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1. Real-Time Operation of Microgrid: Motivation

Absence of inertia (inverters)

[ 7 L

Stochastic generation (PV)

Storage, demand response W&p
. ] ] AAA Leclanché
Grid stress (charging stations, -

heat pumps)

Support main grid (primary and secondary frequency support)
Enable dispatchable feeders

= Agent based, real-time control of microgrid



COMMELEC Uses Explicit Power Setpoints

PCe

Every 100 msec e Co; J/
: , , o
- Grid Agent monitors grid and sends Acan Nmo\b L
o Cott‘llf:,u (CATI 0
power setpoints to Resource Agents e E?O/
ALENT | | P4 AGENT 26

- Resource agent sends to grid agent:

PQ profile, Virtual Cost and @mery) D

Belief Function

Goal: manage quality of service in grid; support main grid; use
resources optimally.

[Bernstein et al 2015, Reyes et al 2015]
https://github.com/LCA2-EPFL/commelec-api

PQ profile = set of setpoints that this resource is willing to receive



Belief Function

Say grid agent requests setpoint (Pt , Qset) from a resource; actual
setpoint (P, Q) will, in general, differ.

Belief function exported by resource agent s, 4P pr o)
means: the resource implements

(P,Q) € BF (Pset , Qset)

[ BF (uyy)
I’ !

worst-case B F(u pv)

prediction '

’
’
ll ('()‘\‘HHH((-‘)) = (.8

Quantifies uncertainty due to nature + s
local inverter controller N .Q

Belief Function

Essential for safe operation o e




Operation of Grid Agent

Pce
;&f:":ir Co,)) i
Grid agent computes a setpoint vector x e NN
Coﬂp’:‘:‘manab o, S
that minimizes o S
ALENT (%@ PLENT oY

Cost of power flow at point

](X) = Zi WiCi(xi) + W(Z) -I-]O(xo) @

Virtual cost of the Penalty function of grid electrical state Z

resources (e.g., voltages close to 1 p.u.,
line currents below the ampacity)

subject to admissibility.
x is admissible © (Vx'€ BF(x), x' satisfies security constraints)




Implementation / EPFL Microgrid

Topology: 1:1 scale of the Cigré low-voltage microgrid
benchmark TF C6.04.02 [Reyes et al, 2018]

= Phasor Measurement Units:
nodal voltage/current syncrophasors @50 fps

= Solar PVs on roof and fassade

L1

" Battery i

= Thermal Load (flex house)

= Commercialization }m NS 1 "
by - l.:zl e

gridsteer.ch 'Ea!{\

@@ PMU Locations
@ AGENTS Locations
Breaker Locations




Dispatched Grid with Primary-Frequency Support

Active Powers

20
. : _ %
Superposition of dispatch Z 0
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ELNS per to

Cummulative probability

Impact of Dispatchable Feeders on Reserves

Assume some fraction of distribution networks / microgrids is
dispatched, using Energy Storage Systems and real-time control
such as COMMELEC. The system reserve can be reduced.
[Bozorg et al 2018].

Equivalent
10 < 10 I
= reserve that = 800
102 Z 1072 =
"\*\_\N 8 has same &,
o (g 107 expected load # 600
00T oz o3 o4 o5 2 a0t————— L non served. g 400
“Dibpa(}::::fi}l;:v;i?bii?;]ﬁzt:i?ﬁ:;;:ztwmk: Reserve capacity per total power demand Simulation Of %
10° Western DK C 9200
| - Grid when g
10-2 { 0.4 % dispatchable £ 5.000 1,000 6.000
| 02 & feeders are i ’ ?
al | ) I deployed. Total ESS capacity [MWh]
18 -1 —0.8 —0.6 —-0.4 —-0.2 0 0.2 0.4

Dispatch error per dispatch plan (a.)
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COMMELEC Uses Active Replication
with Real-Time Consensus

iIPRP: transparent duplication of IP multicast and redundant networks
Axo: makes sure delayed messages are not used

Quarts: grid agents perform agreement on input
Added latency < one RTT — compare to consensus’s unbounded delay

Secured with IPSEC and ECDSA (multicast authentication)
[Mohiuddin et al 2017, Saab et al 2017]

Linux API available at
https://github.com/LCA2-EPFL/iprp

11



2. Controlling the Electrical State
with Uncertain Power Setpoints

Admissibility test: when issueing power setpoint s, grid agent tests
whether the grid is safe during the next control interval for all power
injections in the set S = BF(s).

