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1
MEAN FIELD INTERACTION MODEL



Mean Field

B A model introduced in Physics

» interaction between particles is via distribution of states of all particle

B An approximation method for a large collection of particles

» assumes independence in the master equation

B Why do we care in information and communication systems ?
» Model interaction of many objects:

» Distributed systems, communication protocols, game theory, self-
organized systems
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Mean Field Interaction Model

B Time is discrete (this
talk) or continuous

B N objects, N large
M Object n has state X, (¢t)

WXV (t) .., XVy(t))is
Markov

M Objects are observable
only through their state

B “Occupancy measure”
MV (t) = distribution of
object states at time t



Example: 2-Step Malware

B Mobile nodes are either
» 'S’ Susceptible
» D’Dormant
» A’ Active
M Time is discrete
M Transitions affect 1 or 2 nodes

M State space is finite
={S,'A’, D’}

M Occupancy measure is
M(t) = (S(t), D(t), A(t)) with
S(t)+ D(t) + A(t) =1

S(t) = proportion of nodes in state 'S’

[Benaim and Le Boudec(2008)]

6.

Recovery
» D->S
Mutual upgrade
» D+D->A+A
Infection by active
» D+A->A+A
Recovery
» A->S
Recruitment by Dormant
» S+D->D+D
Direct infection
» S->D
Direct infection
» S->A



2-Step Malware - Full Specification

At every time step, pick one node
unif at random

If node iIs in state D:

- With proba 6, mutate to S

- With proba A N?V_l, meet

another D node and both
mutate to A
If node is in state A:

. D
- With proba 8 — change
one D node to A
- With Proba §, mutate to S
If node is in state S
- With proba rD meeta D

node and become infected
D

1. Recovery

> » D->S§

/ 2. Mutual upgrade

/———} » D+D->A+A

3. Infection by active
—~> » D+A->A+A

/ 4. Recovery

= » A->S
_——"|'5. Recruitment by

Dormant

_____———=»5+D->D+D

Direct infection

- With proba a, become /% > 5=D

infected D
- With proba a become
infected A

_

6. Directinfection

%b S->A




Simulation Runs, N=1000 nodes
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Sample Runs with N = 1000
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The Importance of Being Spatial

M Mobile node state = (¢, t)
c=1..16 (position)

t € R*(age of gossip)

B Time is continuous

B Occupancy measure is
F_(zt) = proportion of nodes that at

location c and have age < z

[Age of Gossip, Chaintreau et

al.(2009)]
no class 16 classes

150 150

50 100 50 100
Quantiles Trace Quantiles Trace

Qgplots simulation vs mean field
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What can we do with a Mean Field
Interaction Model ?

B Large N asymptotics, B Large t asymptotic
Finite Horizon » Stationary approximation
» fluid limit of occupancy of occupancy measure
measure (ODE) » Decoupling assumption
» decoupling assumption
(fast simulation) M [ssues
M Issues » When valid
» When valid

» How to formulate the
fluid limit

12
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CONVERGENCE TO ODE

/\\
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To Obtain a Mean Field Limit we Must Make
Assumptions about the Intensity /(N)

B /(N) = (order of) expected number of transitions per
object per time unit

B A mean field limit occurs when we re-scale time by
I(N) i.e. one time slot = I(N)
i.e. we consider XN(t/I(N))

B I(N) =0(1): mean field limit is in discrete time
|[Le Boudec et al (2007)]

[(N) =0(1/N): mean field limit is in continuous time
|[Benaim and Le Boudec (2008)] (this talk)
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Intensity for this modelis 1/N

W In one time step, the

number of obj
Simulation Runs, N=1000 nodes umber of objects L
g affected by a transition

e T O T —T 1T I JT T is0,1or2; mean

o w = w = w = @ pymber of affected

e | | I [ I D : :
= . W [T [ 101, . objectsis 0(1)
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f.fi'-.ﬂ"d:rf; o w W w = w =« transitions per time slot
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The Mean Field Limit

M Under very general conditions (given later)
the occupancy measure converges, inlaw, to a

deterministic process, m(t), called the mean
field limit

MmN (I(LN)) - m(t)

M Finite State Space => ODE

16
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Sufficient Conditions for Convergence

W [Kurtz 1970], see also [Bordenav et al 2008], [Graham 2000]
M Sufficient condition verifiable by inspection:

» probabilities at every time slot have a limit when N — o

» [Benaim and Le Boudec(2008), loannidis and Marbach(2009)]

o Let WN(k) be the number of objects that do a transition in
time slot k. Note that E (WN(k)) = NI(N), where

I(N) Lintensity. Assume

E(WN(k)2) < B(N) with  lim /(N)3(N) =0

N— oo

“when I(N) = 1/N the condition is true as soon as \
Second moment of number of objects affected

in one timeslot < a constant

e

L=

B Similar result when mean field limit is in discrete time
|[Le Boudec et al 2007]
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Example: Convergence to Mean Field
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B Number of
transitions per
time step is
bounded by 2,
therefore there is
convergence to
mean field

