Time Sensitive Networks, Network Calculus and Clock Non-idealities

Jean-Yves Le Boudec

EPFL I&C, Lausanne, Switzerland

Joint work with Thomas Ludovic, Ehsan Mohammadpour and Hossein Tabatabaee

LORIA Colloquium, Nancy, 2024 October 17

Abstract: Time Sensitive Networks offer guarantees on worst-case delay, worst-case delay variation and zero congestion loss. They find applications in many areas such as factory automation, embedded and vehicular networks, audio-visual studio networks, and in the front-hauls of cellular wireless networks. In this talk we will describe how network calculus can be used to analyze time sensitive networks. We will also explain why clock non-idealities matter and how to take them into account.

Contents

- 1. Time Sensitive Networks
- 2. Network Calculus and Single Node Analysis
- 3. Network Analysis
- 4. Regulators
- 5. Clock Non Idealities
- 6. Other Bells and Whistles

1. Time Sensitive Networks

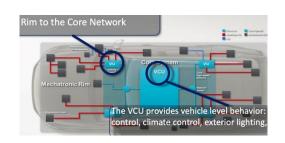
deterministic service: upper bounds on end-to-end delay and delay-jitter + zero congestion loss.

Congestion control with feedback is not an option here.

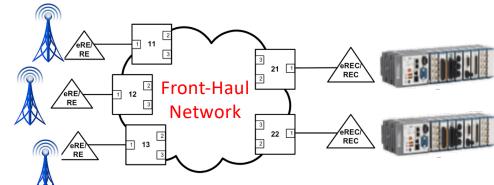
Proven bounds are required.

Standardization:

MAC-layer networks: IEEE TSN (Time Sensitive Networking)
IP and MPLS networks: IETF Detnet
(Deterministic Networking)



From [Navet et al,2020]

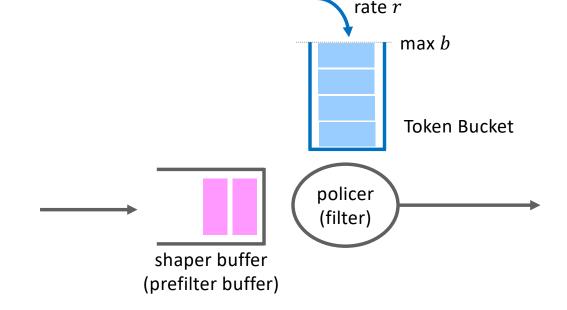


Radio Equipment

Industrial networks, automotive, aerospace, factory automation.
Studio networking
Front-haul of cellular networks
Distributed games
Low latency on-demand video

How can a Network Offer a Deterministic Service?

- 1. Every flow is constrained at source
 - e.g. source is periodic
 - e.g. source is limited by a token bucket filter with rate r and burstiness b
 - \rightarrow number of bits sent over any interval of any duration t is $\leq rt+b$ (arrival curve constraint) (T-SPEC)



Imagine a token bucket, spontaneously replenished at rate r up to maximum b (called the "burst")

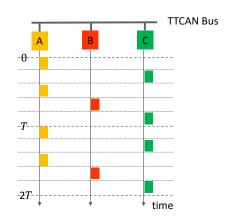
A released packet must consume same amount of tokens as its size, else waits until enough tokens are available.

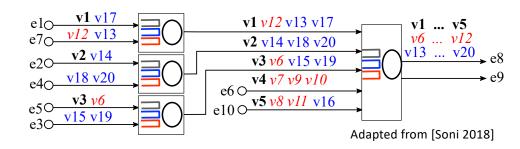
tc qdisc add dev eth0 root tbf rate 1mbit burst 32kbit

How can a Network Offer a Deterministic Service?

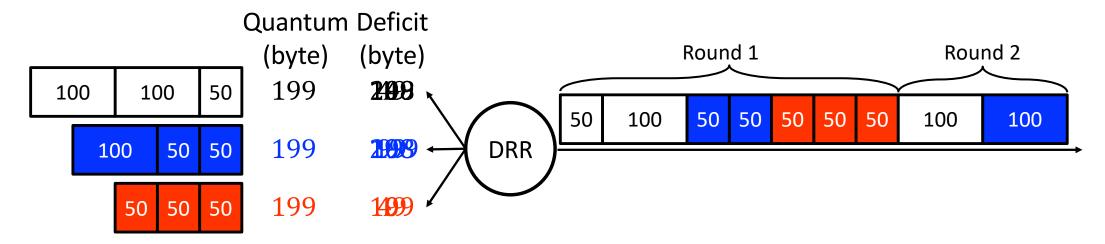
1. Every flow is constrained at source

- 2. The network nodes offer a guaranteed service to flows or classes of flows
 - synchronous: e.g Time Triggered CAN bus: every flow is scheduled on bus (not our focus today)
 - asynchronous: e.g. switch/router network
 - a) Flows are assigned to a small number of classes with different quality of service requirements
 - b) At every node, traffic of a given class is FIFO; a scheduler shares bandwidth and buffer between classes





Example of Scheduler: Deficit Round Robin (DRR) [Shreedhar 1996]



Implemented in Linux class based queuing tc qdisc ... add drr [quantum bytes] Operation: Each queue (= each class) is given a quantum.

An infinite loop of rounds visits queues.

When a queue is visited its deficit is increased by the quantum.

Service for this queue stops if 1) deficit is smaller than head-of-line packet or 2) queue becomes empty (in which case deficit is reset).

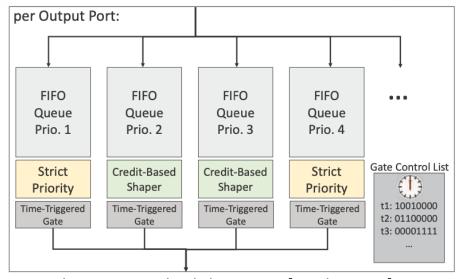
 $\Rightarrow \approx$ Bandwidth is allocated to every class in proportion of the quantum.

Other Schedulers

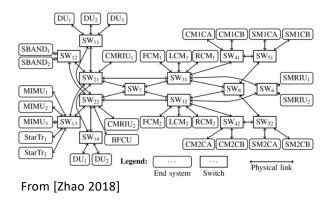
- Weighted Fair Queuing and all variants of Generalized Processor Sharing (such as DRR)
- Audio Visual Bridging (AVB) / Credit Based Shaper (CBS)
- Burst Limiting Shaper
- Time Aware Shaper
- Static Priority

Etc.

They can be combined.



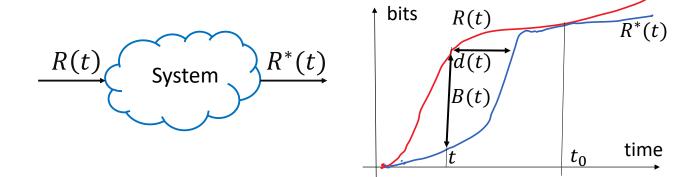
Typical IEEE TSN scheduler. From [Maile 2020]

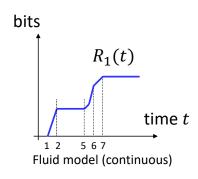


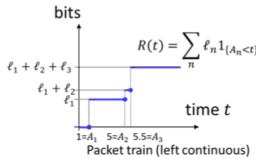
Given source constraints and schedulers, what are the worst-case delay, jitter and backlog?

