
Mean Field Methods for Computer 
and Communication Systems

Jean‐Yves	Le	Boudec
EPFL

Network	Science	Workshop
Hong	Kong

25‐27	July	2012

1



Contents

1. Mean Field	Interaction	Model

2. Convergence	to	ODE

3. Finite Horizon:	Fast Simulation	
and	Decoupling assumption

4. Infinite Horizon:	Fixed Point	
Method and		Decoupling
assumption

2



MEAN FIELD INTERACTION MODEL
1
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Mean Field 

A	model introduced	in	Physics
interaction	between	particles is	via	distribution	of	states	of	all	particle

An	approximation method	for	a	large	collection	of	particles
assumes	independence in	the	master	equation

Why do	we care	in	information	and	communication	systems ?
Model	interaction	of	many objects:	
Distributed systems,	communication	protocols,	game theory,	self‐
organized systems
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A Few Examples Where Applied
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Never 
again !

E.L.



Mean Field Interaction Model

Time	is	discrete	(this	
talk)	or	continuous

N objects,	N	large
Object	n has	state	Xn(t)
(XN1(t),	…,	XNN(t))	is	
Markov

Objects are	observable	
only through their state

“Occupancy	measure”
MN(t) =	distribution	of	
object	states	at	time	t
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Example: 2‐Step Malware
Mobile	nodes	are	either

`S’		Susceptible
`D’	Dormant
`A’	Active

Time	is	discrete
Transitions	affect	1	or	2	nodes

State	space	is	finite	
=	{`S’	,	`A’	,`D’}

Occupancy	measure	is
M(t)	=	(S(t),	D(t),	A(t))	with	
S(t)+	D(t)	+	A(t)	=1

S(t)	=	proportion	of	nodes	in	state	`S’

[Benaïm and	Le	Boudec(2008)]

1. Recovery
D	‐>	S

2. Mutual	upgrade	
D	+	D	‐>	A	+	A

3. Infection	by	active
D	+	A	‐>	A	+	A

4. Recovery
A	‐>	S

5. Recruitment	by	Dormant
S	+	D	‐>	D	+	D

Direct	infection
S	‐>	D

6. Direct	infection
S	‐>	A
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2‐Step Malware – Full Specification

1. Recovery
D	‐>	S

2. Mutual	upgrade	
D	+	D	‐>	A	+	A

3. Infection	by	active
D	+	A	‐>	A	+	A

4. Recovery
A	‐>	S

5. Recruitment	by	
Dormant

S	+	D	‐>	D	+	D
Direct	infection
S	‐>	D

6. Direct	infection
S	‐>	A

At every time step, pick one node
unif at random
- If node is in state :

- With proba mutate to S
- With proba , meet

another node and both
mutate to 

- If node is in state :
- With proba change 

one 	node to 
- With Proba mutate to 

- If node is in state 
- With proba meet a 

node and become infected

- With proba become
infected

- With proba become
infected



A(t)
Proportion of nodes 
In state i=2
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Simulation Runs, N=1000 nodes
Node 1

Node 2

Node 3

D(t)
Proportion of nodes 
In state i=1

State = D
State = A
State = S
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Sample Runs with N = 1000



The Importance of Being Spatial
Mobile	node state	=	(c,	t)
c	=	1	…	16	(position)
t		∊	R+	(age of	gossip)

Time	is continuous
Occupancy measure is
Fc(z,t)	=	proportion	of	nodes that at
location	c and	have	age ≤	z

[Age	of	Gossip,	Chaintreau et	
al.(2009)]	
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Qqplots simulation vs mean field
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What can we do with a Mean Field 
Interaction Model ?

Large	N asymptotics,	
Finite	Horizon

fluid	limit	of	occupancy	
measure	(ODE)
decoupling assumption
(fast simulation)

Issues
When	valid
How	to	formulate	the	
fluid	limit

Large	t	 asymptotic
Stationary	approximation	
of	occupancy	measure
Decoupling	assumption

Issues
When	valid



CONVERGENCE TO ODE
2.
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To Obtain a Mean Field Limit we Must Make
Assumptions about the Intensity I(N)

I(N) =	(order of)	expected number of	transitions	per	
object per	time	unit

A	mean field limit occurs when we re‐scale time	by	
I(N)	i.e.	one	time	slot	
i.e.	we consider XN(t/I(N))