B The Mean field
limite is an ODE

B One time step

corresponds to
At =1/N
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Formulating the Mean Field Limit

Drift = sum over all transitions of
proba of transition

X
Delta to system state MN(t)

Re-scale drift by intensity
Equation for mean field limit is

dm/dt = limit of on
rescaled drift

Can be automated

http://icawww1.epfl.ch /IS /tse

case prob effect on (D. A, S)
1 Dép L(-1,0.1)
2| DARP=L +(=2,42,0)
3| A2, (=1, 41,0)
4 Ad 4 (0, =1, +1)
5| S(ao+rD) | w(+1.0,-1)
6 Sa ~(0,+1,—1)
drift =
1 —Dép — 2DANESE — AB:25 + S(ag + rD)
% 2DANESL + A5 — Ada + Sa
)E/ﬁ ié,DJr Aoy — S(ag +rD) — Sa
% = —6pD —2)\D? — 3A D + (ag + rD)S
% = 2\D?+ A - f 5~ 0ad +asS
aS

— = opD+04A— (g +7rD)S—as

&




Convergence to Mean Field

B For the general state space,
_ C}E things may be more complex
e h (fluid limit is not an ODE, e.g.
|Chaintreau et al, 2009],
- |Gomez-Serrano et al, 2012])

M Thus: /W JW)

. L.

For the finite state space case,
most cases are verifiable by
inspection of the model




3.

FINITE HORIZON :

FAST SIMULATION AND
DECOUPLING ASSUMPTION

22



The Decoupling Assumption

M Often used in analysis of complex systems

M Says that k objects are asymptotically mutually independent
(k is fixed and N — o0)

B What is the relation to mean field convergence ?

23



The Decoupling Assumption

M Often used in analysis of complex systems

M Says that k objects are asymptotically mutually independent
(k is fixed and N — o0)

B What is the relation to mean field convergence ?

M [Sznitman 1991] [For a mean field interaction model: |

|

[ ——

Decoupling assumption
=

MY (t) converges to a deterministic limit

| —

B Further, if decoupling assumption holds, m(t) ~ state proba
for any arbitrary object

24



The Two Interpretations of the Mean Field

Limit

B Atanytimet
P(Xn(t) =" A)

&

A(i
N

B(Xplt) =D . X, )= A) = D (i

N
where (D, A, S) is solution of ODE

B Thus for N = 1000 and simulation step
k = 300:
» Prob (node n is dormant) = 0.48
» Prob (node nis active) = 0.19
» Prob (node n is susceptible) = 0.33

M m(t) approximates both
1. the occupancy measure MN(t)

2. the state probability for one object at time

t, drawn at random among N

[4

4 05
Dormant

1 1 1 1
06 07 08 08

Active

(k=300

[ —
L

1 02 03 04

05 06 07 08 09
Dormant

A bl




Fast Simulation

B The evolution for one object as if the other
objects had a state drawn randomly and
independently from the distribution m(t)

W Is valid over finite horizon whenever mean field
convergence occurs

M Can be used to perform «fast simulationy, i.e.,
simulate in detail only one or two objects,
replace the rest by the mean field limit (ODE)

26



pj (t10) = P(Xp () = j 1X7 (0)
— i)
TATAW .
o} (57 10) = s elD
where p(t|i) is the (transient)
probability of a continuous

time nonhomogeneous Markov
process

d
-t = Pl A(m(D))

B Same ODE as mean field limit,
with different initial condition

d
Em(t) =m()TA(mM())
= F(mi(t))

10
1§

We can
fast-simulate one
node, and even
compute its PDF at
any time
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4

INFINITE HORIZON: FIXED POINT
METHOD AND DECOUPLING
ASSUMPTION

28



Decoupling Assumption in Stationary Regime

M Stationary regime = for large t

W Here:
» Prob (node n is dormant) = 0.3
» Prob (node nis active) = 0.6
» Prob (node n is susceptible) = 0.1

B Decoupling assumption says
distribution of prob for state of
one object is = m(t) with

dm —»
o = F)

B We are interested in stationary
regime, i.e wedo F(im) = 0

Aktive
2 S £ £ o = 5 8 B2 .

04 05 06
Dormant

Active
e ird = 2

04 05 06 07 08 09 1
Dormant
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Example: 802.11 Analysis, Bianchi’s Formula

802.11 single cell

m, = proba one node is in

backoff stage I

B= attempt rate
v = collision proba

See [Benaim and Le
Boudec, 2008] for this

analysis

ODE for mean field limit

Im

Q 7[710 = —moqo + j(ﬁ’)) (1 — ",(iﬁ)) + qr MK (ﬁi)

dt

Im;

((Zz'z = —m;q; +mi_1qiy(m) =1, K
3(m) = ,I\:o qirnti

v(m) = 1—e P00

Solve for Fixed Point:
v

K A
q‘l Zk:() (;_k

m; =

Bianchi’s ~=1 — e_ﬁ

leed K n;k

Point ,3 L k— /
Equation| ™~ <K Ak
[Bianchi 1998] Zk’zo Qe
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Example Where Fixed Point Method Fails

B Same as before except « '
for one parameter | ]
value : 1 ' @
h=0.1instead of 0.3 %" | €]

B The ODE does not
converge to a unique T EE At w o S At i
attractor (limitcycle) N~ ———

B The equation 1o
F(m) = 0 g | .

