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CHAPTER 1

CONGESTION CONTROL FOR BEST EFFORT:
THEORY

In this chapter you learn

• why it is necessary to perform congestion control
• the additive increase, multiplicative decrease rule
• the three forms of congestion control schemes
• max-min fairness, proportional fairness

This chapter gives the theoretical basis required for Congestion Control in the Internet.

1.1 THE OBJECTIVE OF CONGESTION CONTROL

1.1.1 CONGESTION COLLAPSE

Consider a network where sources may send at a rate limited only by the source capabilities. Such
a network may suffer of congestion collapse, which we explain now on an example.

We assume that the only resource to allocate is link bit rates. We also assume that if the offered
traffic on some link l exceeds the capacity cl of the link, then all sources see their traffic reduced in
proportion of their offered traffic. This assumption is approximately true if queuing is first in first
out in the network nodes, neglecting possible effects due to traffic burstiness.

Consider first the network illustrated on Figure 1.1. Sources 1 and 2 send traffic to destination
nodes D1 and D2 respectively, and are limited only by their access rates. There are five links
labeled 1 through 5 with capacities shown on the figure. Assume sources are limited only by their
first link, without feedback from the network. Call λi the sending rate of source i, and λ′i the
outgoing rate.

For example, with the values given on the figures we find λ1 = 100kb/s and λ2 = 1000kb/s, but
only λ′1 = λ′2 = 10kb/s, and the total throughput is 20kb/s ! Source 1 can send only at 10 kb/s
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6 CHAPTER 1. CONGESTION CONTROL FOR BEST EFFORT: THEORY

because it is competing with source 2 on link 3, which sends at a high rate on that link; however,
source 2 is limited to 10 kb/s because of link 5. If source 2 would be aware of the global situation,
and if it would cooperate, then it would send at 10 kb/s only already on link 2, which would allow
source 1 to send at 100 kb/s, without any penalty for source 2. The total throughput of the network
would then become θ = 110kb/s.

1

2

X Y

D1

D2

link 1
c1 = 100 kb/s

link 2
c2 = 1000 kb/s

link 3
c3 = 110 kb/s

link 4
c4 = 100 kb/s

link 5
c5 = 10 kb/s

Source 1

Source 2

Figure 1.1: A simple network exhibiting some inefficiency if sources are not limited by some feedback from
the network

The first example has shown some inefficiency. In complex network scenarios, this may lead to a
form of instability known as congestion collapse. To illustrate this, we use the network illustrated
on Figure 1.2. The topology is a ring; it is commonly used in many networks, because it is a
simple way to provide some redundancy. There are I nodes and links, numbered 0,1, ..., I− 1.
Source i enters node i, uses links [(i+ 1) mod I] and [(i+ 2) mod I], and leaves the network at
node (i+2) mod I. Assume that source i sends as much as λi, without feedback from the network.
Call λ′i the rate achieved by source i on link [(i + 1) mod I] and λ′′i the rate achieved on link
[(i+2) mod I]. This corresponds to every source choosing the shortest path to the destination. In
the rest of this example, we omit “ mod I” when the context is clear. We have then: λ′i = min

(
λi,

ci
λi+λ′i−1

λi

)
λ′′i = min

(
λ′i,

ci+1
λ′i+λi+1

λ′i

) (1.1)

l i n k  ( i - 1 )

l i n k  i

l i n k  ( i + 1 )

n o d e  i

n o d e

i + 1

s o u r c e  i

Figure 1.2: A network exhibiting congestion collapse if sources are not limited by some feedback from the
network

Applying Equation 1.1 enables us to compute the total throughput θ. In order to obtain a closed
form solution, we further study the symmetric case, namely, we assume that ci = c and λi = λ for
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all i. Then we have obviously λ′i = λ′ and λ′′i = λ′′ for some values of λ′ and λ′′ which we compute
now.

If λ ≤ c
2 then there is no loss and λ′′ = λ′ = λ and the throughput is θ = Iλ. Else, we have, from

Equation (1.1)

λ
′ =

cλ

λ+λ′

We can solve for λ′ (a polynomial equation of degree 2) and obtain

λ
′ =

λ

2

(
−1+

√
1+4

c
λ

)
We have also from Equation (1.1)

λ
′′ =

cλ′

λ+λ′

Combining the last two equations gives

λ
′′ = c− λ

2

(√
1+4

c
λ
−1
)

Using the limited development, valid for u→ 0

√
1+u = 1+

1
2

u− 1
8

u2 +o(u2)

we have

λ
′′ =

c2

λ
+o(

1
λ
)

Thus, the limit of the achieved throughput, when the offered load goes to +∞, is 0. This is what
we call congestion collapse.

Figure 1.3 plots the throughput per source λ′′ as a function of the offered load per source λ. It
confirms that after some point, the throughput decreases with the offered load, going to 0 as the
offered load goes to +∞.

0

2

4
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8

1 0

1 2

1 7 1 3 1 9 2 5 3 1 3 7 4 3 4 9 5 5 6 1 6 7 7 3 7 9 8 5 9 1 9 7

Figure 1.3: Throughput per source as a function of the offered load per source, in Mb/s, for the network of
Figure 1.2. Numbers are in Mb/s. The link rate is c = 20Mb/s for all links.

The previous discussion has illustrated the following fact:



8 CHAPTER 1. CONGESTION CONTROL FOR BEST EFFORT: THEORY

FACT 1.1.1 (Efficiency Criterion). In a packet network, sources should limit their sending rate
by taking into consideration the state of the network. Ignoring this may put the network into
congestion collapse. One objective of congestion control is to avoid such inefficiencies.

Congestion collapse occurs when some resources are consumed by traffic that will be later dis-
carded. This phenomenon did happen in the Internet in the middle of the eighties. At that time,
there was no end-to-end congestion control in TCP/IP. As we will see in the next section, a sec-
ondary objective is fairness.

1.1.2 EFFICIENCY VERSUS FAIRNESS

Assume that we want to maximize the network throughput, based on the considerations of the
previous section. Consider the network example in Figure 1.4; one source sends at rate x0Mb/s,
one at rate x1Mb/s and nine sources at rate x2Mb/s each. We assume that we implement some form
of congestion control and that there are negligible losses. Thus, the flow, in Mb/s, on the first link i
is x0+x1, and on the second link it is x0+9x2. For a given value of x0, maximizing the throughput
requires that x1 = 10−x0 and 9x2 = 10−x0. The total throughput, measured at the network output,
is then x0 + x1 +9x2 = 20− x0; it is maximum for x0 = 0 !

Solution

Total throughput

Maximize

subject to

over

The max can be obtained by linear programming, or directly here by

inspection:

because and

is achieved with and

therefore the max is 20 Mb/s
16

c=10 Mb/s c = 10 Mb/s

9 flows

1 flow

1 flow

Figure 1.4: A simple network used to illustrate fairness and efficiency.

