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Abstract:

Flow constraints are the heart of network calculus, as they are allow to derive deterministic delay and backlog
bounds. At the origin is Cruz’s arrival curve constraint [Cruz PhD Dissertation 1987], which can easily be
expressed with min-plus algebra and was used by the Internet integrated services. Other constraints that cannot
be cast as arrival curves are the length-rate quotient rule and more generally Chang’s g-regularity, expressed
with max-plus algebra. More recently, IEEE TSN and IETF Detnet use a traffic specification based on packet rates
which does not fit either of these formalisms. In this talk, we describe a new formalism for flow constraints,
called Pi-regularity, which subsumes all of these. We define a new general concept of minimal regulators, which
subsumes greedy shapers and minimal g-regulators. We show that appending a minimal regulator after any
arbitrary FIFO system does not increase the per-flow worst case delay. Last, we review the concept of
interleaved regulator, which acts on a serialized multiplex of flows without using per-flow queues. We show that
appending a minimal regulator after any arbitrary FIFO system does not increase the per-class worst case delay.
We explain how this feature can be used to analyze TSN and Detnet systems of any size and complexity.

[Le Boudec 2018] Le Boudec, Jean-Yves, “A Theory of Traffic Regulators for Deterministic Networks with
Application to Interleaved Regulators”, arXiv preprint arXiv:1801.08477.
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1. FIFO Per-Class Networks

FIFO per class are commonly used in Time Sensitive Networking (IEEE
802.1 TSN, IETF Detnet).

Computing backlog and delay bounds is hard [Bennett et al 2002]:

burstiness of every flow increases at input. flow f output flow
. leaky bucket \ I::Eybuche{
every hop as a function of other flows  erseinny ™~ meesy oy consain 7,57
. _ Brr
burstiness (14 )
. . by =bs + 1 (T + to; L), beoe =2ib;
Increased burstiness causes increased [Le Boudec-Thiran 2001, Section 6.4]

burstiness (cascade).

Several techniques find improved bounds [Amari et al 2016] [Boyer et
al 2012] [Bouillard-Stea 2015][Bondorf et al 2017][Bouillard et al
2018][Rizzo-Le Boudec 2008].



voiding Burstiness Cascade

\ FIFO System S | 0000 @ 0000, 0O
| Ber

Regulate every flow at every hop (per-flow shaping)

Issue 1: how to perform this without per-flow queue

[Specht-Samii 2016] “Urgency Based Scheduler”, now called
“Asynchronous Traffic Shaping” at I[EEE TSN

Issue 2: latency due to regulator



2. Flow Regulation: Arrival Curve

One flow; packets of lengths Ly, Lo, ... arrive at times 4; < A4, < ---

Arrival function:
L, + L}+1 R(®)
R(t) = Xn=12,. Lnlga, <) 17T by
o is arrival curve L+ 1 I
S R(t)—R(s)<o(t—s)fors<t ,
1 —0

& R < R o (min-plus convolution)

Aq A, Az

Superposition : if flow i has arrival curve og; then the superposition has
arrival curve o = };; g;

[Cruz PhD Dissertation 1987]



Examples of Arrival Curves

Affine (leaky bucket): o(t) = rt + b (b is called burstiness)

0
X°

IETF Intserv Traffic Specification: bits | \ care’
o(t) = min(pt + M,rt + b) b

M| time interval t
Staircase function bk':;‘.
at most b bits in any T second o
t
o(t) =b [ﬂ b time interval t

R T 27 3T



Greedy Shapers

fresh trafflc shaper o

Tl —
R(t) R™(t)
A shaper forces output to have o as arrival curve
A shaper with output R*(t) < is maximal if R*(t) = R"*(t) for
any other shaper with output R"*(t) .

