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Per-Class Time Sensitive Networks

1. Flows are assigned to a small number of classes with different quality of service
requirements

2. Every flow is constrained at the source by an arrival curve (e.g. with rate r and
burstiness b, #bits sent over any interval of any duration t is <rt+b)

3. Atevery node, traffic of a given class is FIFO and is assured to receive a minimum
amount of service (e.g. with rate R and latency T)

= Deterministic delay, delay jitter and backlog bounds can be derived using network

calculus .
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Burstiness Cascade

Unlike in a per-flow network, in a per-class network with FIFO inside every
class, burstiness of every flow increases at every hop as a function of other
flows’ burstiness: e.g.
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Increased burstiness causes increased burstiness (cascade). /'f \‘; E{%/f’,\
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delay bounds can be bad even at medium utilizations. EE——— p
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Instability (infinite bounds) can occur even at low utilization [Andrews 2009].



Regulators in Time Sensitive Networks

Regulator (= shaper) delays packets in order to 00000 buoa >D
limit burstiness to a prescribed value

(i.e. enforces an arrival curve constraint).

Example: Token Bucket filter (Linux tc; IEEE TSN ATS). \rater

- maxb

Imagine a token bucket, spontaneously replenished at

rate r up to some maximum b.
Token Bucket

In order to be released, a packet must consume

same amount of tokens as its size. policer
) - (filter) h
If there are not enough tokens, packet must wait. — ;
. sShaper putrer I
As soon as there are enough tokens, packet is released. (prefilter buffer) |

This is the regulator for the arrival curve constrainta(t) =1t + b oo



Regulators Avoid Cascading Burstiness in Per-Class Networks
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Per flow regulator: one state + one queue per flow.

Interleaved regulator: one state per flow + one global queue:

packet at head of queue is examined against the arrival constraint (e.g. rate 1y and
burstiness by) of its flow f; this packet is delayed if it came too early; different flows in
same queue can have different arrival constraints;

packets not at head of queue wait for their turn to come [Specht-Samii 2016].



Regulators do not Increase Worst Case Delay

Per —Flow or
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Worst-case delay is D = _
Worst-case delay is also D

Assume S is FIFO per flow (per-flow regulator) or globally (interleaved regulator).

Assume every flow satisfies some arrival constraint at 1 (e.g. rate and burstiness) and
regulators enforces same constraint at 3.

The worst case delay 1 — 3 is the same as the worst-case delay 1 — 2 [Le Boudec 2018].



Network With Regulators [IEEE TSN ATS]

gueuing system.

 Worst case end-to-end queuing
delay can ignore regulators.
Worst-case delay at one
regulator is absorbed by delay
bound at previous hop.

* Queuing delay and backlog
at every hop can be computed
easily since traffic is regulated.

[Mohammadpour 2018]

Regulators are integrated in (next-hop’s)
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Clock Non Idealities

Previous theory assumes perfect time everywhere

In reality, nodes use local clocks that are not ideal.

e tight sync (PTP, White Rabbit, GPS) :
timestamping error < w =~ 10ns—1us

* |oose sync (NTP): w = 1ms —1s

* no sync: timestamping error w unbounded;

measurement of time interval on same system:
error is bounded by clock drift, jitter and wande

[ITU 1996]

Regulators use time measurements to decide
when a packet can be released.
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What is the effect of clock non ideality ?




Clock Model in Network Calculus [Thomas 2020]

A delay measurement is performed with one clock = d and with another clock —» d’
Time synchronization error: d' — d < 2w
Clock jitter and wander: d’ < pd + 1

This gives the constraints

1
—min ((1 — ;) d + g, 2w> <d —d<min((p—1)d +n,2w)

e w =time error bound = 1us in TSN with PTP; = 400 if no synchronization
* p = clock-stability bound =1.0001; n = timing-jitter bound = 2ns (e.g. in TSN)
Model is symmetric, i.e. same inequalities if we exchange d’ < d



Change of Clock: Arrival Curves

Assume a flow satisfies a token bucket constraint (r, b) when observed with clock Hgeg
i.e. arrival curve constraint a”Reg(t) = rt + b

When observed with some other clock H, it satisfies the arrival curve constraint
a’(t) = min(prt + b+ rn,rt + b + 2rw) [Thomas 2020]
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Consequences for Non-Adapted Regulators

Non adapted regulator : uses same nominal arrival curve as at source.