The example shows that maximizing network throughput as a primary objective may lead to gross
unfairness; in the worst case, some sources may get a zero throughput, which is probably consid-
ered unfair by these sources.

In general, the concept of efficiency is captured by the notion of Pareto Efficiency. Consider an
allocation problem; define the vector~x whose ith coordinate is the allocation for user i.

DEFINITION 1.1.1 (Pareto Efficiency). A feasible allocation of rates~x is “Pareto-Efficient” (also
called “Pareto-Optimal”) if and only if an increase of any rate within the domain of feasible
allocations must be at the cost of a decrease of some other rate. Formally, for any other feasible
allocation~y, if ys > xs then there must exist some s′ such that ys′ < xs′ .

In general, there exist many Pareto-efficient allocations. For the example in Figure 1.4, any allo-
cation that saturates every link (i.e., such that x0 +x1 = and x0 +9x2 = 10) is Pareto-efficient. The
allocation that maximizes total throughput (and has x0 = 0) is one of them; another Pareto efficient
allocation is x0 = 0.1,x1 = 9.9,x2 = 1.1; yet another one is x0 = 1,x1 = 9,x2 = 1. Among all of
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these allocations, which one should a fair and efficient congestion control scheme choose ? This
requires a formal definition of fairness, given in the next section.

1.2 FAIRNESS

1.2.1 MAX-MIN FAIRNESS

In an egalitarian vision, fairness would simply mean allocating the same share to all, while maxi-
mizing this share. In the simple case of Figure 1.4, this would mean allocating x0 = x1 = x2 = 1.
However, such an egalitarian allocation is not Pareto-efficient (because it is possible to unilaterally
increase x1).

A better allocation could be based on the following observation. Starting from the egalitarian al-
location, we can increase the rate x1 without impacting other rates, up to the value x1 = 9. The
resulting allocation x0 = 1,x1 = 9,x2 = 1 is Pareto-efficient, and still appears to be as fair as pos-
sible. It turns out that this allocation is exactly the Max-Min fair allocation, which is defined
next.

DEFINITION 1.2.1 (Max-min Fairness [2]). A feasible allocation of rates ~x is “max-min fair” if
and only if an increase of any rate within the domain of feasible allocations must be at the cost of
a decrease of some already smaller rate. Formally, for any other feasible allocation ~y, if ys > xs
then there must exist some s′ such that xs′ ≤ xs and ys′ < xs′ .

The name “max-min” comes from the idea that it is forbidden to decrease the share of sources that
have small values, thus, in some sense, we give priority to flows with small values.

THEOREM 1.2.1. A max-min fair allocation is Pareto-efficient.

PROOF: If we increase one rate in a max-min fair allocation, we must decrease some other rate,
which expresses that the allocation is Pareto-efficient.

The converse is not true – a Pareto-efficient allocation is not, in general, max-min fair. In fact, as
we will see next, the max-min fair allocation is unique, whereas there are usually many Pareto-
efficient allocations – see the in Figure 1.4.

THEOREM 1.2.2. A max-min fair allocation, if it exists, is unique.

PROOF: Assume now that~x and~y are two max-min fair allocations for the same problem, with
~x 6=~y. Without loss of generality, we can assume that there exists some i such that xi < yi. Consider
the smallest value of xi that satisfies xi < yi, and call i0 the corresponding index. Thus, xi0 < yi0
and

if xi < yi then xi0 ≤ xi (1.2)

Now since~x is max-min fair, from Definition 1.2.1, there exists some j with

y j < x j ≤ xi0 (1.3)

Now~y is also max-min fair, thus by the same token there exists some k such that

xk < yk ≤ y j (1.4)
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Combining (1.3) and (1.4), we obtain

xk < yk ≤ y j < x j ≤ xi0

which contradicts (1.2).

For some allocation problems, a max-min fair allocation might not exist. However, for the practical
examples of interest in the context of congestion control, there is always one (and only one) max-
min fair allocation, as we show next. For more general cases, see [23], where it is shown in
particular that a max-min fair allocation always exists when the feasible set is convex and compact.

NETWORK MODEL We use the following simplified network model in the rest of this section.
We consider a set of sources s = 1, . . . ,S and links 1, . . . ,L. Let Al,s be the fraction of traffic of
source s which flows on link l, and let cl be the capacity of link l. We define a network as the
couple (~x,A).

A feasible allocation of rates xs ≥ 0 is defined by: ∑
S
s=1 Al,sxs ≤ cl for all l.

Our network model supports both multicast and load sharing. For a given source s, the set of links
l such that Al,s > 0 is the path followed by the data flow with source s. In the simplest case (no
load sharing), Al,s ∈ {0,1}; if a flow from source s is equally split between two links l1 and l2,
then Al1,s = Al2,s = 0.5. In principle, Al,s ≤ 1, but this is not mandatory (in some encapsulation
scenarios, a flow may be duplicated on the same link).

We now show that there exists a max-min fair allocation to our network model, and how to obtain
it. This will result from the key concept of “bottleneck link”.

DEFINITION 1.2.2 (Bottleneck Link). With our network model above, we say that link l is a bot-
tleneck for source s if and only if

1. link l is saturated: cl = ∑i Al,ixi
2. source s on link l has the maximum rate among all sources using link l: xs ≥ xs′ for all s′

such that Al,s′ > 0.

Intuitively, a bottleneck link for source s is a link which is limiting, for a given allocation. In the
previous example, the first link is a bottleneck for blue flow with rate x1 and for the red flow with
rate x0; the second link is a bottleneck for each of the nine green flows with rates x2 and for the red
flow with rate x0.

THEOREM 1.2.3. A feasible allocation of rates~x is max-min fair if and only if every source has a
bottleneck link.

PROOF: Part 1. Assume that every source has a bottleneck link. Consider a source s for which
we can increase the rate xs while keeping the allocation feasible. Let l be a bottleneck link for s.
Since l is saturated, it is necessary to decrease xs′ for some s′ such that Al,s′ > 0. We assumed that
we can increase the rate of s: thus there must exist some s′ 6= s that shares the bottleneck link l. But
for all such s′, we have xs ≥ xs′ , thus we are forced to decrease xs′ for some s′ such that xs ≥ xs′:
this shows that the allocation is max-min fair.