There exists a maximal shaper (greedy shaper) given by

R*(t) = (6 ® R)()



Properties of Greedy Shapers

Re-shaping does not increase end-to-end delay bound with per-flow
scheduling and service curve elements

fresh traffic greedy shaper o
constrained by o w w

same end-to-end delay bound with or without shaper

[Le Boudec Thiran 2001, Section 1.5]



Flow Regulation: LRQ

Length-Rate Quotient rule LRQ () [Specht and Saami 2016] — used in
the context of IEEE TSN

Ly
Apt1 —4n 2 ?
Chang’s g-regularity
A, —A,=2gll, + -+ L,_1), ms<n

LRQ(r) is an instance of g-regularity with g(¥) = é

g-regularity leads to max-plus convolution [Chang-Lin 1998]
is not equivalent to an arrival curve constraint
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Flow Regulation: TSN (t, K) Traffic Specification

At most K packets in any interval of duration 7

. . . t
< number of packets seen in interval of duration tis < K H

(staircase function)

Similar to an arrival curve packets
but counting in packets not in bytes SK |

2K
K time interval t

a T 27 37
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Flow Regulation: Packet Burstiness

Packet Burstiness PB(p, K) [Le Boudec 2018] defined by:
number of packets seen in interval of durationtis < pt + K

Superposition property: if flow i satisfies PB(p;, K;) then the
superposition satisfies PB(},; pi, 2.; K;)-

PB(p,K) with p = K/t
K packe;cs

TSN(T,K) = PB(p,K) Wlthp =; 3K TSN(T,K)
Packet Burstiness is a tractable proxy 2K
to TSN traffic specification K i erval t

h T 2T 3{
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Flow Regulation: (4, v) Constraint

[Jiang 2018]

n—-m-v
A, — Ay = 3
Similar to affine g-regularity

but counting in packets not in bytes

form<n
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Min-plus versus Max-plus formulation

Based on byte/ packet counts Based on arrival times

- affine arrival curve - g-regulation

- staircase arrival curve - LRQ(7)

- TSN(t,K) (at most K - (4,v) constraint (packet
packets in T seconds) based constraint)

- PB(p,K) (at most pt + K
packets in any t seconds)

Min-plus formulation Max-plus formulation



Recap

Many different flow constraints
* some count bytes, some count packets
e some min-plus, some max-plus

Can we have a unified theory ?
Can we understand their associated regulators ?
Do they enjoy properties similar to greedy shapers ?

15



3. Equivalence of Viewpoints

Theorem: [Thm 1, Le Boudec 2018]
The conditions are equivalent

1. Flow has arrival curve constraint o
2.4, —Ap = 0'(Ly, + -+ Ly forallm<n

)

where o* is the lower pseudo-inverse of o

16



Lower Pseudo-Inverse [Liebeherr 2017]

fH(x) = inf {¢, f(£) = x)

3bt

2b > @ 2T
b —— T
T 2T 3T= i)
t ot — | _
a(t)=bH (x) . 1\

forx> 0



Equivalent Formulations

Original Definition

Equivalent Definition by
Application of Theorem

affine arrival curve R(t) — R(s) A, — A,
(leaky bucket) =r(t—s)+b JLmA et ln—b
B r
t A, —A
R(t) — R(s) < b H n~ Am
staircase arrival T - Lyy+--+Lp—0b
curve (at most - b

b bits in T seconds)

R(t) = number of bits seen in |0, t]; A,,, = arrival time for packet n

18



Equivalence, Packet based Constraint
Apply theorem with L, = 1 :

The conditions are equivalent
1. Number of packets in any interval of duration t is < f(t)

2.4, — A, = f'n—m+1Dforalm<n

19



Equivalent Formulations

TSN (t, K) P(t) — P(s) A, — A

(at most K packets <K[t_1 - n—-m+1—-K

in T seconds) B T =t K

PB(p,K) (at most P(t) — P(s) A >n—m+1—K
pt + K packets in <p(t—s)+K n m= 0

any t seconds)

(A4, Vv) constraint P(t) — P(s) A — A > n—-—m-—v
=PB(L,v+ 1) <At-—-s)+v+1 nooome A

P(t) = number of packets seen in [0, t]; A,, = arrival time for packet n

20



4. Pi-Regulation

A single packet flow (4, L)
A= (A4, A,,...) packet arrival times, A € Fj,,,
L = (L4, L5, ...) packet lengths

[Ta mapping (4,L) = II(A,L) = (E{, E,, ...) € F (eligibility times)
Definition [Le Boudec 2018]
This flow is [1-regular & A = I1(A,L) i.e. A,, = E,

We require that I1 is causal (E,, = I1(4, L),, depends only on
Ay, ...,A,_1and Lq,...,L,), homogeneous (invariant by change of
time origin), and isotone (if A > A’ then I1(4,L) > I1(A4’, L)).

