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1
MEAN FIELD INTERACTION MODEL



Mean Field

B A model introduced in Physics

» interaction between particles is via distribution of states of all particle

B An approximation method for a large collection of particles

» assumes independence in the master equation

B Why do we care in [&C?

» Model interaction of many objects:

» Distributed systems, communication protocols, game theory, self-
organized systems



Mean Field Interaction Model

B Time is discrete B “Occupancy measure”
MN(t) = distribution of object states

attime t

B N objects, N large
B Object n has state X, (t)
(X (), .. X"\ (t))is Markov

B Objects are observable only
through their state



Mean Field Interaction Model

B Time is discrete B “Occupancy measure”
MN(t) = distribution of object states

attime t

B N objects, N large

B Object n has state X,(t) B Theorem [Gast (2011)]
Nre

B (XV,(¢), .., XVy(t)) is Markov M?(t) is Markov

B Called “Mean Field Interaction
Models” in the Performance
Evaluation community
[McDonald(2007), Benaim and Le
Boudec(2008)]

B Objects are observable only
through their state
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Example: 2-Step Malware

Bl Mobile nodes are either
» S’ Susceptible
» D’ Dormant
» A’ Active

B Timeis discrete

Nodes meet pairwise (bluetooth)

B One interaction per time slot,
I(N) = 1/N; mean field limit is an ODE

B State space is finite
={S,'A’, D’}

B Occupancy measure is
M(t) = (S(t), D(t), A(t)) with
S(t)+ D(t) + A(t) =1

S(t) = proportion of nodes in state 'S’

[Benaim and Le Boudec(2008)]

B Possible interactions:

6.

Recovery
» D->S
Mutual upgrade
» D+D->A+A
Infection by active
» D+A->A+A
Recovery
» A->S
Recruitment by Dormant
» S+D->D+D
Direct infection
» S->D
Direct infection
» S->A



Simulation Runs, N=1000 nodes
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Sample Runs with N = 1000
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Example: TCP and ECN

B [Tinnakornsrisuphap and B Time is discrete, mean field limit is
Makowski(2003)] also in discrete time (iterated map)

ECN Feedback q(R(t))

B Similar examples:
HTTP Metastability
- [Baccelli et al.(2004)Baccelli,

ECN router

n
%'%ueue length R(t) Lelarge, and McDonald]
N connections Reputation System [Le Boudec et
al.(2007)Le Boudec, McDonald,
and Mundinger]

At, every time step, all connections
update their state: I(N)=1

11



The Importance of Being Spatial

al.(2009)]

B Mobile node state = (¢, t)
c=1...16 (position)

t € R*(age of gossip)

B Occupancy measure is
F_(zt) = proportion of nodes that at

location c and have age < z

no class 16 classes

B Time is continuous, [(N) =1

[Age of Gossip, Chaintreau et
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What can we do with a Mean Field
Interaction Model ?

M Large N asymptotics, B Large t asymptotic
Finite Horizon » Stationary approximation
» fluid limit of occupancy of occupancy measure
measure (ODE) » Decoupling assumption
» decoupling assumption
(fast simulation) B [ssues
M [ssues » When valid
» When valid

» How to formulate the
fluid limit

13
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CONVERGENCE TO ODE

/\\

’-3\

14



Intensity /(N)

B /(N) = expected number of transitions per object
per time unit

B A mean field limit occurs when we re-scale time by

I(N)
i.e. we consider X"(t/I(N))

B I(N) =0(1): mean field limit is in discrete time
|Le Boudec et al (2007)]

[(N) =0(1/N): mean field limit is in continuous time
|Benaim and Le Boudec (2008)]
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The Mean Field Limit

B Under very general conditions (given later)
the occupancy measure converges, inlaw, to a
deterministic process, m(t), called the mean

field limit ,
MN (I(N)) — m(t)

B Finite State Space => ODE

16



Mean Field Limit
N =+x

Stochastic

system
N=1000
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Sufficient Conditions for Convergence

B [Kurtz 1970], see also [Bordenav et al 2008], [Graham 2000]
B Sufficient conditon verifiable by inspection:

[Benaim and Le Boudec(2008), loannidis and Marbach(2009)]

o Let WN(k) be the number of objects that do a transition in
time slot k. Note that E (WN(k)) = NI(N), where