2. Analysis of Deterministic Networks uses Network Calculus

- Flows are modelled with cumulative arrival functions, R(t), non-decreasing with R(0) = 0, or, for packetized flows, with point processes (packet trains) (A, ℓ)
- Delay and backlog are derived







$$d(t) = \inf \{ d \text{ s. t. } R(t) \le R^*(t+d) \}$$
 (horizontal deviation)

Arrival Curves

Flow with cumulative function R(t) has α as (maximal) arrival curve if

$$R(t) - R(s) \le \alpha(t - s)$$
 for any $t \ge s \ge 0$

where α is a monotonic nondecreasing function $\mathbb{R}^+ \to [0, +\infty]$ α can be assumed sub-additive $(\alpha(s+t) \le \alpha(s) + \alpha(s))$.

This is equivalent to $R \leq R \otimes \alpha$, where \otimes denotes min-plus convolution:

$$(f_1 \otimes f_2)(t) = \inf_{s \ge 0} (f_1(s) + f_2(t - s))$$

and, for a point process model, to

$$A_n - A_m \ge \alpha^{\downarrow}(\ell_m + \dots + \ell_n), \forall m, n, 1 \le m \le n$$

where α^{\downarrow} is the lower-pseudo inverse of α .

E.g. for
$$\alpha(t) = rt + b$$
, $\alpha^{\downarrow}(x) = \frac{(x-b)^+}{r}$ [Le Boudec 2018]

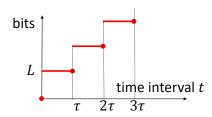
token bucket constraint (r, b)

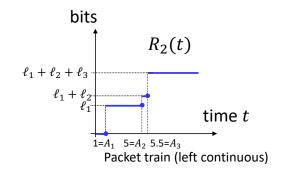
with rate r and burst b:

$$\alpha(t) = rt + b$$

periodic stream of packets of size ≤

$$L: \alpha(t) = L\left[\frac{t}{\tau}\right]$$

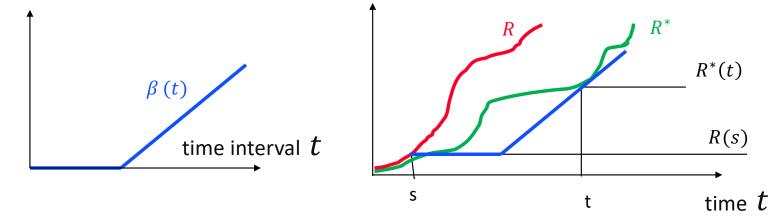




Service Curve

System offers to this flow a (minimal) service curve β if $R^* \ge R \otimes \beta$, i.e. : $\forall t \ge 0, \exists s \in [0,t]: R^*(t) \ge R(s) + \beta(t-s)$

where β is a function : $\mathbb{R}^+ \to \mathbb{R} \cup \{+\infty\}$

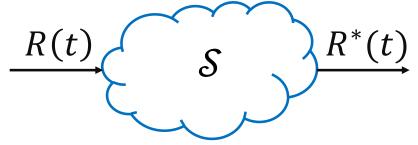


[Le Boudec 1996, Chang 1997, Bouillard 2018]

Strict Service Curve

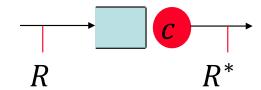
System S offers to a flow a strict service curve β if for any s < t inside a backlogged period, i.e. such that $R^*(u) < R(u), \forall u \in (s,t]$, we have $R^*(t) - R^*(s) \ge \beta(t-s)$

 ${\cal S}$ is typically a single queuing point



 β is a strict service curve $\Rightarrow \beta$ is a service curve but converse is not true.

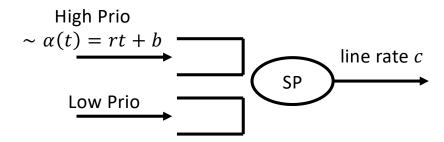
Example: constant rate server with line rate c has strict service curve $\beta(t) = ct$



Example: Non-preemptive Static Priority

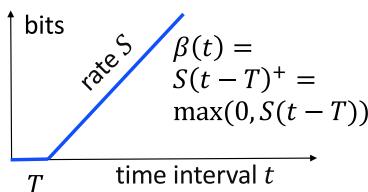
High prio:
$$\beta_H(t) = (ct - MTU_L)^+$$

(strict service curve)
($MTU_L = \max \text{ packet size, low prio}$)



Low prio: when high priority constrained by $\alpha(t) = rt + b, r < c$: $\beta_L(t) = ((c-r)t-b)^+$ (not a strict service curve) $\beta'_L(t) = \left((c-r)t-b-MTU_L\right)^+$ (strict service curve) [Bouillard 2018]

A function of the form $\beta(t) = S(t-T)^+$ is called rate-latency, with rate S and latency T

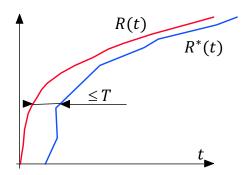


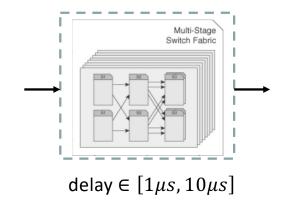
Bounded Delay Element

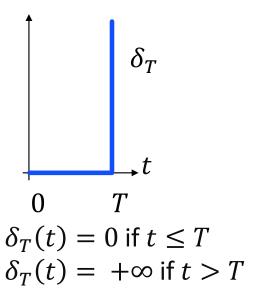
Sometimes it is convenient to model a system as a black box with known delay upper bound T.

For a node that is FIFO for this flow: delay $\leq T \iff$ nodes offers to this flow a service curve δ_T

Not a strict service curve







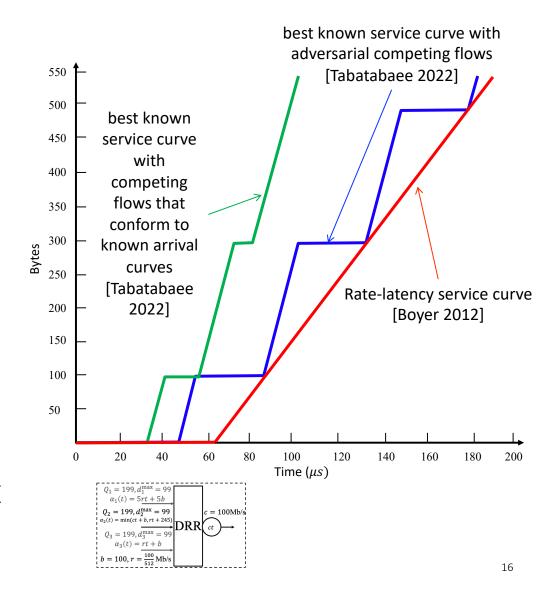
Example: Deficit Round Robin

• DRR offers to flow i a rate-latency strict service curve $\beta_i(t) = R_i(t - T_i)^+$

with
$$R_i = \frac{Q_i}{\sum_j Q_j} c$$
, $T_i = \frac{\overline{Q}_i + \overline{L}_i}{c} + L_{\max,i}(\frac{1}{R_i} - \frac{1}{c})$, $\overline{Q}_i = \sum_{j \neq i} Q_j$, $\overline{L}_i = \sum_{j \neq i} L_{\max,j}$ and c is the line rate [Boyer 2012].