. . g
has a unique solution 3= | g

(red cross) - butitis
not the stationary
regime !

Active
=
Active

Active

6 a7 08 L] 1 1] a1 23 04 05 0& 07 o8
Dormant

.J c-..c u.s o 22 ’
Dormant
31




When the Fixed Point Method Fails,
Decoupling Assumption Does not Hold

B In stationary regime,
m(t) = (D(t),A(t),S(t)) follows the
limit cycle

B Assume you are in stationary regime
(simulation has run for a long time) and
you observe that one node, sayn = 1, is

in state ‘A’
B [tis more likely that m(¢t) is in region R

B Therefore, it is more likely that some
other node, say n = 2, is also in state ‘A’

B Nodes are not independent - they are\\ 1

synchronized

Active
o = ©

h=0.1

2
ts 08
<

---------




Example: 802.11 with Heterogeneous Nodes

M [Choetal, 2010]

Two classes of nodes with
.—————— heterogeneous parameters
ol ADTMOL Loty . — (restransmission
o . probability)

0.06f----

0.05)----

: e Fixed point equation has a
| unique solution, but this is
not the stationary proba

002 <coeeed \{2, ¢17=0_026| ........

Short—term occupancy measure of stage 1 & 17

0 i i i i i
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Short-term occupancy measure of stage 0

There is a limit cycle
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Where is the Catch ?

B Decoupling assumption says that nodes m and n are
asymptotically independent

B There is mean field convergence for this example

B But we saw that nodes may not be asymptotically
independent

... i1s there a contradiction ?

34



Markov chain is ergodic

P(XY(t/N)=iand XN (t/N) = j) ———7)

1.]
N l Mean Field l L
N—o0 N—oo
Convergence
1 T
m;(t) m(t) + L [ () mi(t)dt

—

B The decoupling assumption may not hold in stationary regime, \
even for perfectly regular models

— 1

B A correct statement is: conditionally independent given the
value of the mean field limit m(t)

35



Positive Result 1 [e.g. Benaim et al 2008] :
Decoupling Assumption Holds in Stationary
Regime if mean field limit ODE has a unique fixed
point to which all trajectories converge

Decoupling does Decoupling holds
not hold in In stationary
stationary regime regime
1 h=0.1 [ h=0.3

Active
I £ B 2 8 o = g
. ' @
Active
—~

o3 04 s il 07 08 =] 1 0 0 02 03 04 0s 06
Dormant Dormant
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Positive Result 2: In the Reversible Case, the Fixed
Point Method Always Works

M Definition Markov Process X (t) with transition
rates q(ij) is reversible iff

1.itis ergodic 2. p(i) q(ij) = p(j) q(j,i) for some p

Theorem 1.2 ([Le Boudec(2010)]) Assume some process YN(I‘) converges dat
any fixed t to some deterministic system y(t) at any finite time. Assume the
processes YN are reversible under some probabilities TIN . Let I1 € P(F) be
a limit point of the sequence II"V. 1l is concentrated on the set of stationary

points S of the fluid limit y(t)

M Stationary points = fixed points

W If process with finite N is reversible, the stationary
behaviour is determined only by fixed points.

37



A Correct Method in Order to Make the
Decoupling Assumptions

W 1. Write dynamical system equations in
transient regime

W 2. Study the stationary regime of
dynamical system

» if converges to unique stationary point m*
then make fixed point assumption

» else objects are coupled in stationary regime
by mean field limit m(t)

W Hard to predict outcome of 2 (except for
reversible case)

38



Stationary Behaviour of Mean Field Limit is
not predicted by Structure of Markov Chain

B M"(t)is a Markov chain on B Depending on h, there is
N: = . = [l [l
. /N{}(a' bc)z0,a+brc=l ab cmultplesof 1 i5 ot a limit cycle for

B M"(t)is ergodic and aperiodic, for m(t)
any valveoth '

SN (for N = 200)

Active
e B B B B B B 0B
£ 8§ £ £ 8 2 B2

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Dorm ant 0 a1 2z c3 HDO;;'ant]E [ og [ ]




Conclusion

B Mean field models are B Decoupling assumption
frequent in large scale holds at finite horizon; may
systems not hold in stationary regime

(except for reversible case)

B Validity of approach is often
simple by inspection B Study the stationary regime
of the ODE !
B Mean field is both
» ODE for fluid limit

» Fast simulation using
decoupling assumption

(instead of computing the
stationary proba of the
Markov chain)

40



Thank You ...
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