[(N) Hintensity. Assume
E(WN(k)2) < B(N) with lim /(N)3(N)=0
N— oo

Example: [(N) =1/N
Second moment of number of objects
affected in one timeslot = o(N)

B Similar result when mean field limit is in discrete time
|Le Boudec et al 2007]
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Example: Convergence to Mean Field

Example: 2-Step Malware

W Mobile nodes are either
» 'S Susceptible
» 'D'Dormant
» “A’Active
W Timeis discrete
W Nodesmeet pairwise (bluetooth)

W One interaction per time slot,
I(N) = 1/N; mean field limit is an ODE

W State space is finite
={s',’A",'D’}

W Occupancy measureis
M(t) = (S(t). D(t). A(t)) with
S(t)+D(t) +A(t) =1

S(t) = proportion of nodesin state S’

[Benaim and Le Boudec(2008)]

M Possibleinteractions:

1. Recovery
» D->5

2. Mutual upgrade
» D+D->A+A

3. Infection by active
» D+A->A+A

4. Recovery
» A->5

5. Recruitment by Dormant
» S+D->D+D
Direct infection
» S->D

6. Directinfection
» S-=A

B Rescale time such that one time
step=1/N

B Number of transitions per time
step is bounded by 2, therefore
there is convergence to mean field

oD

ot
0A

ot
aS

ot

—5pD —2\D? — JSAL +

2AD? + 5A

D (g +7D)S

daA + aS

h+D

opD +04A — (C}:U + TD)S —alS
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Formulating the Mean Field Limit

Drift = sum over all transitions of

proba of transition
X
Delta to system state MN(t)

Re-scale drift by intensity
Equation for mean field limit is

dm/dt = limit of
rescaled drift

Can be automated

http://icawww1.epfl.ch /IS /tsed

oD
ot
JA

ot
as

ot

case prob effecton (D, A, S)
1 Dép +(=1,0,1)
2| DAREA 7 (—2,42.0)
3| ABuip N (=1 +1,0)
4 Ad 4 +(0,—1,+1)
5| S(ao+rD) | A(+1,0,-1)
6 Sa (0,41, —1)
drift =
—Dédp — QD)\NP AH D+ S(ag+rD)
2DNEPSE + AzB,fD Ads+ Sa
Dop + Ady — S(ag+1rD) — Sa
—0pD —2\D? — 3A b_, (g +1rD)S
h+ D
2\D? + D
opD +04A — (g +71rD)S — aS
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Convergence to Mean Field

B For the general state space,
_ OJ things may be more complex
< h (fluid limitz is not an ODE,
e.g. [Chaintreau et al, 2009])

E. L.

B For the finite state space
case, there are many simple
results, often verifiable by
inspection

For example [Kurtz 1970] or
|[Benaim, Le Boudec 2008]




3.

FINITE HORIZON :

FAST SIMULATION AND
DECOUPLING ASSUMPTION

22



Convergence to Mean Field Limit is
Equivalent to Propagation of Chaos

Definition 1.1 Let XV = (XIV. ..., X¥) be an exchangeable sequence
of processes in P(S) and m € P(S) where S is metric complete separa-
ble. (X™)x is m-chaotic iff for every k: L(XY, .. X)) = m®...@m
as N — oc.

Theorem 1.1 ([Sznitman(1991)]) (X¥)x is m-chaotic then the occu-
def - . . :

pancy measure MY = % _f:l Oxn converges in probability (and in

law) to m.

If the occupancy measure converges in law to m then (X )y is m-

chaotic.