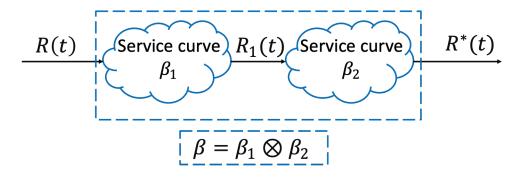
 Can be improved esp. if competing flows are constrained [Tabatabaee 2022]

 Other examples: Packetized Generalized Processor Sharing, RFC 2212, IEEE AVB, IEEE TSN, etc. [De Azua 2014] [Bouillard 2018]



Concatenation

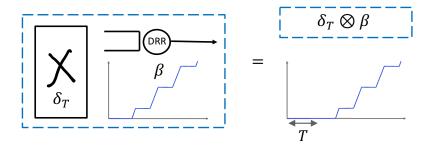
Concatenation of service curve elements β_1 , β_2 has service curve $\beta_1 \otimes \beta_2$

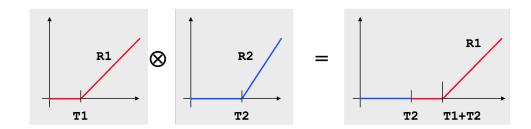


$$R^* \ge R_1 \otimes \beta_2 \ge (R \otimes \beta_1) \otimes \beta_2 = R \otimes (\beta_1 \otimes \beta_2)$$

Examples:

- scheduler with service curve eta combined with bounded delay element has service curve $eta \otimes \delta_T$
- If β_i is rate-latency R_i , T_i then the concatenation $\beta = \beta_1 \otimes \beta_2$ is rate-latency $R = \min(R_1, R_2)$ and $T = T_1 + T_2$





Three Tight Bounds

- 1. $\operatorname{backlog} \le v(\alpha, \beta) = \sup_{t} (\alpha(t) \beta(t))$
- 2. if FIFO for this flow, $delay \le h(\alpha, \beta)$
- 3. output is constrained by arrival curve

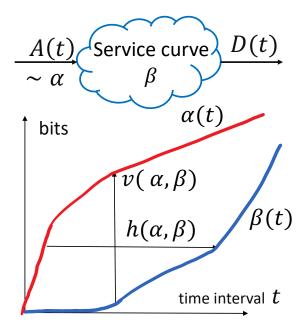
$$\alpha^*(t) = \sup_{u \ge 0} (\alpha(t+u) - \beta(u))$$

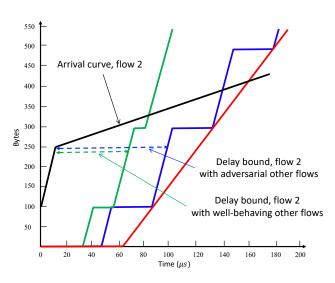
i.e. $\alpha^* = \alpha \oslash \beta$ (deconvolution)

Jitter bound = $h(\alpha, \beta)$ — delay lower bound

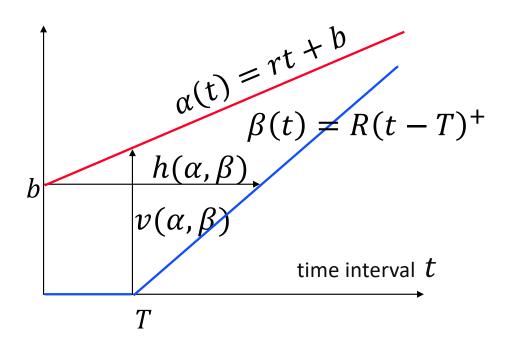
Delay bound can be improved to $h(\alpha - L_{min}, \beta) + \frac{L_{min}}{c}$ if we know line rate c of server [Mohammadpour 2019]

Industrial tools perform these computations.





Example



One flow, constrained by one token bucket is served in a network element that offers a rate latency service curve

Assume $r \leq R$

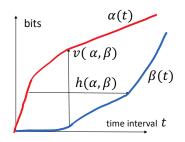
Backlog bound: b + rT

Delay bound: $\frac{b}{R} + T$

Output arrival curve:

$$\alpha^*(t) = rt + b^*$$

with
$$b^* = b + rT$$



Network calculus uses arrival curves and service curves to derive delay and backlog bounds.

Single node analysis follows immediately.

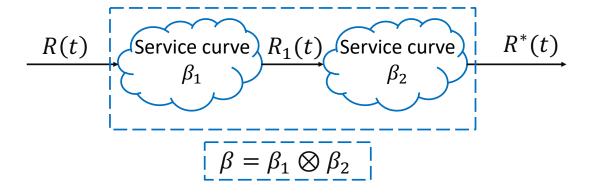
How about network analysis?

3. Network Analysis

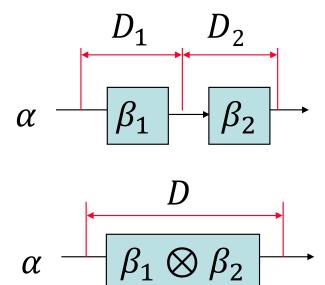
Per-flow network:

network nodes offer guarantees to individual flows e.g. IETF IntServ

Solution: apply concatenation result



Pay Bursts Only Once



$$\alpha(t) = rt + b$$

$$\beta_1(t) = R(t - T_1)^+$$

$$\beta_2(t) = R(t - T_2)^+$$

$$r \le R$$

In per-flow Network: one flow constrained *at source* by α

end-to-end delay bound computed *node-by-node* (also accounting for increased burstiness at node 2):

$$D_1 + D_2 = \frac{2b + rT_1}{R} + T_1 + T_2$$

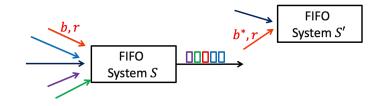
computed by concatenation:

$$D = \frac{b}{R} + T_1 + T_2$$

i.e. worst cases cannot happen simultaneously

FIFO Per-Class Networks

Most time sensitive networks are FIFO per-class:



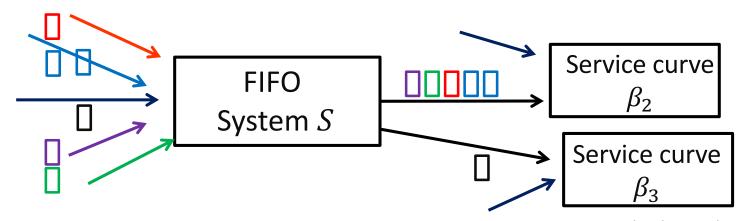
- flows are assigned to classes
- schedulers (such as DRR) separate classes and provide service guarantee to the aggregate of all flows of this class
- Inside a class, service is FIFO
- flows are constrained at sources by arrival curves

Using service curves, such a network can be analyzed per-class

→ one separate FIFO network model per class

Global analysis can also be performed iteratively [Tabatabaee 2023c]

FIFO Networks



Flows merge and split, no simple result as in per-flow networks.