21



Examples of Pi-regulation

All flow constraints shown before are instances of Pi-regulation

Lm+...+Ln_b)
r J

e affine arrival curve © A,, = max (Am +

|ms=n-1
| [1LB(r.b) (4, L)n

* LRQ(r) & Ap = Ap_y + o

J
| [1LRQ(T) (4,L),

« TSN(7,K) & A, Z\mr?%)—(1 (Am —T [n—m;d—KD

J

|
HTSN(T,K) (A, L)TL

22



Minimal Pi-Regulator

Flow (4, L) (D,L)st.D =2 A,D € Fy,oand D > 1I(D, L)
> [I-Regulator >

il 0 0O

Definition: [I-Regulator for a flow is any FIFO system that transforms
this flow into a II-regular flow.

Definition: A II-Regulator is minimal if it delivers packets no later
than any other II-Regulator.
Theorem [Le Boudec 2018]: There is one Minimal II-Regulator; it is
defined by D; = A, and

D,, = max{Ay, Dy_4, H(D)n}
This the central result in this theory, as we see next !
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Examples of Minimal Pi-Regulators

Flow regulation

Minimal Requlator

Arrival curve

Packetized greedy shaper

Chang’s g-regulation

Chang’s g-regulator

TSN(t,K)
(at most K packetsint
seconds)

Packet based spacer - similar
to ATM spacer-controller
[Guillemin et al 1992]

PB(p,K)
(at most pt + K packets in
any t seconds)

Packet based leaky bucket
controller (counts only
packets, not bits)

24



Universal Property of I\/Iinli)mal Pi-Regulators i

An In 1
flowf\‘;\ System S mm reshapéd;

H-regular/7 —flowy f W flow f
/FIFO per flow \

One flow f goes through a system S; system S is FIFO for flow f
* flow f is Il — regular atinputto S

* output flow f is reshaped through a minimal II-regulator

Theorem [Le Boudec 2018]: The worst case delay of flow f is not
increased: sup(E,, —A,) =sup(D,, —A4,)
n n

Re-shaping is for free !

25



d = worst case delay of flow f : Proof

input flow f System S output m reshaped

[I-regular flow f 'W flow f

input flow f System S output :® flow f |

[-regular flow f W delayed
by d
* Replace minimal IT —regulator by damper [Verma et al 1991]:
Damper forces total delay of flow f to be exactly d; Damper is
causal if d is = worst-case delay through S

* Qutput of damper is input flow f time-shifted by d = is I1 —regular
= Damper is a Il —regulator = (Minimal property) flow f delayed
by d is no earlier than reshaped flow f

26



Packetized Greedy Shaper

Greedy shaper = minimal regulator when constraint is arrival curve
and packet can be split into infinitesimal bits

Greedy shapers don’t increase delay bounds given by service curve
elements

Packetized greedy shaper (PGS) = minimal Pi-regulator when
constraint is arrival curve o. When o is concave, PGS is concatenation
of greedy shaper and packetizer = PGS does not increase one-hop
delay bound for a FIFO service curve element.

Our new result extends this to 1) the worst-case delay of any FIFO
per-flow system 2) any regulation constraint

27



5. Back to: Avoiding Burstiness Cascade

Solution 1: re-shape every flow at every hop (per-flow minimal
regulator). Solves the problem but defeats the purpose of per-class
network.

Solution 2: Interleaved Regulator 0ooao LITTRG

* FIFO queue of all packets of all flows in class

e packet at head of queue is examined versus traffic regulation of its
flow; this packet is delayed if it came too early

* packets not at head of queue wait for their turn to come

Invented by [Specht-Samii 2016] as “Urgency Based Scheduler”, now
called “Asynchronous Traffic Shaping” at IEEE TSN

28



Interleaved Regulator

Multi-flow

Packet Sequence
(A, L, F)

Interleaved

00000 g Regulator

Multi-flow
Packet Sequence
(D,L, F)
s.t. Vf, flow f is I1/ - regular
>

gooo O

A, : arrival time of packet n; L,;: length; F,: flow id of packet n

An Interleaved regulator is a FIFO system such that every output flow

fis 1/ - regular

D/ >1/(D/, L))
where D7 is the subsequence of D obtained by keeping only dates

that correspond to packets of flow f

29



Minimal Interleaved Regulator

Theorem [Le Boudec 2018]: There is one minimal interleaved
regulator (i.e. such that D,, < D;, for any other interleaved regulator).