Part 2. Conversely, assume that the allocation is max-min fair. For any source s, we need to
find a bottleneck link. We proceed by contradiction. Assume there exists a source s with no
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bottleneck link. Call L1 the set of saturated links used by source s, namely, L1 = {l such that cl =

∑i Al,ixi and Al,s > 0}. Similarly, call L2 the set of non-saturated links used by source s. Thus a
link is either in L1 or L2, or is not used by s. Assume first that L1 is non-empty.

source s

link l1

link l2

source 
σ(l1)

source 
σ(l1)

Figure 1.5: A network example showing one multicast source

By our assumption, for all l ∈ L1 , there exists some s′ such that Al,s′ > 0 and xs′ > xs. Thus we
can build a mapping σ from L1 into the set of sources {1, . . . ,S} such that Al,σ(l) > 0 and xσ(l) > xs
(see Figure 1.5 for an illustration). Now we will show that we can increase the rate xs in a way
that contradicts the max-min fairness assumption. We want to increase xs by some value δ, at the
expense of decreasing xs′ by some other values δs′ , for all s′ that are equal to some σ(l′). We want
the modified allocation to be feasible; to that end, it is sufficient to have:

Al,sδ≤ Al,σ(l)δσ(l) for all l ∈ L1 (1.5)

Al,sδ≤ cl−∑
i

Al,ixi for all l ∈ L2 (1.6)

δσ(l) ≤ xσ(l) for all l ∈ L1 (1.7)

Equation (1.5) expresses that the increase of flow due to source s on a saturated link l is at least
compensated by the decrease of flow due to source σ(l). Equation (1.6) expresses that the increase
of flow due to source s on a non-saturated link l does not exceed the available capacity. Finally,
equation (1.7) states that rates must be non-negative.

This leads to the following choice.

δ = min
l∈L1
{

xσ(l)Al,σ(l)

Al,s
}∧min

l∈L2
{

cl−∑i Al,ixi

Al,s
} (1.8)

which ensures that Equation (1.6) is satisfied and that δ > 0.

In order to satisfy Equations (1.5) and (1.7) we need to compute the values of δσ(l) for all l in L1.
Here we need to be careful with the fact that the same source s′ may be equal to σ(l) for more than
one l. We define δ(s′) by

δ(s′) = 0 if there is no l such that s′ = σ(l) (1.9)

δ(s′) = max{l such that σ(l)=s′}{
δAl,s

Al,σ(l)
} otherwise (1.10)
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This definition ensures that Equation (1.5) is satisfied. We now examine Equation (1.7). Consider
some s′ for which there exists an l with σ(l) = s, and call l0 the value which achieves the maximum
in (1.10), namely:

δ(s′) =
δAl0,s

Al0,s′
(1.11)

From the definition of δ in (1.8), we have

δ≤
xσ(l0)Al0,σ(l0)

Al0,s
=

xs′Al0,s′

Al0,s

Combined with (1.11), this shows that Equation (1.7) holds. In summary, we have shown that we
can increase xs at the expense of decreasing the rates for only those sources s′ such that s′=σ(l) for
some l. Such sources have a rate higher than xs, which shows that the allocation~x is not max-min
fair and contradicts our hypothesis.

It remains to examine the case where L1 is empty. The reasoning is the same, we can increase xs
without decreasing any other source, and we also have a contradiction.

THE WATER-FILLING ALGORITHM The previous theorem is particularly useful in deriving
a practical method for obtaining a max-min fair allocation, called “progressive filling” or “water
filling”. The idea is as follows. You start with all rates equal to 0 and grow all rates together at
the same pace, until one or several link capacity limits are hit. The rates for the sources that use
these links are not increased any more, and you continue increasing the rates for other sources.
All the sources that are stopped have a bottleneck link. This is because they use a saturated link,
and all other sources using the saturated link are stopped at the same time, or were stopped before,
thus have a smaller or equal rate. The algorithm continues until it is not possible to increase. The
algorithm terminates because L and S are finite. Lastly, when the algorithm terminates, all sources
have been stopped at some time and thus have a bottleneck link. By application of Theorem 1.2.3,
the allocation is max-min fair.

EXAMPLE Let us apply the water-filling algorithm to Figure 1.4.

We first let x0 = x1 = x2 = t and increase t until we hit a limit, i.e. we maximize t subject to the
constraints imposed by the link capacities. The constraints are

x0 + x1 ≤ 10 and x1 +9x2 ≤ 10

which gives
2t ≤ 10 and 10t ≤ 10

The maximum is for t = 1Mb/s and at this value the second constraint is hit, i.e., the second link is
a bottleneck link. The sources using this link are the sources of type 0 and 2, therefore we let

x0 = 1 and x2 = 1

and these values are final.

In a second round we increase the rates of the other sources, namely we increase x1 until a capacity
limit is hit. There is only one constraint left, that of the first link, which is now expressed as

1+ x1 ≤ 10
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The maximal value of x1 is 9. With this, all sources are stopped and the algorithm terminates. The
max-min fair allocation is thus x = 1,x1 = 9,x2 = 1.

We see that all sources of type 0 and 2 obtain the same rate. In some sense, max-min fairness
ignores the fact that sources of type 0 use more network resources than those of type 2.

THEOREM 1.2.4. For the network defined above, with fixed routing parameters Al,s, there exists a
unique max-min fair allocation. It can be obtained by the water-filling algorithm.

PROOF: We have already proven uniqueness. Existence follows from the water-filling algo-
rithm.

The notion of max-min fairness can be generalized by using weights in the definition [2, 18].

1.2.2 PROPORTIONAL FAIRNESS

The previous definition of fairness puts emphasis on maintaining high values for the smallest rates.
As shown in the previous example, this may be at the expense of some network inefficiency. An
alternative definition of fairness has been proposed in the context of game theory [22].

DEFINITION 1.2.3 (Proportional Fairness). An allocation of rates~x is “proportionally fair” if and
only if all rates are positive and, for any other feasible allocation~y, we have:

S

∑
s=1

ys− xs

xs
≤ 0

In other words, any change in the allocation must have a negative average change.

Let us consider for example the parking lot scenario in Figure 1.6. Is the max-min fair allocation
proportionally fair ?

What is the max min fair allocation ?

E. None of the above

F. I don’t know

31

c c c c

Figure 1.6: A simple network used to illustrate proportional fairness (the“parking lot” scenario)

To get the answer, observe that the max-min fair allocation is obtained easily with water-filling and
is xs = c/2 for s = 0,1..4. Consider a new allocation resulting from a decrease of x0 equal to δ:

y0 = c
2 −δ

ys = c
2 +δ s = 1, . . . ,4

For δ < c
2 , the new allocation~y is feasible. The average rate of change is(

4

∑
s=1

2δ

c

)
− 2δ

c
=

6δ

c
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which is positive. Thus the max-min fair allocation for this example is not proportionally fair. In
this example, we see that a decrease in rate for sources of type 0 is less important than the corre-
sponding increase which is made possible for the other sources, because the increase is multiplied
by the number of sources. Informally, we say that proportional fairness takes into consideration
the usage of network resources.

THEOREM 1.2.5. A proportionally fair allocation is Pareto-efficient.

PROOF: Let~x be a proportionally fair allocation and let~y be some feasible allocation such that
yi > xi for some i. The rate of change is

yi− xi

xi
+ ∑

s=1...S,s 6=i

ys− xs

xs
≤ 0

because~x is proportionally fair. The first term is positive, therefore at least one of the other terms,
say ys−xs

xs
must be negative, and thus ys < xs. This shows that~x is Pareto-efficient.