Feedforward networks: obtaining worst-case delay is NP-hard [Bouillard 2010]

Can be computed with ELP (Exponential Linear Programming) [Bouillard 2014]

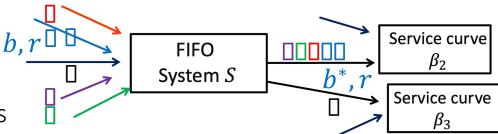
- service curve, arrival curve and FIFO are expressed as constraints in a linear program
- super-exponential complexity

this shows only one class;

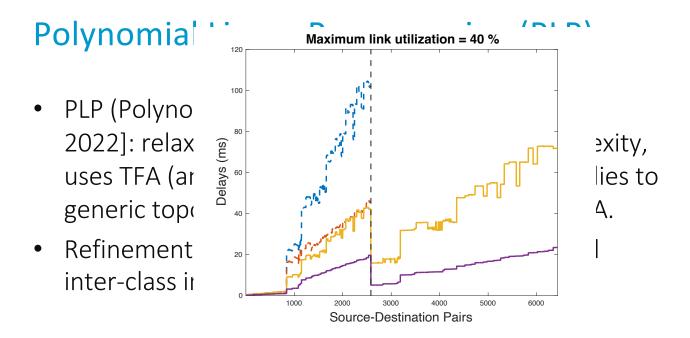
the service curves are offered to aggregate of all flows.

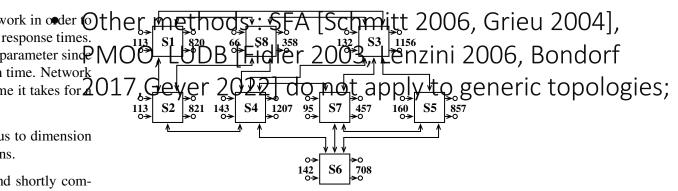
Total Flow Analysis (TFA [Schmitt 2006], TFA++ [Mifdaoui 2017])

Simple, commonly used method to analyze a generic deterministic network



- Sources are constrained e.g. by token buckets
- a) Propagated burstiness of flow inside the network is computed by $b^* = b + r \times (\text{delay bound between source and here})$
- b) Delay at every node uses single node network calculus + propagated burstinesses. End-to-end delay bound is sum of nodal bounds on path
- In a feedforward network of depth d, start at edge nodes and stop in d iterations
- In a generic network, iterate a) and b) at all nodes until convergence to a fixpoint or move to infinity. If convergence, the bounds are valid. If divergence, we don't know. [Thomas 2019, Plassart 2022]
- Optimizations for case with many periodic flows and many different periods [Tabatabaee 2023a]





d-to-end delayst ools: DESQLO1[SEDXMeitWork DOMES to PaNets [Mifdaoui

2010], Pegase [Boyer 2010], Saihu [Tsai 2024] End-Systems exchange Ethernet frames through VL.

Switching a frame from a transmitting to a receiving End System is based on a VL (deterministic routing). The Virtual Link defines a logical unidirectional connection from one source End-system to one or more destination End systems. It is a path with multicast characteristic. Figure 2

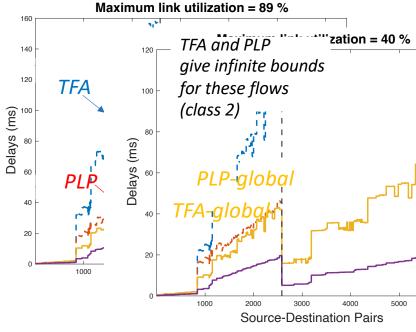
cteristics of

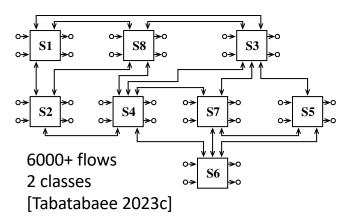
second step, we

realistic exam-

ler example the

king approach.





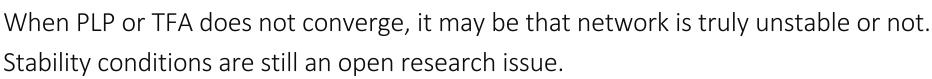
26

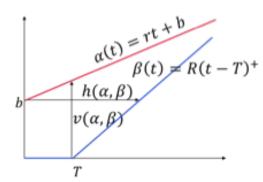
Stability of a FIFO Network

Every flow $f \in \mathcal{F}$ constrained by $\alpha_f(t) = r_f t + b_f$ at source. Route of flow f is fixed. $F_i \subset \mathcal{F}$ is the set of flows passing through node i. Every node $i \in \mathcal{I}$ is FIFO and offers to the aggregate of flows $f \in F_i$ a service curve $\beta_i(t) = R_i(t - T_i)^+$. Load factor $u = \max_i \left(\frac{\sum_{f \in F_i} r_f}{R_i}\right)$. \mathcal{F}, \mathcal{I} finite. Network underloaded: u < 1; overloaded: u > 1; critical: u = 1.

One network instance = $(\mathcal{F}, r, b, F, \mathcal{I}, R, T)$ is stable if there is a bound on all delays (or backlogs), that is valid for any execution trace of the network.

- An overloaded FIFO network is not stable. A feed-forward network that is underloaded or critical is stable.
- For any $\varepsilon>0$ there is an unstable underloaded FIFO network with load factor $u<\varepsilon$ [Andrews 2009]





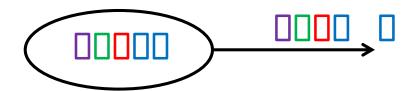
In per-flow networks, deterministic Network analysis is as simple as single node.

In per-class networks and arbitrary topologies, algorithms typically require finding fixpoints (with e.g. TFA or PLP).

Underloaded networks may be unstable.

4. Regulators

Regulator (= shaper) delays packets in order to limit burstiness to a prescribed value (i.e. enforces an arrival curve constraint).



Non work-conserving.

Example: Token Bucket regulator (regulator for the arrival curve constraint $\alpha(t) = rt + b$)

Typically placed at source / network edge to protect deterministic network from misbehaving sources

rate rmax bToken Bucket

policer
(filter)

shaper buffer
(prefilter buffer)

Can also be used inside the network

Cascading Burstiness

In a per-flow network, burstiness of a flow increases linearly with number of hops, but pay-bursts-only allows to still have good delay bounds.

In per-class networks, burstiness of every flow increases at every hop as a function of other flows' burstiness:

$$b_f^* = b_f + r \left(T + \frac{b_{tot} - b_f}{R} \right)$$

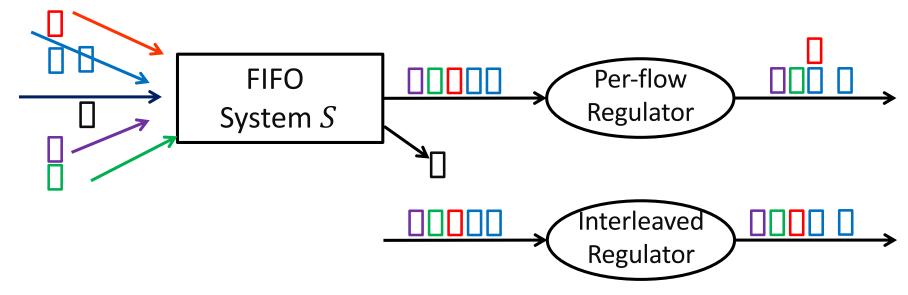
Increased burstiness causes increased burstiness (cascade).