I(N)	=	O(1):	mean field limit is in	discrete time	
[Le	Boudec	et	al	(2007)]

I(N)	=	O(1/N):	mean field limit is in	continuous time	
[Benaïm and	Le	Boudec	(2008)]	(this talk)
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Intensity for this model is
In	one	time	step,	the	
number of	objects
affected by	a	transition	
is 0,	1	or	2;	mean
number of	affected
objects is 1
There	are	 objects
Expected number of	
transitions	per	time	slot	
per	object is
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The Mean Field Limit

Under	very general conditions	(given later)	
the	occupancy measure converges,		in	law,	to	a	
deterministic process,	m(t), called the	mean
field limit

→

Finite State	Space =>	ODE
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Mean Field Limit
N = +∞

Stochastic 
system

N = 1000
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0.3

300

	



Sufficient Conditions for Convergence
[Kurtz 1970],	see also [Bordenav et	al	2008],	[Graham	2000]
Sufficient condition	verifiable by	inspection:	

probabilities at every time	slot	have	a	limit when → ∞

when I(N)	=	1/N	the	condition	is true as	soon as
Second	moment	of	number of	objects affected
in	one	timeslot a	constant

	
Similar result when mean field limit is in	discrete time	
[Le	Boudec et	al	2007]
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Example: Convergence to Mean Field

Number	of	
transitions	per	
time	step is
bounded by	2,	
therefore there is
convergence	to	
mean field
The	Mean field
limite	is an	ODE
One	time	step
corresponds	to	

19

Mean Field Limit
N = +∞

Stochastic 
system

N = 1000

0.3

300



Formulating the Mean Field Limit
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drift =

=

=

=

Drift	=	sum over	all	transitions	of

proba of	transition
x

Delta	to	system	state	MN(t)

Re‐scale drift	by	intensity

Equation	for	mean field limit is

dm/dt =	limit of	
rescaled drift	

Can	be automated

http://icawww1.epfl.ch/IS/tsed

ODE 



Convergence to Mean Field

Thus:	

For	the	finite state	space case,	
most cases	are	verifiable by	
inspection	of	the	model

For	the	general state	space,	
things may be more	complex
(fluid limit is not	an	ODE,	e.g.	
[Chaintreau et	al,	2009],	
[Gomez‐Serrano	et	al,	2012])

21E.L.
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FINITE HORIZON :
FAST SIMULATION AND 
DECOUPLING ASSUMPTION

3.
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The Decoupling Assumption

Often	used in	analysis of	complex systems
Says that 	objects are	asymptotically mutually independent
( is fixed and	 → ∞
What is the	relation	to	mean field convergence	?
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The Decoupling Assumption

Often	used in	analysis of	complex systems
Says that 	objects are	asymptotically mutually independent
( is fixed and	 → ∞
What is the	relation	to	mean field convergence	?

[Sznitman 1991]	[For	a	mean field interaction	model:	]

Decoupling assumption
⇔

converges	to	a	deterministic limit

Further,	if	decoupling assumption holds,	 state	proba
for	any arbitrary object
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The Two Interpretations of the Mean Field 
Limit

At	any	time t

Thus	for	 1000 and	simulation	step		
300:
Prob (node	n is	dormant)	≈	0.48
Prob (node	n is	active)	≈	0.19	
Prob (node	n is	susceptible)	≈	0.33

m(t)	 approximates both
1. the	occupancy measure MN(t)
2. the	state	probability for	one	object at time	

t,	drawn at random among N	

0.3

300



Fast Simulation

The	evolution for	one	object as	if	the	other
objects had a	state	drawn randomly and	
independently from the	distribution	m(t)

Is	valid over	finite horizon	whenever mean field
convergence	occurs

Can	be used to	perform «fast simulation»,	i.e.,	
simulate in	detail only one	or	two objects,	
replace	the	rest by	the	mean field limit (ODE)
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We can
fast‐simulate one 
node, and even

compute its PDF at
any time

P 0

|

where 	 | 	is the	(transient)	
probability of	a	continuous
time	nonhomogeneous Markov	
process

	

Same ODE	as	mean field limit,	
with different initial	condition

27

pdf of node 1

pdf of node 2 (initially in A state)

pdf of node 3

occupancy measure



INFINITE HORIZON: FIXED POINT 
METHOD AND  DECOUPLING
ASSUMPTION

4.
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Decoupling Assumption in Stationary Regime

Stationary	regime =	for	large	
Here:

Prob (node	n is	dormant)	≈	0.3
Prob (node	n is	active)	≈	0.6	
Prob (node	n is	susceptible)	≈	0.1

Decoupling	assumption says
distribution	of	prob for	state	of	
one	object is with

	

We are	interested in	stationary
regime,	i.e we do	 0	
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Example: 802.11 Analysis, Bianchi’s Formula

802.11	single	cell
mi	=	proba one	node	is	in	

backoff stage	I
=	attempt	rate
 =	collision	proba

See	[Benaim and	Le	
Boudec ,	2008]	for	this	
analysis

Solve for  Fixed Point:

Bianchi’s
Fixed
Point

Equation
[Bianchi 1998]

ODE for mean field limit
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Example Where Fixed Point Method Fails

Same	as	before	except	
for	one	parameter	
value	:	
h	=	0.1	instead of	0.3

The	ODE	does not	
converge	to	a	unique	
attractor (limit cycle)
The	equation

	 	0
has	a	unique solution	
(red cross)	– but	it is
not the	stationary
regime !
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When the Fixed Point Method Fails, 
Decoupling Assumption Does not Hold

In	stationary regime,	
	 	 , , 	follows the	

limit cycle
Assume	you are	in	stationary regime
(simulation	has	run for	a	long	time)	and	
you observe	that one	node,	say 1,	is
in	state	‘A’
It	is more	likely that is in	region R
Therefore,	it is more	likely that some
other node,	say 2,	is also in	state	‘A’

Nodes are	not	independent – they are	
synchronized

R

h=0.1



Example: 802.11 with Heterogeneous Nodes

[Cho	et	al,	2010]

Two classes	of	nodes with
heterogeneous parameters
(restransmission
probability)

Fixed point	equation has	a	
unique	solution,	but	this is
not	the	stationary proba

There	is a	limit cycle
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Where is the Catch ?

Decoupling assumption says that nodesm and	n are	
asymptotically independent

There	ismean field convergence	for	this example

But	we saw that nodes may not	be asymptotically
independent

…	is there a	contradiction	?	



The	decoupling assumption may not	hold in	stationary regime,	
even for	perfectly regular models

A	correct	statement is:	conditionally independent given the	
value	of	the	mean	field	limit	

35

mi(t) mj(t) mi(t) mj(t)

Mean Field 
Convergence

Markov chain is ergodic

≠
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Positive Result 1 [e.g. Benaim et al 2008] : 
Decoupling Assumption Holds in Stationary

Regime if mean field limit ODE has a unique fixed
point to which all trajectories converge

0.1 0.3

Decoupling holds
in stationary
regime

Decoupling does
not hold in 
stationary regime



Positive Result 2: In the Reversible Case, the Fixed
Point Method Always Works

DefinitionMarkov	Process with	transition	
rates	q(i,j) is reversible iff
1.	it is ergodic 2.	p(i)	q(i,j)	= p(j)	q(j,i) for	some p

Stationary points	=	fixed points	
If	process with finite N is reversible,	the	stationary
behaviour is determined only by	fixed points.
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A Correct Method in Order to Make the 
Decoupling Assumptions
1.	Write dynamical system	equations in	
transient regime

2.	Study the	stationary regime of	
dynamical system

if converges	to	unique	stationary point	m*
thenmake fixed point	assumption
else objects are	coupled in	stationary regime
by	mean field limitm(t)

Hard	to	predict outcome of	2	(except for	
reversible case)

38



Stationary Behaviour of Mean Field Limit is
not predicted by Structure of Markov Chain
MN(t) is a	Markov	chain on	
SN={(a,	b,	c)	≥	0,	a	+	b	+	c	=1,		a,	b,	c	multiples	of	
1/N}

MN(t) is ergodic and	aperiodic,	for	
any value	of	

Depending	on	 ,	there is
or	is not	a	limit cycle	for	
m(t)

SN (for N = 200)

h = 0.3

h = 0.1



Conclusion

Mean field models are	
frequent in	large	scale
systems

Validity of	approach is often
simple	by	inspection

Mean field is both
ODE	for	fluid limit
Fast simulation	using
decoupling assumption

Decoupling assumption
holds at finite horizon;	may
not	hold in	stationary regime
(except for	reversible case)	

Study the	stationary regime
of	the	ODE	!	

(instead of	computing the	
stationary proba of	the	
Markov	chain)
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Thank You …
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