Now we derive a practical result which can be used to compute a proportionally fair allocation. To
that end, we interpret the average rate of change as ∇J~x · (~y−~x), with

J(~x) = ∑
s

ln(xs)

Thus, intuitively, a proportionally fair allocation should maximize J.

THEOREM 1.2.6. There exists one unique proportionally fair allocation. It is obtained by maxi-
mizing J(~x) = ∑s ln(xs) over the set of feasible allocations.

PROOF: 1. We first prove that the maximization problem has a unique solution. Function J is
concave, as a sum of concave functions. The feasible set is convex, as intersection of convex sets,
thus any local maximum of J is an absolute maximum. Now J is strictly concave, which means
that

if 0 < α < 1 then J(α~x+(1−α)~y)> αJ(~x)+(1−α)J(~y)

This can be proven by studying the second derivative of the restriction of J to any linear segment.
Now a strictly concave function has at most one maximum on a convex set.

Now J is continuous if we allow log(0) = −∞ and the set of feasible allocations is compact (be-
cause it is a closed, bounded subset of RS). Thus J has at least one maximum over the set of
feasible allocations. Combining all the arguments together proves that J has exactly one maxi-
mum over the set of feasible allocations, and that any local maximum is also exactly the global
maximum.

2. For any~δ such that~x+~δ is feasible,

J(~x+~δ)− J(~x) = ∇J~x ·~δ+
1
2
~δT

∇
2J~x~δ+o(||~δ||2)

Now by the strict concavity, ∇2J~x is definite negative thus, for ||~δ|| small enough:

1
2
~δT

∇
2J~x~δ+o(||~δ||2) < 0
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and therefore
J(~x+~δ)− J(~x)≤ ∇J~x ·~δ

Now assume that~x is a proportionally fair allocation. This means that

∇(J)~x ·~δ≤ 0

and thus J has a local maximum at~x, thus also a global maximum. This also shows the uniqueness
of a proportionally fair allocation.

3. Conversely, assume that J has a global maximum at~x. Observe that our network model assumes
that there exists some positive and feasible allocation, therefore, the maximum of J is not −∞,
therefore the maximiser~x satisfies xs > 0 for all s. Let~y be some other feasible allocation and call
D the average rate of change. We also have:

D = ∇(J)~x · (~y−~x)

Since the feasible set is convex, the segment [~x,~y] is entirely feasible, and thus J(~x+t(~y−~x))≤ J(~x)
for t ∈ [0;1]. Observe that

D = lim
t→0+

J(~x+ t(~y−~x))− J(~x)
t

thus D≤ 0.

EXAMPLE Let us apply Theorem 1.2.6 to the parking lot scenario in Figure 1.6. For any choice
of x0, we should set xi such that

x0 + xi = c, i = 1, . . . ,4

otherwise we could increase xi without affecting other values, and thus increase function J. The
value of x0 is found by maximizing f (x0), defined by

f (x0) = ln(x0)+
4

∑
i=1

ln(c− x0)

over the set 0≤ x0 ≤ c. The derivative of f is

f ′(x0) =
1
x0
− 4

c− x0

After some algebra, we find that the maximum is for

x0 =
c
5

and
xi =

4c
5

for i = 1...4

Compare with max-min fairness, where, in that case, the allocation is c
2 for all rates. We see that

sources of type 0 get a smaller rate, since they use more network resources.

The concept of proportional fairness can easily extended to weighted proportional fairness, where
the allocation maximizes a weighted sum of logarithms [14].
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1.2.3 UTILITY APPROACH TO FAIRNESS

Proportional fairness is an example of a more general fairness concept, called the “utility” ap-
proach, which is defined as follows. Every source s has a utility function us where us(xs) indicates
the value to source s of having rate xs. Every link l (or network resource in general) has a cost
function gl , where gl( f ) indicates the cost to the network of supporting an amount of flow f on
link l. Then, a “utility fair” allocation of rates is an allocation which maximizes H(~x), defined by

H(~x) =
S

∑
s=1

us(xs)−
L

∑
l=1

gl( fl)

with fl = ∑
S
s=1 Al,sxs, over the set of feasible allocations.

Proportional fairness corresponds to us = ln for all s, and gl( f ) = 0 for f < cl , gl( f ) = +∞ for
f ≥ cl . Rate proportional fairness corresponds to us(xs) = ws ln(xs) and the same choice of gl .

Computing utility fairness requires solving constrained optimization problems; a reference is [27].

1.2.4 MAX MIN FAIRNESS AS A LIMITING CASE OF UTILITY FAIRNESS

We show in this section that max-min fairness is the limiting case of a utility fairness. Indeed,
we can define a set of concave, increasing utility functions fm, indexed by m ∈ R+ such that the
allocation ~xm which maximizes ∑

I
i=1 fm(xi) over the set of feasible allocations converges towards

the max-min fair allocation.

The proof is a correct version of the ideas expressed in [21] and later versions of it.

Let fm be a family of increasing, differentiable and concave functions defined on R+. Assume
that, for any fixed numbers x and δ > 0,

lim
m→+∞

f ′m(x+δ)

f ′m(x)
= 0 (1.12)

The assumption on fm is satisfied if fm is defined by

fm(x) = c−g(x)m

where c is a constant and g is a differentiable, decreasing, convex and positive function. For
example, consider fm(x) = 1− 1

xm .

Define ~xm the unique allocation which maximizes ∑
I
i=1 fm(xi) over the set of feasible allocations.

Thus~xm is the fair allocation of rates, in the sense of utility fairness defined by fm. The existence
of this unique allocation follows from the same reasoning as for Theorem 1.2.6. Our result if the
following theorem.

THEOREM 1.2.7. The set of utility-fair allocation~xm converges towards the max-min fair alloca-
tion as m tends to +∞.

The rest of this section is devoted to the proof of the theorem. We start with a definition and a
lemma.

DEFINITION 1.2.4. We say that a vector~z is an accumulation point for a set of vectors~xm indexed
by m ∈ R+ if there exists a sequence mn,n ∈ N, with limn→+∞ mn =+∞ and limn→+∞~xmn =~z.

LEMMA 1.2.1. If~x∗ is an accumulation point for the set of vectors~xm, then~x∗ is the max-min fair
allocation.
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PROOF OF LEMMA: We give the proof for the case where Al,i ∈ {0,1}; in the general case
the proof is similar We proceed by contradiction. Assume that ~x∗ is not max-min fair. Then, from
Theorem 1.2.3, there is some source i which has no bottleneck. Call L1 the set (possibly empty) of
saturated links used by i, and L2 the set of other links used by i. For every link l ∈ L1, we can find
some source σ(l) which uses l and such that x∗

σ(l) > x∗i . Define δ by

δ =
1
5

min
{

min
l∈L1

(x∗
σ(l)− x∗i ), min

l∈L2
(cl− (A~x∗)l)

}
The term cl− (A~x∗)l in the last part of the expression is the unused capacity on link l. We also use
the convention that the minimum of an empty set is +∞.