Propagated burstiness is computed by PLP / TFA as solution to a fixpoint problem.



Cyclic dependencies are root cause for bad worst-case delays.

Regulators Avoid Cascading Burstiness in Per-Class Networks

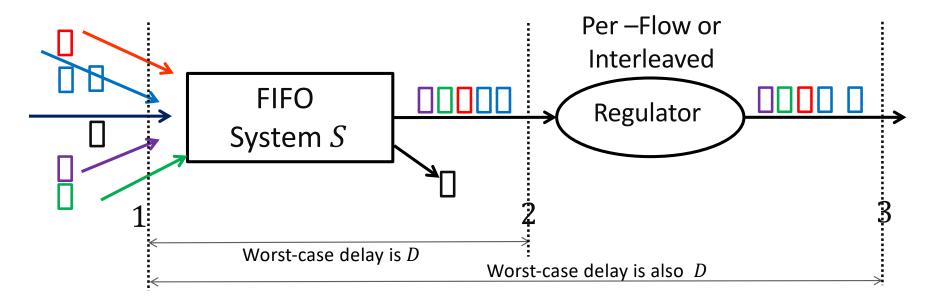


Per flow regulator: one state + one queue per flow.

Interleaved regulator: one state per flow + one global queue:

- packet at head of queue is examined against the arrival constraint (e.g. rate r_f and burstiness b_f) of its flow f; this packet is delayed if it came too early; different flows in same queue can have different arrival constraints;
- packets not at head of queue wait for their turn to come [Specht 2016].

Regulators do not Increase Worst Case Delay



Assume S is FIFO per flow (per-flow regulator) or globally (interleaved regulator).

Assume every flow satisfies some arrival constraint at $\bf 1$ (e.g. rate and burstiness) and regulators enforces same constraint at $\bf 3$.

The worst case delay 1-3 is the same as the worst-case delay 1-2 [Le Boudec 2018]. (Reshaping-for-free property)

Network With Regulators [IEEE TSN ATS]

- Regulators are integrated in (next-hop's) queuing system.
- Worst case end-to-end queuing delay can ignore regulators. Worst-case delay at one regulator is absorbed by delay bound at previous hop.
- Queuing delay and backlog at every hop can be computed using single node analysis.
- stable.

Underloaded network is always

Delay bound D Regulator Delay bound D' > DOne interleaved regulator per class and per input or one per-flow regulator for every flow

Delay bound D

[Mohammadpour 2018]

Deterministic networks use regulators at edge to protect determinism

Can also be deployed internally to avoid burstiness increase / to simplify network analysis

Re-shaping is for free (w.r. to worst-case delay)

5. Clock Non Idealities

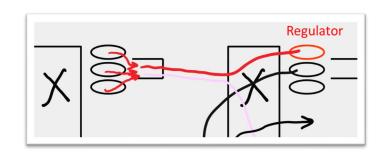
Previous theory assumes perfect time everywhere. In reality, nodes use local clocks that are not ideal.

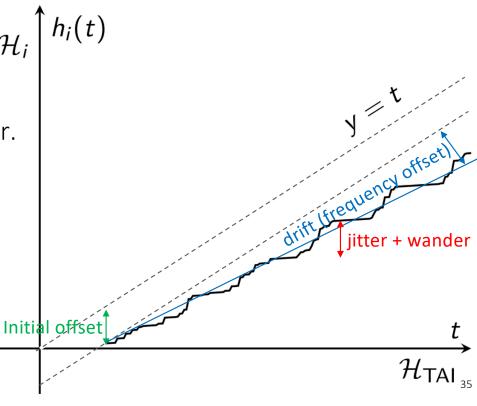
- tight sync (PTP, White Rabbit, GPS) : timestamping error $\leq \omega \approx 10 \text{ns} 1 \mu \text{s}$
- loose sync (NTP): $\omega \approx 1 \text{ms} 1 \text{s}$
- no sync: timestamping error ω unbounded; measurement of time interval on same system: error is bounded by clock drift, jitter and wander.

[ITU-T 1996]

Regulators use time measurements to decide when a packet can be released.

What is the effect of clock non ideality?





Clock Model in Network Calculus [Thomas 2020]

Measurement of a time interval is performed with one clock $\rightarrow d$ and with another clock $\rightarrow d'$

Time synchronization error: $d' - d \le 2\omega$

Clock jitter and wander: $d' \leq \rho d + \eta$

This gives the change-of-clock inequalities

$$\max\left(0, \frac{d-\eta}{\rho}, d-2\omega\right) \le d' \le \min(\rho d + \eta, d + 2\omega)$$

Model is symmetric, i.e. same inequalities if we exchange $d' \leftrightarrow d$

Relative error on estimation of delays is, in general, $\approx 10^{-4}$, i.e. negligible. However there are some corner cases.

 $\omega =$ time error bound = $1\mu s$ in TSN with PTP; = $+\infty$ if no synchronization

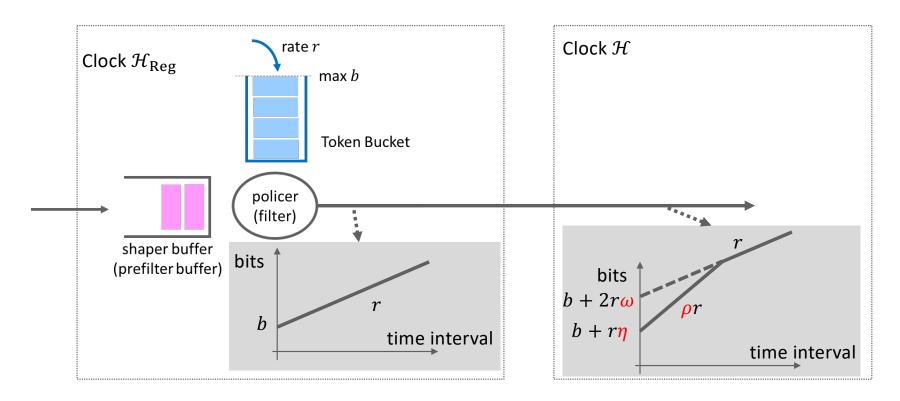
 $ho = {
m clock\text{-}stability}$ bound =1.0001 (e.g. in TSN)

 $\eta = \text{timing-jitter bound}$ = 2ns (e.g. in TSN)

Change of Clock: Arrival Curves

Assume a flow satisfies a token bucket constraint (r,b) when observed with clock \mathcal{H}_{Reg} i.e. arrival curve constraint $\alpha^{\mathcal{H}_{Reg}}(t) = rt + b$

When observed with some other clock \mathcal{H} , it satisfies the arrival curve constraint $\alpha^{\mathcal{H}}(t) = \min(\rho rt + b + r\eta, rt + b + 2r\omega)$



Consequences for Non-Adapted Regulators [Thomas 2020]

 $lpha_{f_{3,p}}^{\mathcal{H}_3}$

Non adapted regulator : uses same nominal arrival curve as at source.