It is given by D; = A4 and
Dy, = max {Ap, Dy_y, P (DFn, LFn). (n)}
where I(n) is the index of packet n in its flow.

30



Implementation of
Minimal Interleaved Regulator

Eligibility Time
D,, = max {An, D, _{ [1fn (DFn, LFn) of packet at head
of queue

* One FIFO queue for all packets of all flows.

* Packet at head of queue is examined and delayed until it can be
released while satisfying the regulation of its flow.

e Other packets wait until their turn comes.
[Specht-Samii 2016]
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Minimal Interleaved Regulator Does Not Increase Worst Case

Delay

Minéimal Interleaved Reguléator

Ap Dy, En

Every flow f is I1/ regular before input to S
Output of S is fed to interleaved regulator with regulator I1/ for flow f

Theorem: sup(D,, — A,) = sup(E,, — A,,)
n n

Interleaved Regulator is for free |
32



Proof

i System S | m resh.aped;
multi-flow input ulti-flow NLTesulator/ multi-flow

e\]/ceryf is output e

[T/ -regular damper all lows

System 5 %\c_l/ delayed”
by d

* Replace minimal II —regulator by damper [Verma et al 1991]:
Damper forces total delay of input to be exactly d; Damper is
causal if d is = worst-case delay through S

e Damper is an interleaved Il —regulator = multi-flow output
delayed by d is no earlier than reshaped multi-flow

d = worst case across all flows

33



Per-Flow versus Interleaved Minimal Regulation

One Minimal Regulator per Flow

(D

Minéimal Interleaved Regulé':\tor

FIFO 00000:
System S
D},
FIFO
System S

00000, popnn )— 9004

pJ

n

ES

n

34



One Minimal Regulator per Flow

\\T\j Fro | ooooo ’% 0000 O

* Interleaved does not require 7L Y02
per-flow queue 4l p! g
* Do they give the same delay? \“‘L\ Mir§mal Interleaved Regulhtor
- FIFO ; oooo o
l.e., do we have E,,Qf — E,{? _/)';’J System S | 0oooo 3
Al 1;,{ Ef

Minimal Interleaved Regulator is a Regulator for output flow f
>El >

In general, it is possible that E,{ > E’,],z for some packet n and some
flow f (i.e., interleaved regulator may delay some flows more than
per-flow regulator)

35



d’ for flow f

Worst-case delay at S for flow f : dffor flow f One Minimal Regulator p;r Flow
d/ = sup (DT{ — A{l) \;j FFO | ooooD Doog O
n P System S

Worst-case delay at S o D! g
d — Sup df — Sup (D1{ _ A£) \”‘r\ Mirﬁmal Interleaved Reguléitor

f n,f ; FIFO _ _ 0
In general d/ < d for A | |
some flows A, d’for flow f  bf E]

d for flow f

<

Minimal Interleaved Regulator might force delay d to a flow f that has
al <d.
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FIFO Network With Interleaved Regulators

Interleaved Regulator

)\

-
3

One interleaved
regulator per class and
per input

[Specht-Samii 2016] places
one interleaved regulator
per input port before
output queue.

Output of interleaved
regulator has known
burstiness

= no burstiness cascade
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Delay CompUtatiOnS Interleaved Shaper

In [EEE TSN | |§_ KNS

* Apply theorem on worst case delay where S = output scheduler at
previous hop. Worst case end-to-end queuing delay can ignore

interleaved regulators. Delay bound at one interleaved regulator is
absorbed by delay at previous hop.

 Queuing delay at every scheduler § (without shaper) can be
computed easily since traffic is regulated. [Next Session]

 Worst case delay at one node cannot ignore interleaved shaper.
= Worst case end-to-end delay is generally less than sum of per-
hop delays.
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Conclusions

Pi-regulation generalizes arrival curves, g-regulation, packet rate
limitations.

TSN’s traffic spec uses constraint on packet rate with a staircase
function. Can be replaced (for tractability) by an affine function
(Packet Burstiness).

Minimal regulator does not increase per-flow worst-case delay.

Minimal interleaved regulator does not increase overall worst-case
delay.

Minimal Interleaved Regulators can be used to simplify and control
FIFO networks.
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