12
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Load Flow . N
Mapping o o
Electrical state Power injections

Electrical state v € C3" : collection of complex phasors
Power injection s € C3" : collection of complex powers injected
(generated or consumed) at all nodes

Load flow mapping s = F(v) is quadratic.
Inverse problem “find v given s” has 0 or many solutions.

Security constraints are constraints on v bearing on voltage and
currents + non-singularity of I'E,

13



Controlling the Electrical State
with Uncertain Power Setpoints

The abstract Admissibility Problem is:
- given an initial electrical state v, of the grid and

- given that the power injections s is thought to remain in some
uncertainty set §

- giventhat F(vy) € §

can we be sure that the resulting state of grid satisfies security
constraints and is non-singular ?

14
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S
V-Control v %

?

°

Electrical state Power injections
S is a domain of V- control & whenever t = v(t) is continuous,
knowing that v(0) € V and Vt = 0, F(v(t)) €S
ensures that Vt = 0, v(t) € V.

[Wang et al 2017b]

3-phase grid with one slack bus and N PQ buses; v = electrical state = complex voltage at all
non slack buses; s = power injection vector at all non slack buses

15



Existence of Load Flow Solution
Does not Imply V-control

@&,

?

Electrical state

F()

o

Power injections

For § to be a domain of V-control it is necessary that every s € § has

a load-flow solution in V.

But this is not sufficient.

16



Imag

5 Complex Voltage at PQ Bus 1

0.7

Singular Points

1.1 p.u.

-0.8 | = Voltage Branch A 4
— =Voltage Branch B
+ |Initial Voltage on Branch A

= [nitial Voltage on Branch B

-0.9° :
0.5 0.6 0.7
Real
BB Complex Voltage at PQ Bus 2
hi —Voltage BrancFA
— =Voltage Branch B
/r + |Initial Voltage on Branch A
-0.9 = |nitial Voltage on Branch B
0.9 p.u.

0) 1 2 o
® ® ® [Nguyen Turitsin 2014]
slack PQ PQ
S(l) Power Injection at PQ Bus 1
1.00
Every s € § has a
load-flow solution in S
V.
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But starting from s -1.105 -1.096
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v =oisininterior of V, close to boundary (in s4)
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Existence and Uniqueness of Load Flow Solution

Does not Imply V-control
ey

@, | |

?

Electrical state Power injections

Assume that every s € § has a unique load-flow solution in V.

This is not sufficient to guarantee that & is a domain of V-control.



Complex Voltage at PQ Bus 1
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PQ

S(1) Power Injection at PQ Bus 1
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Sufficient Condition for V-control o |0 D
Theorem 3 in [Wang et al 2017b] In the previous
If example, neither

1. Visopenin C3N PV nor § is open.

0

2. Sisopenin C3V Loock QTMPQW
3. Vs € § thereis a unique load-flow solution in V 57
0.999
. . -1.105 -1.104
then § is a domain of V-control.

s?  Power Injection at PQ Bus 2

Y

SB

1.104
-1.000 -0.999
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Uniqueness and Non-Singularity o, | | @D

Electrical state Power injections

We call V a domain of uniqueness iff
YVwveV,Vv' eV, v+v' = F) # F(v')
In this previous

Theorem 1 in [Wang et al 2017b] example, V7 is not

If Visopenin C3" and is a domain of uniqueness 3 domain of
then every v € V is non-singular. uniqueness

08 Complex Voltage at PQ Bus 2

T -
— Voltage Branch A
= =Voltage Branch B
—1 + Initial Voltage on Branch A
-0.9 - = |nitial Voltage on Branch B~
0.9 p.u.