From the convergence of ~xmn to ~x∗, we can find some n0 such that, for all n ≥ n0 and for all j we
have

x∗j −
δ

I
≤ xmn

j ≤ x∗j +
δ

I
(1.13)

where I is the number of sources. Now we construct, for all n ≥ n0, an allocation ~yn which will
lead to a contradiction. Define 

yn
i = xmn

i +δ

yn
σ(l) = xmn

σ(l)−δ for l ∈ L1

yn
j = xmn

j otherwise

We prove first that the allocation ~yn is feasible. Firstly, we show that the rates are non-negative.
From Equation (1.13), we have, for all l ∈ L1

xmn
σ(l) ≥ x∗

σ(l)−
δ

I
≥ x∗

σ(l)−δ

thus, from the definition of δ:
yn

σ(l) ≥ x∗
σ(l)−2δ≥ x∗i +3δ (1.14)

This shows that yn
j ≥ 0 for all j.

Secondly, we show that the total flow on every link is bounded by the capacity of the link. We need
to consider only the case of links l ∈ (L1∪L2). If l ∈ L1 then

(A~yn)l ≤ (A~xmn)l +δ−δ = (A~xmn)l

thus the condition is satisfied. Assume now that l ∈ L2. We have then

(A~yn)l = (A~xmn)l +δ

Now, from Equation (1.13)

(A~xmn)l ≤ (A~x∗)l + I
δ

I
= (A~x∗)l +δ

Thus, from the definition of δ:
(A~yn)l ≤ (A~x∗)l +2δ≤ c

which ends the proof that~yn is a feasible allocation.
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Now we show that, for n large enough, we have a contradiction with the optimality of~xmn . Consider
the expression A defined by

A = ∑
j

(
fmn(y

n
j)− fmn(x

mn
j )
)

From the optimality of~xmn , we have: A≤ 0.

Now
A = fmn(x

mn
i +δ)− fmn(x

mn
i )+ ∑

l∈L1

(
fmn(x

mn
σ(l)−δ)− fmn(x

mn
σ(l))

)
From the theorem of intermediate values, there exist numbers cn

i such that{
xmn

i ≤ cn
i ≤ xmn

i +δ

fmn(x
mn
i +δ)− fmn(x

mn
i ) = f ′mn

(cn
i )δ

where f ′mn
is the right-derivative of fmn . Combining with Equation (1.13) we find

cn
i ≤ x∗i +

δ

I
+δ≤ x∗i +2δ (1.15)

Similarly, there exist some numbers cn
σ(l) such that{

xmn
σ(l)−δ≤ cn

σ(l)+δ≤ xmn
σ(l)+δ

fmn(x
mn
σ(l)−δ)− fmn(x

mn
σ(l)) =− f ′mn

(cn
σ(l))δ

and combining with Equation (1.13) we find also

cn
σ(l) ≥ x∗i +3δ (1.16)

Thus

A = δ

(
f ′mn

(cn
i )− ∑

l∈L1

f ′mn
(cn

σ(l))

)
Now f ′mn

is wide-sense decreasing ( fmn is concave) thus, combining with Equations (1.15) and (1.16):

A≥ δ
(

f ′mn
(x∗i +2δ)−M f ′mn

(x∗i +3δ)
)
= δ f ′mn

(x∗i +2δ)

(
1−M

f ′mn
(x∗i +3δ)

f ′mn
(x∗i +2δ)

)
where M is the cardinal of set L1. Now from Equation (1.12), the last term in the above equation
tends to 1 as n tends to infinity. Now f ′mn

> 0 from our assumptions thus, for n large enough, we
have A > 0, which is the required contradiction.

PROOF OF THEOREM: The set of vectors ~xm is in a compact (= closed + bounded) subset of
RI; thus, it has at least one accumulation point. From the uniqueness of the max-min fair vector,
it follows that the set of vectors~xm has a unique accumulation point, which is equivalent to saying
that

lim
m→+∞

~xm =~x∗
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1.3 DIFFERENT FORMS OF CONGESTION CONTROL

We can consider that there are three families of solutions for congestion control.

Rate Based: Sources know an explicit rate at which they can send. The rate may be given to the
source during a negotiation phase; this is the case with ATM or RSVP. In such cases, we
have a network with reservation. Alternatively, the rate may be imposed dynamically to the
source by the network; this is the case for the ABR class of ATM. In such cases we have
a best effort service (since the source cannot be sure of how long a given rate will remain
valid), with explicit rate. In the example of the previous section, source 1 would obtain a
rate not exceeding 10 kb/s.

Hop by Hop: A source needs some feedback from the next hop in order to send any amount
of data. The next hop also must obtain some feedback from the following hop and so on.
The feedback may be positive (credits) or negative (backpressure). In the simplest form, the
protocol is stop and go. In the example of the previous section, node X would be prevented
by node Y from sending source 2 traffic at a rate higher than 10kb/s; source 2 would then
be throttled by node X. Hop by hop control is used with full duplex Ethernets using 802.3x
frames called “Pause” frames.

End-to-end: A source continuously obtains feedback from all downstream nodes it uses. The
feedback is piggybacked in packets returning towards the source, or it may simply be the
detection of a missing packet. Sources react to negative feedback by reducing their rate,
and to positive feedback by increasing it. The difference with hop-by-hop control is that
the intermediate nodes take no action on the feedback; all reactions to feedback are left to
the sources. In the example of the previous section, node Y would mark some negative
information in the flow of source 2 which would be echoed to the source by destination D2;
the source would then react by reducing the rate, until it reaches 10 kb/s, after which there
would be no negative feedback. Alternatively, source 2 could detect that a large fraction of
packets is lost, reduce its rate, until there is little loss. In broad terms, this is the method
invented for Decnet, which is now used after some modification in the Internet.

In the following section we focus on end-to-end control.

1.4 MAX-MIN FAIRNESS WITH FAIR QUEUING

Consider a network implementing fair queuing per flow. This is equivalent to generalized processor
sharing (GPS) with equal weights for all flows. With fair queuing, all flows that have data in the
node receive an equal amount of service per time slot.

Assume all sources adjust their sending rates such that there is no loss in the network. This can be
implemented by using a sliding window, with a window size which is large enough, namely, the
window size should be as large as the smallest rate that can be allocated by the source, multiplied
by the round trip time. Initially, a source starts sending with a large rate; but in order to sustain
the rate, it has to receive acknowledgements. Thus, finally, the rate of the source is limited to the
smallest rate allocated by the network nodes. At the node that allocates this minimum rate, the
source has a rate which is as high as the rate of any other sources using this node. Following this
line of thoughts, the alert reader can convince herself that this node is a bottleneck link for the
source, thus the allocation is max-min fair. The detailed proof is complex and is given in [12].
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PROPOSITION 1.4.1. A large sliding window at the sources plus fair queuing in the nodes imple-
ments max-min fairness.

