limit cycle 
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 Result 3: In the Reversible Case, the Fixed 
Point Method Always Works 

Definition Markov Process X(t) on enumerable 
state E space, with transition rates q(i,j) is 
reversible iff  

1. it is ergodic  2.  p(i) q(i,j) = p(j) q(j,i) for some p 

 

 

 

 

 

Stationary points = fixed points  

If process with finite N is reversible, the stationary 
behaviour is determined only by fixed points. 
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A Correct Method 

1. Write dynamical system equations  in 
transient regime   

 

2. Study the stationary regime of 
dynamical system 

if converges to unique stationary point m* 
then make fixed point assumption 

else objects are coupled in stationary regime 
by mean field limit m(t)  

 

Hard to predict outcome of 2 (except for 
reversible case) 

41 



Conclusion 

Mean field models are 
frequent in large scale 
systems 
 

Validity of approach is often 
simple by inspection 

 

Mean field is both 

ODE for fluid limit 

Fast simulation using 
decoupling assumption 

Decoupling assumption 
holds at finite horizon; may 
not hold in stationary 
regime.  

 

Stationary regime is more 
than stationary points, in 
general 

(except for reversible case)  
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Thank You … 
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