23



Propagation of Chaos =
Decoupling Assumption

B (Propagation of Chaos)

k objects are asymptotically independent with common law equal to the
mean field limit, for any fixed k

c (X1 (f(—j\f)) X (f(—fif))) Smt) e .. @ m(t)

B (Decoupling Assumption)
(also called Mean Field Approximation, or Fast Simulation)
The law of one object is asymptotically as if all other objects were drawn
randomly with replacement from m(t)

24



The Two Interpretations of the Mean Field

Limit |
B Atanytimet oaf
P(Xu(t) =' A)) ~ A (i) gl —
N <
t A
P(Xm@) =" D X,(t) = A) =~ D(—)A(—)
(Xm(t) n(t) ) T I

where (D, A, S) is solution of ODE o

0 1 L 1 1 1 1 1 1 L
0 0.1 0.2 03 04 05 06 07 08 09

B Thus forlarge ¢ : | Dormant

» Prob (node n is dormant) = 0.3 os}
» Prob (node n is active) = 0.6 it
» Prob (node n is susceptible) = 0.1

B m(t) approximates both o}
1. the occupancy measure MN(t) o3t

2. the state probability for one object at time
t, drawn at random among N




« Fast Simulation »

N " . ny =
B p"(t]i) isthe probablh.ty
that a node that starts in
state 11s in state j at time t:

p} (i) = P(XY(t) = jIXN(0) = i)
W Then pY(t/Nli) =~ p;(tli)
where p(t[i) is a continuous
time, non homogeneous

process

%ﬁ(tli) = pltli)y" A(m(t)))
d .

O
2
—

O
<

dt
B Same ODE as mean field
limit, but with different
initial condition

06+

05+

04r-

03r

Q

—n(t) = () A@(t))) = Fit) e

fofnode2

ccupancy measure

(D). . .

+ . + +

pdf of node 3

0.‘4 0.‘5
Dormant

0.6

0

'7p8?0?%0de1
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The Decoupling Assumption

B The evolution for one object as if the other
objects had a state drawn randomly and
independently from the distribution m(t)

B Is valid over finite horizon whenever mean field
convergence occurs

B Can be used to analyze or simulate evolution of
k objects

27



4.

INFINITE HORIZON: FIXED POINT
METHOD AND DECOUPLING
ASSUMPTION

28



The Fixed Point Method

B Decoupling assumption says
distribution of prob for state of one

. o dm
object is approx. m(t) with™" _ (34

B We are interested in stationary regime,
iewedo F(m) = 0

0 1 L 1 1 1 1 1 1 L
0 0.1 0.2 03 04 05 06 07 08 09

Dormant
B This is the « Fixed Point Method » 1

B Example: in stationary regime:

» Prob (node nis dormant) = 0.3 ot
» Prob (node nis active) = 0.6 S
» Prob (node n is susceptible) = 0.1

Active

» Nodes m and n are independent




Example: 802.11 Analysis, Bianchi’s Formula

802.11 single cell

m, = proba one node is in
backoff stage I

B= attempt rate

v = collision proba

See [Benaim and Le
Boudec, 2008] for this
analysis

ODE for mean field limit

dmg o = ~
—— = Moo + B(m) (1 —~(m)) + gemgy(m)
dm,;
= —m;q; + m_1qi_1v(m 1 =1,.... K
T q 14i—1 ( ) ;
3(0m) = Sy g,
".(I_i) — 6—;5(171)
Solve for Fixed Point:
~ 1
ﬂzz p— F i
. K /
Bianchi’s N = ] — e_'*'j
Fixed K ke
Point |+ 5 __ D k=0 Y
Equation | ™ 7 K Ak
[Bianchi 1998] Zkzo qr
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2-Step Malware, Again

1

B Same as before except o
for one parameter |-

value : [ . g[®
h=0.1instead of 0.3 & 15"

-

0

<
[ - Q4p
k] - Q3
e - 2zt

B The ODE does not Y I
converge to a unique T e e e e STe s e e G e
attractor (limitcycle) N~ | I~

B The equation J |
F(m) = 0 e ]
has a unique solution ; 1§
(red cross) - but it is L—«»/ I
not the stationary I
regime ! T

Active
(=]

o q’

n i 1 L o i 1 f " . 1 1 i 1
06 a7 0.8 oe 1 0 o1 0z 0.3 04 0s 06 07 oe 08 1

s
Dormant Dormant
31
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Example Where Fixed Point Method Fails

B In stationary regime, m(t) = (D(t), A(t),
S(t)) follows the limit cycle

B Assume you are in stationary regime
(simulation has run for a long time) and
you observe that one node, say n=1, is in
state ‘A’

Active
g 8 8 8 8 8 .
T T T T

B It is more likely that m(t) is in regionR | _,, R e e 6

B Therefore, it is more likely that some
other node, say n=2, is also in state ‘A’

Active
I - A -
' @

B This is synchronization




Joint PDFs of Two Nodes in Stationary

Regime
Stationary point of ODE
1 \ T
0ol Mean of Limit of @N = pdf of one node in stationary regime
081 .
pdf of node 2 077 §
In stationary i N |
regime, o > % >
B, -3 b
givennode 1 4 osr |
is A <
0.4 -
2y pdf of node 2 in“stationary |
94_ regime, given node1.is D i
pdf of node 2 in stationary
. . 011 . |
regime, given nqde 11is S
0 | | | | | | | |

|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Dormant
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Where is the Catch ?