Fixed window plus fair queuing is a possible solution to congestion control. It is implemented in
some (old) proprietary networks such as IBM SNA.

Assume now that we relax the assumption that sources are using a window. Assume thus that
sources send at their maximum rate, without feedback from the network, but that the network
implements fair queuing per flow. Can congestion collapse occur as in Section 1.1.1?

Let us start first with a simple scenario with only one network link of capacity C. Assume there
are N sources, and the only constraint on source i is a rate limit ri. Thus, sources for which ri ≤ C

N
have a throughput equal to ri and thus experience no loss. If some sources have a rate ri <

C
N , then

there is some extra capacity which can will be used to serve the backlog of other sources. This
distribution will follow the algorithm of progressive filling, thus the capacity will be distributed
according to max-min fairness, in the case of a single node.

In the multiple node case, things are not as nice, as we show now on the following example. The
network is as on Figure 1.1. There is 1 source at S1, which sends traffic to D1. There are 10 sources
at S2, which all send traffic to D2. Nodes X and Y implement fair queuing per flow. Capacities are
:

• 11 Mb/s for link X-Y
• 10 Mb/s for link Y-D1
• 1 Mb/s for link Y-D1

Every source receives 1 Mb/s at node X. The S1- source keeps its share at Y. Every S2 source
experiences 90% loss rate at Y and has a final rate of 0.1 Mb/s.

Thus finally, the useful rate for every source is

• 1 Mb/s for a source at S1
• 0.1 Mb/s for a source at S2

The max-min fair share is

• 10 Mb/s for a source at S1
• 0.1 Mb/s for a source at S2

Thus fair queuing alone is not sufficient to obtain max-min fairness. However, we can say that if
all nodes in a network implement fair queuing per flow, the throughput for any source s is at least
minl such that l∈s

Cl
Nl

, where Cl is the capacity of link l, and Nl is the number of active sources at node
l. This implies that congestion collapse as described earlier is avoided.

1.5 ADDITIVE INCREASE, MULTIPLICATIVE DECREASE AND
SLOW-START

End-to-end congestion control in packet networks is based on binary feedback and the adapta-
tion mechanisms of additive increase, multiplicative decrease and slow start. We describe here a
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motivation for this approach. It comes from the following modeling, from [6]. Unlike the fixed
window mentioned earlier, binary feedback does not require fair queuing, but can be implemented
with FIFO queues. This is why it is the preferred solution today.

1.5.1 ADDITIVE INCREASE, MULTIPLICATIVE DECREASE

Assume I sources, labeled i = 1, . . . , I send data at a time dependent rate xi(t), into a network
constituted of one buffered link, of rate c. We assume that time is discrete (t ∈ N), and that the
feedback cycle lasts exactly one time unit. During one time cycle of duration 1 unit of time, the
source rates are constant, and the network generates a binary feedback signal y(t) ∈ {0,1}, sent
to all sources. Sources react to the feedback by increasing the rate if y(t) = 0, and decreasing if
y(t) = 1. The exact method by which this is done is called the adaptation algorithm. We further
assume that the feedback is defined by

y(t) = [ if (
I

∑
i=1

xi(t)≤ c) then 0 else 1]

The value c is the target rate which we wish the system not to exceed. At the same time we wish
that the total traffic be as close to c as possible.

We are looking for a linear adaptation algorithm, namely, there must exist constants u0,u1 and
v0,v1 such that

xi(t +1) = uy(t)xi(t)+ vy(t) (1.17)

We want the adaptation algorithm to converge towards a fair allocation. In this simple case, there is
one single bottleneck and all fairness criteria are equivalent. At equilibrium, we should have xi =
c
I . However, a simple adaptation algorithm as described above cannot converge, but in contrast,
oscillates around the ideal equilibrium.

We now derive a number of necessary conditions. First, we would like the rates to increase when
the feedback is 0, and to decrease otherwise. Call f (t) = ∑

I
i=1 xi(t). We have

f (t +1) = uy(t) f (t)+ vy(t) (1.18)

Now our condition implies that, for all f ≥ 0:

u0 f + v0 > f

and
u1 f + v1 < f

This gives the following necessary conditions
u1 < 1 and v1 ≤ 0

or
u1 = 1 and v1 < 0

(1.19)

and 
u0 > 1 and v0 ≥ 0

or
u0 = 1 and v0 > 0

(1.20)
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The conditions above imply that the total rate f (t) remains below c until it exceeds it once, then
returns below c. Thus the total rate f (t) oscillates around the desired equilibrium.

Now we also wish to ensure fairness. A first step is to measure how much a given rate allocation
deviates from fairness. We follow the spirit of [6] and use as a measure of unfairness the distance
between the rate allocation ~x and its nearest fair allocation Π(~x), where Π is the orthogonal pro-
jection on the set of fair allocations, normalized by the length of the fair allocation (Figure 1.7). In

x1
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x1=x2

x = (x1, x2)

Π(x)

α

0

u0 x

u0 x + v0 1
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u1 x

u1 x + v1 1
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Figure 1.7: The measure of unfairness is tan(α). The figure shows the effect on fairness of an increase or
a decrease. The vector~1 is defined by~1i = 1 for all i.

other words, the measure of unfairness is

d(~x) =
||~x−Π(~x)||
||Π(~x)||

with Π(~x)i =
∑

I
j=1 x j

I and the norm is the standard euclidian norm defined by ||~y|| =
√

∑
I
j=1 y2

j for
all~y.

Now we can study the effect of the linear control on fairness. Figure 1.7) illustrates that: (1) when
we apply a multiplicative increase or decrease, the unfairness is unchanged; (2) in contrast, an
additive increase decreases the unfairness, whereas an additive decrease increases the unfairness.

We wish to design an algorithm such that at every step, unfairness decreases or remains the same,
and such that in the long term it decreases. Thus, we must have v1 = 0, in other words, the decrease
must be multiplicative, and the increase must have a non-zero additive component. Moreover, if
we want to converge as quickly as possible towards, fairness, then we must have u0 = 0. In other
words, the increase should be purely additive. In summary we have shown that:

FACT 1.5.1. Consider a linear adaptation algorithm of the form in Equation 1.17. In order to
satisfy efficiency and convergence to fairness, we must have a multiplicative decrease (namely,
u1 < 1 and v1 = 0) and a non-zero additive component in the increase (namely, u0 ≥ 1 and v0 > 0).
If we want to favour a rapid convergence towards fairness, then the increase should be additive
only (namely, u0 = 1 and v0 > 0).