Perfect clocks:

Regulator does not increase worst-case delay

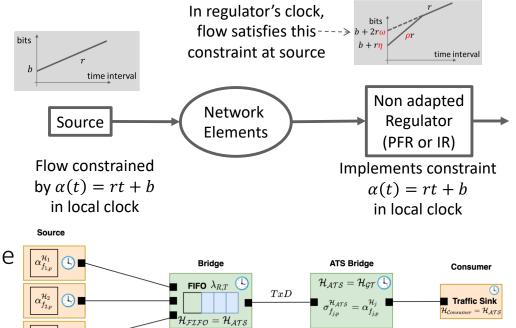
Non-synchronized network:

• Per-flow and interleaved regulator unstable (unbounded delay).

Synchronized network:

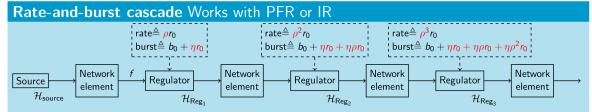
• Per-flow regulator incurs delay penalty up to 4ω ;

Interleaved regulator is unstable
 ⇒ must be adapted,
 e.g. with rate-and-burst cascade

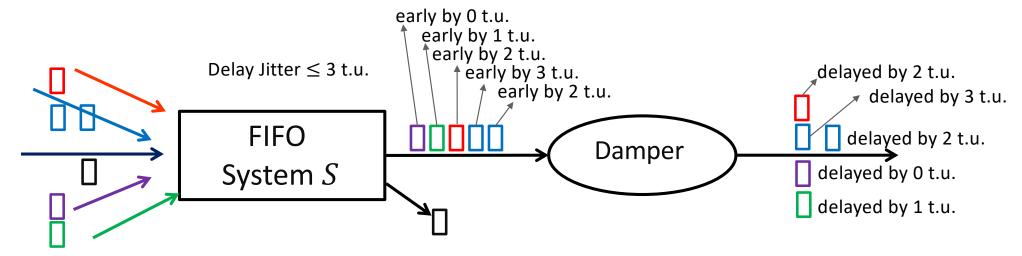


Ns3 simulation – Guillermo Aguirre and Ludovic Thomas 3 sources @ 147 kb/s, $\omega=1\mu$ s, $\rho=1.0001$; Delay increases by up to 100μ s per second.

Interleaved Regulator



Dampers



Damper delays a packet by "earliness" read from packet header.

Removes most of jitter, with some residual jitter dependent on tolerance, not on traffic \Longrightarrow also removes burstiness cascade.

Non work-conserving. Like a per-flow regulator, does not exist in isolation, is combined with queue at next hop.

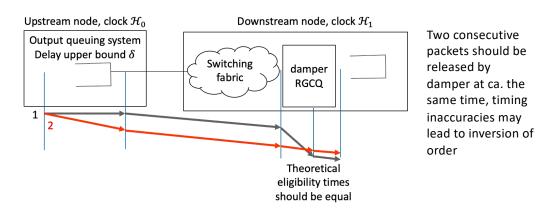
Unlike regulator, is stateless.

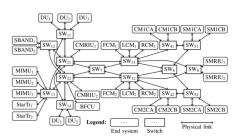
[Cruz 1998] RCSP [Zhang 1993], RGCQ [Shoushou 2020], ATS with Jitter Control [Grigorjew 2020].

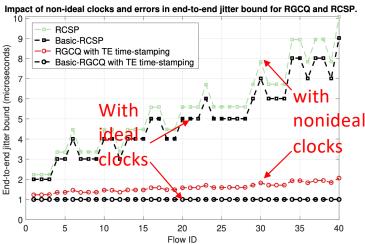
Consequences for Dampers

Residual jitter is somehow affected by clock inaccuracies

Timing inaccuracies may lead to mis-ordering







⇒ Some dampers enforce per-flow packet order (e.g. FOPLEQ, ATS with Jitter Control [Grigorjew 2020]) - work properly only if all network elements are FIFO per flow

[Mohammadpour 2022]

Clock non idealities can easily be accounted for in a network calculus analysis

Both for synchronized and non-synchronized networks

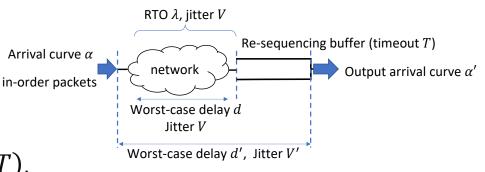
Arrival curves and delay bounds are (very slightly) affected, but dampers and regulators are dramatically affected and need to provision safety mechanisms

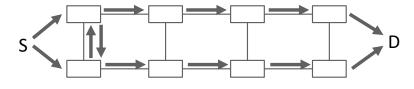
6. More Bells and Whistles

Packet re-ordering due to e.g. multi-paths, packet replication, dampers.

- ⇒ Re-sequencing buffers are used. Network calculus was extended to account for them [Mohammadpour 2021]
- Lossless network: d' = d, V' = V and $\alpha'(t) = \alpha(t + V)$ (re-sequencing is for free)
- Lossy network: d' = d + T, V' = V + T and $\alpha'(t) = \alpha(t + V + T)$.

Packet replication and removal is used to repair non-congestion losses. It causes causes mis-ordering and increases burstiness. Network calculus was extended to account for this [Thomas 2022]





Any combination of failures that leaves at least one path up is masked ("0 msec repair") [IEEE 802.1CB]

Stochastic Network Calculus ...

nb bits observed in (s,t]

Stochastic arrival curves [Ciucu 2012]

SBB:
$$\forall s \leq t, \sigma > 0$$
: $\mathbb{P}(A(s,t) > f(t-s) + \sigma) \leq \varepsilon(\sigma)$
 S^2 BB: $\forall t, \sigma > 0$: $\mathbb{P}(\sup_{s \leq t} A(s,t) > f(t-s) + \sigma) \leq \varepsilon(\sigma)$
 S^3 BB: $\forall \sigma > 0$: $\mathbb{P}(\sup_{s \leq t} A(s,t) > f(t-s) + \sigma) \leq \varepsilon(\sigma)$

 S^2BB obtains $\mathbb{P}(Q(t) \leq b)$ for any arbitrary t [Vojnovic 2003].

S³BB obtains $\mathbb{P}(\forall t, Q(t) \leq b)$ cannot apply nontrivially to ergodic processes, but applies to periodic sources [Tabatabaee2023b]

Stochastic service [Jiang 2008, Fidler 2015, Nikolaus 2019] uses MGF bounds. [Zhang 2022] models wireless links.

Tools

- The DiscoDNC

 is an academic Java implementation of the network calculus framework. [10]
- The RTC Toolbox ☑ is an academic Java/MATLAB implementation of the Real-Time calculus framework, a theory quasi equivalent to network calculus.^{[4][11]}
- The CyNC ∠ [12] tool is an academic MATLAB/Symulink toolbox, based on top of the RTC Toolbox ∠. The tool was developed in 2004-2008 and it is currently used for teaching at Aalborg university.
- The RTaW-PEGASE

 is an industrial tool devoted to timing analysis tool of switched Ethernet network (AFDX, industrial and automotive Ethernet), based on network calculus.