B Decoupling assumption says that nodes m and n are
asymptotically independent

B There is mean field convergence for this example

B But we saw that nodes may not be asymptotically
independent

... 1s there a contradiction ?

34



Markov chain is ergodic

P(XN(t/N) =iand XN (t/N) = j) ———>7,"

i.7
N oo Mean Field N
o Convergence o
: T
m(t) my(t) # L LT mt) mt)de

B The decoupling assumption may not hold in stationary regime,
even for perfectly regular models

35



Result 1: Fixed Point Method Holds under (H)

B Assume that

(H) ODE has a unique global stable point to which all
trajectories converge

B Theorem [e.g. Benaim et al 2008] : The limit of stationary
distribution of M" is concentrated on this fixed point

B The decoupling assumption holds in stationary regime

36



Result 2: Birkhoff Center

B Here:

Birkhoff center =
limit cycle U fixed
point T
f
B Theorem in [Benaim] -+ 1 =
says that the 1 9

[-]
=]

stochastic system for

large N is close tothe ° ° T 0T T
Birkhoff center, | ]
i.e. the stationary oo
regimeof ODEisa = - 1 e"
good approximation g* 18"
of the stationary kv_,___,.»
regime of stochastic .
system - {2

 Darmant Dormant



Stationary Behaviour of Mean Field Limit is
not predicted by Structure of Markov Chain

B M"(t)is a Markov chain on B Depending on
fﬁ;{ég’lﬁg ?le;)f\]? rBRESL A bie parameter, there is or is
B MV(t)is ergodic and not a limit cycle for m(t)
aperiodic — -
SN (for N = 200)

0 0.1 02 03 0.4 0.5 06 07 0.8 09 1
Dormant




Example: 802.11 with Heterogeneous Nodes

B [Choetal, 2010]

Two classes of nodes with
- heterogeneous parameters

oan-- ADTMCL  — (restransmission
oos] probability)
o Fixed point equation has a

unique solution, but this is
not the stationary proba

002 v, b

Short—term occupancy measure of stage 1 & 17

0 ! ! ! L .
045 05 055 06 0685 07 075 08 08 09 095
Short—term occupancy measure of stage 0

There is a limit cycle



Result 3: In the Reversible Case, the Fixed
Point Method Always Works

B Definition Markov Process X(t) on enumerable
state E space, with transition rates q(ij) is

reversible iff
1.itis ergodic 2. p(i) q(ij) = p(j) q(j,i) for some p

Theorem 1.2 ([Le Boudec(2010)]) Assume some process YN (t) converges at

any fixed t to some deterministic system y(t) at any finite time. Assume the
processes YN are reversible under some probabilities TI" . Let I1 € P(E) be

a limit point of the sequence IIV. 1 is concentrated on the set of stationary

points S of the fluid limit y(t)

B Stationary points = fixed points
B If process with finite N is reversible, the stationary
behaviour is determined only by fixed points.

40



A Correct Method

B 1. Write dynamical system equations in
transient regime

B 2. Study the stationary regime of
dynamical system

» if converges to unique stationary point m*
then make fixed point assumption

» else objects are coupled in stationary regime
by mean field limit m(t)

B Hard to predict outcome of 2 (except for
reversible case)

41



Conclusion

B Mean field models are B Decoupling assumption
frequent in large scale holds at finite horizon; may
systems not hold in stationary

regime.

B Validity of approach is often
simple by inspection B Stationary regime is more

than stationary points, in

B Mean field is both general

» ODE for fluid limit (except for reversible case)

» Fast simulation using
decoupling assumption

42



Thank You ...

43
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