<
-'1 \ ' -— ->

Singular Points
1.1 p.u.

Imag

41t J
0.2 0.3 0.4 0.5

Real
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Grid Agent’s Admissibiliy Test

Problem (P): Given a set of power injections S#ncertain find 3 set
of electrical states V such that

1.

Al S

v(0) €V

PV is open

PV satisfies security constraints (voltages and line currents)
PV is a domain of uniqueness

Every s € SUncertain paq 5 |oad-flow solution in V

By Theorems 1 and 3 (applied to V and § = F(V) ), this will imply

that V is non singular and S¥M¢€Ttain js 3 domain of V-control.

22



Solving (P):
Theorem 1 in [Wang et al 2017a] (Sufficient conditions for
uniqueness and existence of load flow):

Given is a load-flow pair (, 8). If £(s — §) < p* (¥)? then s has a
unique load flow solution in V, a disk around ¥ with radius p* (9).
The functions £() and p* () are derived from the Y matrix.

e

Electrical state Power injections

e This definesS andV s.t. S is a v
domain of V-control G Y,

e Additional conditions (Def 3.
in [Wang et al 2017b]) ensure
security conditions.

23



Notation [Wang et al 2017b]

Notation Definition

\%% diag(w)

£(s) WY W diag(s)|o
Unin (V) min v Jw |

JENTR ~ve{a,b,c}

() 3 (Umin(v) = E(F (V) /Umin(V))

zero-load nodal voltage w = —Y;; Y 10Vo

24



Domains can be patched
(Thm 6 in [Wang et al 2017b])

The algorithm tries if a single (7, 35)
works, else breaks the set § into
pieces and patches them.

IEEE 13-bus feeder, 3-phase configuration 602.

Uncertainty set

Bus 634, Phase b Bus 671, Phase ¢ Bus 652, Phase «

-600 -200 E -600 -200 E -600 -200

P (kW) . P (kW) P (kW) -
o

0 F(viitial)

Strictly Consjstent

Round Bus 634 Bus 671 Bus 652 secured ~ with A .tio
# Phase b Phase ¢ Phase a candidate elements
pair in £
. Fal“t[i,t__i(m
1 +° ) +9 No 1; 1ase ¢ ;
. f’ldt‘l 4 1
elements
m T Paks
2 & 0 @ Yes Yes e E{\ﬁ‘ll( ! (‘111 ¢
fo L
3 & e} @ Yes Yes a‘}d(’{ 1
+ clement
to L .
+ .
4 ® o ® Yes  Yes ofddl
to 2o
. }Part(i}t_gou
- nis 634
5 ® o} & No };h:ls(r h
+ « Add 4 .
elements
h clenigis
6 o @ Yes Yes o ;J}dd 1
@ clement
to L.
7 0 @ Yes Yes o 1;‘1511(1 clm
+ @ to E L
8 O Q Y(‘S H’(\S . ;_}dd ].
4 ® clement
to L.
ar ;
9 0 ® Yes  Yes o .(jgld 011 "
@ to 2o
+ F(v) o F(V) S Suncertain




Performance Evaluation
IEEE 37 bus feeder. S¥certain= 10 k] x benchmark values on all

loaded phases. For 0 < k < 1.15 algorithm declares Suncertain
safe in one partition and <20 msec runtime on one i7; for k > 1.15
the algorithm needs multiple partitions but lowest voltage bound is

close to limit.

IEEE 123 bus feeder. suncertain_ [1 - g, 1+ g] X benchmark

values on all loaded phases. For 0 < k < .31 algorithm declares
Suncertain ¢afe in one partition and <30 msec runtime; for k > .31
the algorithm needs multiple partitions but highest branch current

is close to limit.
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Conclusions

Controlling state of a grid by controlling power injections helps
solve the problems posed by stochastic loads and generations.

Concrete implementations exist (COMMELEC) and use commodity
hardware with solutions for active replication.

Accounting for uncertainty is essential. Testing admissibility of
uncertain power setpoints can use the theory of V-control.
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