Perfect clocks:

In regulator’s clock,
«--- flow satisfies this
constraint at source

* Regulator does not increase
worst-case delay el

b+mn

time interval

Non-synchronized network:
* Per-flow and interleaved

regulator unstable bits
(unbounded delay). b time interval

Synchronized network:

Non adapted

_ Source Eletwor: Regulator f=—>
e Per-flow regulator incurs delay ements (PFR or IR)
penalty up to 4w; Flow constrained Implements constraint
. by a(t) =rt+b a(t)=rt+b
* Interleaved regulator is unstable. in local clock irE I)ocal clock
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Synchronized clocks,
Unstable non-adapted Interleaved Regulator (= IEEE TSN ATS)

ns-3 simulations with adversarial clocks . . o
Delay bound ignoring clock non ideality
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[Thomas 2020]

Packet number

Work by Guillermo Aguirre
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Regulators are sensitive to clock inaccuracies

In tighty synchronized networks, IR must be adapted otherwise is unstable; PFR need
not be adapted but increased delay due to clock inaccuracy must be accounted for. In
loosely synchronized or non synchronized networks, both PFR and IR must be adapted.

Rate-and-burst cascade Works with PFR or IR
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Beyond Regulators: Dampers

early by 0 t.u.
early by 1 t.u.
. early by 2
D Delay Jitter < 3 t.u. early by delayed by 2 t.u.
h\h earlv b 2 t.u. -// delayed by 3 t.u.
FIFO 6 ] delayed by 2 t.u.
> Damper = U y> Y
[] System S | delayed by 0 t.u.
[] / | delayed by 1 t.u.

Damper delays a packet by “earliness” read from packet header.
Removes (almost all) jitter.

Like a regulator, does not exist in isolation, is combined with queue at next hop.
Unlike regulator, is stateless.

[Cruz 1998] RCSP [Zhang 1993], RGCQ [Shoushou 2020], ATS with Jitter Control
[Grigorjew 2020].
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Dampers solves Burstiness Cascade Problem

~, s FIFO . 00000 @

1 2
Delay jitter 1 = 3 is 0 in theory; in practice, a small residual delay jitter
< A (in true time):

At 1: assume a flow is constrained by token bucket with rate r and
burstiness b (in true time);

= At 3, same flow is constrained by token bucket with rate r and
burstiness b + rA (in true time).

Tolerance A depends on jitter implementation and not on traffic
= no burstiness cascade.

o o | | o |
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Damper in an [EEE TSN Switch
Damper replaces the FIFO queue o [[[]]]

of the credit-based shaper.

Class A
DH Insertion
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Makes packet visible to the scheduler at its
theoretical eligibility time 4+ some damper

tolerance. “ M

Damper Header inserted on the transmission line.

source switch switch destination
HYBEEE  HA £ olPl8l 21
8H—§EH 3H ......... EEH 8H
= s & =) s & =
Example: RCSP damper; slYl (2 1Ups sV > 1N S|V
J U J
with clock m | in [Thomas 2020] : resi | jitter v v
th clock model in [Thomas 2020] : residual jitte one block one block

1.264 us per block, with or without clock synchronization
timing accuracy and clock non idealities contributes to 262 ns [Mohammadpour 2021]. .



Conclusion

Time Sensitive Networks require deterministic, proven delay, jitter and
backlog bounds.

Network Calculus provides theory and tools for computing such bounds
and for understanding operation of regulators. We extended it to account
for clock non-idealities.

Regulators must be adapted to account for clock non-idealities.

Beyond regulators, dampers are stateless and are less affected by clock
non-idealities.
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