The resulting algorithm is called Additive Increase Multiplicative Decrease (Algorithm 1).

Let us now consider the dynamics of the control system, in the case of additive increase, multi-
plicative decrease. From Formula 1.18 we see that the total amount of traffic oscillates around the



1.5. ADDITIVE INCREASE, MULTIPLICATIVE DECREASE AND SLOW-START 23

Algorithm 1 Additive Increase Multiplicative Decrease (AIMD) with increase term v0 > 0 and
decrease factor 0 < u1 < 1.

if received feedback is negative then
multiply rate by u1

else
add v0 to rate

end if

optimal value c. In contrast, we see on the numerical examples below that the measure of unfair-
ness converges to 0 (This is always true if the conclusions of Fact (1.5.1) are followed; the proof
is left as an exercise to the reader). Figure 1.8 shows some numerical simulations.

The figure also shows a change in the number of active sources. It should be noted that the value of
u1 (the multiplicative decrease factor) plays an important role. A value close to 1 ensures smaller
oscillations around the target value; in contrast, a small value of u1 can react faster to decreases in
the available capacity.

Source 1 Source 2 Source 3

Total 
Rate

Measure of 
Unfairness

Figure 1.8: Numerical simulations of additive increase, multiplicative decrease. There are three sources,
with initial rates of 3 Mb/s, 15 Mb/s and 0. The total link rate is 10 Mb/s. The third source is inactive until
time unit 100. Decrease factor = 0.5; increment for additive increase: 1 Mb/s. The figure shows the rates for
the three sources, as well as the aggregate rate and the measure of unfairness. The measure of unfairness
is counted for two sources until time 100, then for three sources.

Lastly, we must be aware that the analysis made here ignores the impact of variable and different
round trip times.

1.5.2 SLOW START

Slow start is a mechanism that can be combined with Additive Increase Multiplicative Decrease;
it applies primarily to the initial state of a flow. It is based on the observation that if we know
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Figure 1.9: (a) Three sources applying AIMD, the third starting at time 0 while the other two have reached
a high rate. Left: rate of source 1 on x-axis versus rate of source 3. Right: rates of all sources versus time
(number of iterations) on x-axis. AIMD parameters: v0 = 0.01; u1 = 0.5. It takes many iterations for the third
source to reach the same rate. (b) Same but with the third source applying slow start. It quickly converges
to a similar rate. Slow start parameters: w0 = 2, rmax = 10

that a flow receives much less than its fair share, then we can deviate from Additive Increase
Multiplicative Decrease and give a larger increase to this flow.

We assume that we use Additive Increase Multiplicative Decrease, with the same notation as in the
previous subsection, i.e. with additive increase term u0 and decrease factor v1.

In Figure 1.8 we showed flows that started with arbitrary rates. In practice, it may not be safe to
accept such a behaviour; in contrast, we would like a flow starts with a very small rate. We set this
small rate to v0. Now, a starting flow in the situation, mentioned earlier, of a flow competing with
established flows, most probably receives less than all others (Figure 1.9(a)). Therefore, we can,
for this flow, try to increase its rate more quickly, for example multiplicatively, until it receives a
negative feedback. This is what is implemented in the algorithm called “slow start” (Algorithm 2).

The algorithm maintains both a rate (called xi in the previous section) and a target rate. Initially, the
rate is set to the minimum additive increase v0 and the target rate to some large, predefined value
rmax (lines 1 and next). The rate increases multiplicatively as long as positive feedback is received
(line 6). In contrast, if a negative feedback is received, the target rate is decreased multiplicatively
(this is applied to the rate achieved so far, line 12) as with AIMD, and the rate is returned to the
initial value (lines 13 and next).

The algorithm terminates when and if the rate reached the target rate (line 9). From there on, the
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Algorithm 2 Slow Start with the following parameters: AIMD constants v0 > 0 , 0 < u1 < 1;
multiplicative increase factor w0 > 1; maximum rate rmax > 0.

1: rate← v0
2: targetRate← rmax
3: do forever
4: receive feedback
5: if feedback is positive then
6: rate← w0 · rate
7: if rate≥ targetRate then
8: rate← targetRate
9: exit do loop

10: end if
11: else
12: targetRate←max(u1 · rate,v0)
13: rate← v0
14: end if
15: end do

source applies AIMD, starting from the current value of the rate. See Figure 1.9 for a simulation
(Figure 1.10).

Note that what is slow in slow start is the starting point v0, not the increase.

1.6 THE FAIRNESS OF ADDITIVE INCREASE, MULTIPLICA-
TIVE DECREASE WITH FIFO QUEUES

A complete modeling is very complex because it contains both a random feedback (under the
form of packet loss) and a random delay (the round trip time, including time for destinations to
give feedback). In this section we consider that all round trip times are constant (but may differ
from one source to another). The fundamental tool is to produce an ordinary differential equation
capturing the dynamics of the network,

1.6.1 A SIMPLIFIED MODEL

Callxi(t) the sending rate for source i. Call tn,i the nth rate update instant for source i, and let
En,i be the binary feedback: En,i = 1 is a congestion indication; otherwise En,i = 0. Call 1−ηi the
multiplicative decrease factor and ri the additive increase component. The source reacts as follows.

x(tn+1,i) = En,i(1−ηi)x(tn,i)+(1−En,i)(x(tn,i)+ ri)

which we can rewrite as

x(tn+1,i)− x(tn,i) = r−En,i (ηix(tn,i)+ ri) (1.21)

If some cases, we can approximate this dynamic behaviour by an ordinary differential equation
(ODE). The idea, which was developed by Ljung [16] and Kushner and Clark [15], is that the
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Figure 1.10: Zoom on source 3 of Figure 1.9(b) from times 1 to 20, i.e. during slow start. Dashed
line: target rate; plain line: rate. Slow start ends at time 16.

above set of equations is a discrete time, stochastic approximation of a differential equation. The
ODE is obtained by writing

dxi

dt
= expected rate of change given the state of all sources at time t (1.22)

= expected change divided by the expected update interval

The result of the method is that the stochastic system in Equation 1.21 converges, in some sense,
towards the global attractor of the ODE in Equation 1.23, under the condition that the ODE indeed
has a global attractor [1]. A global attractor of the ODE is a vector ~x∗ = (x∗i ) towards which the
solution converges, under any initial conditions. The convergence is for ηi and ri tending to 0.
Thus the results in this section are only asymptotically true, and must be verified by simulation.

Back to our model, call µi(t,~x) the expectation of En,i, given a set of rates ~x; also call ui(t) the
expected update interval for source i. The ODE is:

dxi

dt
=

ri−µi(t,~x(t))(ηixi(t)+ ri)

ui(t)
(1.23)

We first consider the original additive increase, multiplicative decrease algorithm, then we will
study the special case of TCP.