 [13]
- The WOPANets

 is an academic tool combining network calculus based analysis and optimization analysis. [14]
- The DelayLyzer is an industrial tool designed to compute bounds for Profinet networks. [15]
- DEBORAH

 is an academic tool devoted to FIFO networks. [16]
- NetCalBounds

 is an academic tool devoted to blind & FIFO tandem networks. [17][18]
- NCBounds ∠ is a network calculus tool in Python, published under BSD 3-Clause License. It considers rate-latency servers and token-bucket arrival curves. It handles any topology, including cyclic ones.^[19]
- The Siemens Network Planner (SINETPLAN ☑) uses network calculus (among other methods) to help the design of a PROFINET network. [20]
- experimental modular TFA ☑ (xTFA) is a Python code, support of the PhD thesis of Ludovic Thomas^[21]
- Panco ☑ is a Python code that computes network calculus bounds with linear programming methods.
- Saihu ☑ is a Python interface that integrates three worst-case network analysis tools: xTFA, DiscoDNC, and Panco ☑.
- CCAC ☑ is an SMT-solver based tool to verify the performance properties of congestion control algorithms (CCAs) using a network-calculus-like model

Conclusion

Time Sensitive Networks require deterministic, proven bounds on delay, jitter, backlog and re-ordering.

Network Calculus provides a rigorous theory and software tools for computing such bounds and for understanding operation of regulators, dampers, re-sequencing buffers or packet elimination functions.

Clock non-idealities can easily be incorporated. Regulators and dampers are affected, other systems not.

Stochastic Network calculus promises to apply to wireless networks.

Thank You!

References are in the online version.

References

- [Andrews 2009] Andrews, M., 2009. Instability of FIFO in the permanent sessions model at arbitrarily small network loads. ACM Transactions on Algorithms (TALG), 5(3), pp.1-29.
- [Bennett 2002] Bennett, J.C., Benson, K., Charny, A., Courtney, W.F. and Le Boudec, J.Y., 2002. Delay jitter bounds and packet scale rate guarantee for expedited forwarding. IEEE/ACM Transactions on networking, 10(4), pp.529-540.
- [Bondorf 2017] Bondorf, S., 2017, May. Better bounds by worse assumptions— Improving network calculus accuracy by adding pessimism to the network model. In 2017 IEEE International Conference on Communications (ICC) (pp. 1-7). IEEE.
- [Bouillard 2010] Bouillard, A., Jouhet, L. and Thierry, E., 2010, March. Tight performance bounds in the worst-case analysis of feed-forward networks. In 2010 Proceedings IEEE INFOCOM (pp. 1-9). IEEE.
- [Bouillard 2014] Bouillard, A. and Stea, G., 2014. Exact worst-case delay in FIFO-multiplexing feed-forward networks. *IEEE/ACM Transactions on Networking*, 23(5), pp.1387-1400.
- [Bouillard 2018] Bouillard, A. Boyer, M. and Le Coronc, E. *Deterministic Network Calculus: from Theory to Practical Implementation,* ISTE Editions, 2018
- [Bouillard 2022] Bouillard, A., 2022. Trade-off between accuracy and tractability of network calculus in FIFO networks. *Performance Evaluation*, 153, p.102250.
- [Boyer 2010] Boyer, M., Navet, N., Olive, X. and Thierry, E., 2010, October. The PEGASE project: precise and scalable temporal analysis for aerospace communication systems with network calculus. In *International Symposium On Leveraging Applications of Formal Methods, Verification and Validation* (pp. 122-136). Springer, Berlin, Heidelberg.
- [Chang 1997] Chang, C.S., 1997, April. A filtering theory for deterministic traffic regulation. In *Proceedings of INFOCOM'97* (Vol. 2, pp. 436-443). IEEE.
- [Ciucu 2012] Ciucu, F. and Schmitt, J., 2012, August. Perspectives on network calculus: no free lunch, but still good value. *SIGCOMM 2012*.

- [Cruz 1998] Cruz, R.L., 1998, March. SCED+: Efficient management of quality of service guarantees. In Proceedings. IEEE INFOCOM'98, IEEE
- [De Azua 2014] De Azua, J.A.R. and Boyer, M., 2014, October. Complete modelling of AVB in Network Calculus Framework. In *RTNS*(p. 55).
- [Fidler 2003] Fidler, M., 2003, February. Extending the network calculus pay bursts only once principle to aggregate scheduling. In *International Workshop on Quality of Service in Multiservice IP Networks* (pp. 19-34). Springer, Berlin, Heidelberg.
- [Geyer 2022] Geyer, F., Scheffler, A. and Bondorf, S., 2022. Network Calculus with Flow Prolongation--A Feedforward FIFO Analysis enabled by ML. *arXiv* preprint arXiv:2202.03004.
- [Grieu 2004] Grieu, Jérôme (Sept. 24, 2004). "Analyse et évaluation de techniques de commutation Ethernet pour l'interconnexion des systems avioniques." PhD thesis. url: http://ethesis.inp-toulouse.fr/archive/00000084
- [Grigorjew 2020] Grigorjew, A., Metzger, F., Hoßfeld, T., Specht, J., Götz, F.J., Chen, F. and Schmitt, J., 2020. Asynchronous Traffic Shaping with Jitter Control. https://opus.bibliothek.uni-wuerzburg.de
- [IEEE 802.1CB] "IEEE Standard for Local and Metropolitan Area Networks—Frame Replication and Elimination for Reliability" (Oct. 2017). In: *IEEE Std 802.1CB-2017*, pp. 1–102. doi: 10.1109/IEEESTD.2017.8091139.
- [ITU-T 1996] Definitions and terminology for synchronization networks. ITU-T G.810.
- [ITU-T 2020] ITU-T, "ITU-T Y.3000-series representative use cases and key network requirements for network 2030," vol. Y.Sup67, 2020.
- [Jiang 2008] Jiang, Y. and Liu, Y., 2008. *Stochastic network calculus*. London: Springer.
- [Le Boudec 1996] Le Boudec, JY, "Network Calculus Made Easy", preprint, Technical report EPFL-DI 96/2018, December 14, 1996
- [Le Boudec-Thiran 2001] Le Boudec, J.Y. and Thiran, P., 2001. Network calculus: a theory of deterministic queuing systems for the internet (Vol. 2050). Springer Science & Business Media. https://leboudec.github.io/netcal/

- [Le Boudec 2018] Le Boudec, J.Y., 2018. A theory of traffic regulators for deterministic networks with application to interleaved regulators. IEEE/ACM Transactions on Networking, 26(6), pp.2721-2733.
- [Lenzini 2006] Lenzini, L., Martorini, L., Mingozzi, E. and Stea, G., 2006. Tight end-to-end per-flow delay bounds in FIFO multiplexing sink-tree networks. *Performance Evaluation*, *63*(9-10), pp.956-987.
- [Maile 2020] Maile, L., Hielscher, K.S. and German, R., 2020, May. Network calculus results for TSN: An introduction. In 2020 Information Communication Technologies Conference (ICTC) (pp. 131-140). IEEE.
- [Mifdaoui 2010] Mifdaoui, A. and Ayed, H., 2010, December. WOPANets: a tool for WOrst case Performance Analysis of embedded Networks. In 2010 15th IEEE International Workshop on Computer Aided Modeling, Analysis and Design of Communication Links and Networks (CAMAD) (pp. 91-95). IEEE.
- [Mifdaoui 2017] Mifdaoui, A. and Leydier, T., 2017, December. Beyond the
 accuracy-complexity tradeoffs of compositional analyses using network calculus
 for complex networks. In 10th International Workshop on Compositional Theory
 and Technology for Real-Time Embedded Systems (co-located with RTSS
 2017) (pp. pp-1).
- [Mohammadpour 2018] Mohammadpour, E., Stai, E., Mohiuddin, M. and Le Boudec, J.Y., 2018, September. Latency and backlog bounds in time-sensitive networking with credit based shapers and asynchronous traffic shaping. In 2018 30th International Teletraffic Congress (ITC 30) (Vol. 2, pp. 1-6). IEEE.
- [Mohammadpour 2019] Mohammadpour, E., Stai, E. and Le Boudec, J.Y., 2019. Improved delay bound for a service curve element with known transmission rate. *IEEE Networking Letters*, 1(4), pp.156-159.
- [Mohammadpour 2021] Mohammadpour, E. and Le Boudec, J.Y., 2021. On Packet Reordering in Time-Sensitive Networks. IEEE/ACM Transactions on Networking.
- [Mohammadpour 2022] Mohammadpour, E. and Le Boudec, J.Y., 2022. Analysis of Dampers in Time-Sensitive Networks With Non-Ideal Clocks. *IEEE/ACM Transactions on Networking*.

- [Navet et al, 2020] Navet, N., Bengtsson, H.H. and Migge, J., 2020. Early-stage bottleneck identification and removal in TSN networks, https://orbilu.uni.lu/bitstream/10993/46282/1/AEC2020-UL-Volvo-RTaW-web.pdf
- [Nikolaus 2019] Nikolaus, P., Schmitt, J. and Schütze, M., 2019. h-Mitigators: Improving your stochastic network calculus output bounds. Computer Communications, 144, pp.188-197.
- [Plassart 2022] Plassart, S. and J.-Y. Le Boudec., 2021. Equivalent Versions of Total Flow Analysis. *arXiv preprint arXiv:2111.01827*.
- [RFC 4737] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov, S. and Perser, J., 2006. *Packet reordering metrics* (IETF RFC 4737).
- [Schmitt 2006] Schmitt, J.B. and Zdarsky, F.A., 2006, October. The disco network calculator: a toolbox for worst case analysis. In *Proceedings of the 1st international conference on Performance evaluation methodolgies and tools* (pp. 8-es).
- [Shoushou 2020] R. Shoushou, L. Bingyang, M. Rui, W. Chuang, J.-Y. Le Boudec, E. Mohammadpour, and A. El Fawal, "A method for sending data packets and network equipment," China Patent, Jul., 2020
- [Shreedhar 1996] M. Shreedhar and G. Varghese, "Efficient fair queuing using deficit round-robin," *IEEE/ACM Transactions on Networking*, vol. 4, no. 3, pp. 375–385, 1996
- [Soni 2018]: A. Soni, X. Li, J. Scharbarg, and C. Fraboul, "Optimizing network calculus for switched ethernet network with deficit round robin," in 2018 IEEE Real-Time Systems Symposium (RTSS), 2018.
- [Specht 2016] Specht, J. and Samii, S., 2016, July. Urgency-based scheduler for time-sensitive switched ethernet networks. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS) (pp. 75-85). IEEE.
- [Tabatabaee 2022] Tabatabaee SM, Le Boudec JY. Deficit round-robin: A second network calculus analysis. IEEE/ACM Transactions on Networking. 2022 Apr 13.
- [Tabatabaee 2023a] S. Tabatabaee, M. Boyer, J.-Y. Le Boudec, J. Migge Efficient and Accurate Handling of Periodic Flows in Time-Sensitive Networks, accepted at RTAS 2023.

- [Tabatabaee 2023b] Tabatabaee, S.M., Bouillard, A. and Le Boudec, J.Y., 2023, September. Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic Flows. In International Conference on Quantitative Evaluation of Systems (pp. 205-220). Cham: Springer Nature Switzerland.
- [Tabatabaee 2023c] Tabatabaee, S.M., Bouillard, A. and Le Boudec, J.Y., 2023. Worst-case delay analysis of time-sensitive networks with deficit round-robin. IEEE/ACM Transactions on Networking.
- [Tassiulas 1996] Tassiulas, L. and Georgiadis, L., 1996. Any work-conserving policy stabilizes the ring with spatial re-use. *IEEE/ACM transactions on networking*, 4(2), pp.205-208.
- [Thomas 2019] Thomas, L., Le Boudec, J.Y. and Mifdaoui, A., 2019, December. On cyclic dependencies and regulators in time-sensitive networks. In 2019 IEEE Real-Time Systems Symposium (RTSS) (pp. 299-311). IEEE.
- [Thomas 2020] Thomas, L. and Le Boudec, J.Y., 2020. On Time Synchronization Issues in Time-Sensitive Networks with Regulators and Nonideal Clocks. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(2), pp.1-41.
- [Thomas 2022] Thomas, L., Mifdaoui, A. and Le Boudec, J.Y., 2022. Worst-Case Delay Bounds in Time-Sensitive Networks With Packet Replication and Elimination. *IEEE/ACM Transactions on Networking*.
- [Tsai 2024] Tsai, C.T., Tabatabaee, S.M., Plassart, S. and Le Boudec, J.Y., 2024. Saihu: A common interface of worst-case delay analysis tools for time-sensitive networks. SoftwareX, 27, p.101882.
- [Vojnovic 2003] Vojnovic, M. and Le Boudec, J.Y., 2003. Bounds for Independent Regulated Inputs Multiplexed in a Service Curve Network Element. IEEE Transactions on Communications, 51, pp.735-740.
- [Zhang 1993] Zhang, H. and Ferrari, D., 1993, March. Rate-controlled static-priority queueing. In IEEE INFOCOM'93 The Conference on Computer Communications, Proceedings (pp. 227-236). IEEE.
- [Zhang 2022] Zhang, Y., Jiang, Y. and Fu, S., 2022. Service Modeling and Delay Analysis of Packet Delivery over a Wireless Link. arXiv:2207.01730..

- [Zhao 2018] Zhao, L., Pop, P., Zheng, Z. and Li, Q., 2018, April. Timing analysis of AVB traffic in TSN networks using network calculus. In 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (pp. 25-36). IEEE.
- [Zhou 2020] B. Zhou, I. Howenstine, S. Limprapaipong and L. Cheng, "A survey on network calculus tools for network infrastructure in real-time systems," IEEE Access, vol. 8, pp. 223588–223605, 2020. doi: 10.1109/ACCESS. 2020.3043600.