1.6.2 ADDITIVE INCREASE, MULTIPLICATIVE DECREASE WITH ONE UP-
DATE PER RTT

We assume that the update interval is a constant τi equal to the round trip time for source i. Thus

ui(t) = τi

The expected feedback µi is given by

µi(t,~x(t)) = τxi(t)
L

∑
l=1

gl( fl(t))Al,i (1.24)
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with fl(t) =∑
I
j=1 Al, jx j(t). In the formula, fl(t) represents the total amount of traffic flow on link l,

while Al,i is the fraction of traffic from source i which uses link l. We interprete Equation (1.24) by
assuming that gl( f ) is the probability that a packet is marked with a feedback equal to 1 (namely,
a negative feedback) by link l, given that the traffic load on link l is expressed by the real number
f . Then Equation (1.24) simply gives the expectation of the number of marked packets received
during one time cycle by source i. This models accurately the case where the feedback sent by a
link is quasi-stationary, as can be achieved by using active queue management such as RED (see
later). This also assumes that the propagation time is large compared to the transmission time.

Putting all this together we obtain the ODE:

dxi

dt
=

ri

τi
− xi(ri +ηixi)

L

∑
l=1

gl( fl)Al,i (1.25)

with

fl =
I

∑
j=1

Al, jx j (1.26)

In order to study the attractors of this ODE, we identify a Lyapunov for it [20]. To that end, we
follow [14] and [10] and note that

L

∑
l=1

gl( fl)Al,i =
∂

∂xi

L

∑
l=1

Gl( fl) =
∂G(~x)

∂xi

where Gl is a primitive of gl defined for example by

Gl( f ) =
∫ f

0
gl(u)du

and

G(~x) =
L

∑
l=1

Gl( fl)

We can then rewrite Equation (1.25) as

dxi

dt
= xi(ri +ηixi)

{
ri

τixi(ri +ηixi)
− ∂G(~x)

∂xi

}
(1.27)

Consider now the function JA defined by

JA(~x) =
I

∑
i=1

φ(xi)−G(~x) (1.28)

with
φ(xi) =

∫ xi

0

ridu
τiu(ri +ηiu)

=
1
τi

log
xi

ri +ηixi

then we can rewrite Equation (1.27) as

dxi

dt
= xi(ri +ηixi)

∂JA(~x)
∂xi

(1.29)
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Now it is easy to see that JA is strictly concave and therefore has a unique maximum over any
bounded region. It follows from this and from Equation (1.29) that JA is a Lyapunov for the ODE
in (1.25), and thus, the ODE in (1.25) has a unique attractor, which is the point where the maximum
of JA is reached. An intuitive explanation of the Lyapunov is as follows. Along any solution ~x(t)
of the ODE, we have

d
dt

JA(~x(t)) =
I

∑
i=1

∂JA

∂xi

dxi

dt
=

I

∑
i=1

xi(ri +ηixi)

(
∂JA

∂xi

)2

Thus JA increases along any solution, thus solutions tend to converge towards the unique maximum
of JA.

This shows that the rates xi(t) converge at equilibrium towards a set of value that maximizes JA(~x),
with JA defined by

JA(~x) =
I

∑
i=1

1
τi

log
xi

ri +ηixi
− G(~x)

INTERPRETATION In order to interpret the previous results, we follow [14] and assume that,
calling cl the capacity of link l, the function gl can be assumed to be arbitrarily close to δcl , in
some sense, where

δc( f ) = 0 if f < c and δc( f ) = +∞ if f ≥ c

Thus, at the limit, the method in [14] finds that the rates are distributed so as to maximize

FA(~x) =
I

∑
i=1

1
τi

log
xi

ri +ηixi

subject to the constraints
I

∑
j=1

Al, jx j ≤ cl for all l

We can learn two things from this. Firstly, the weight given to xi tends to − logηi as xi tends to
+∞. Thus, the distribution of rates will tend to favor small rates, and should thus be closer to
max-min fairness than to proportional fairness. Secondly, the weight is inversely proportional to
the round trip time, thus flows with large round trip times suffer from a negative bias, independent
of the number of hops they use.

1.6.3 ADDITIVE INCREASE, MULTIPLICATIVE DECREASE WITH ONE UP-
DATE PER PACKET

Assume now that a source reacts to every feedback received. Assume that losses are detected
immediately, either because the timeout is optimal (equal to the roundtrip time), or because of
some other clever heuristic. Then we can use the same analysis as in the previous section, with the
following adaptations.

The ODE is still given by Equation (1.23). The expected feedback is now simply equal to the
probability of a packet being marked, and is equal to

µi(t,~x) =
L

∑
l=1

gl( fl)Al,i
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The average update interval is now equal to 1
xi

. Thus the ODE is

dxi

dt
= rixi− xi(ri +ηixi)

L

∑
l=1

gl( fl)Al,i (1.30)

which can also be written as

dxi

dt
= xi(ri +ηixi)

{
ri

ri +ηixi
− ∂G(~x)

∂xi

}
(1.31)

Thus a Lyapunov for the ODE is

JB(~x) =
I

∑
i=1

ri

ηi
log(ri +ηixi) − G(~x)

Thus, in the limiting case where the feedback expectation is close to a Dirac function, the rates are
distributed so as to maximize

FB(~x) =
I

∑
i=1

ri

ηi
log(ri +ηixi)

subject to the constraints
I

∑
j=1

Al, jx j ≤ cl for all l

The weight given to xi is close to log(ηixi) (= logxi + a constant) for large xi, and is larger than
log(ηixi) in all cases. Thus, the distribution of rates is derived from proportional fairness, with a
positive bias given to small rates. Contrary to the previous case, there is no bias against long round
trip times.

In Section 2.1 on page 31 we study the case of TCP.

1.7 SUMMARY

1. In a packet network, sources should limit their sending rate in order to account for the state
of the network. Failing to do so might result in congestion collapse.

2. Congestion collapse is defined as a severe decrease in total network throughput when the
offered load increases.

3. Maximizing network throughput as a primary objective might lead to large unfairness and is
not a viable objective.

4. The objective of congestion control is to provide Pareto efficiency and some form of fairness.
5. Fairness can be defined in various ways: max-min, proportional and variants of proportional.
6. End-to-end congestion control in packet networks is based on the adaptation mechanism of

additive increase, multiplicative decrease.
7. Slow start is a mechanism for a source to quickly increase its sending rate (instead of starting

upfront at a high rate).
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CHAPTER 2

CONGESTION CONTROL FOR BEST EFFORT:
INTERNET

In this chapter you learn how the theory of congestion control for best effort is applied in the
Internet.

• congestion control algorithms in TCP
• the concept of TCP friendly sources
• random early detection (RED) routers and active queue management

2.1 CONGESTION CONTROL ALGORITHMS OF TCP

We have seen that it is necessary to control the amount of traffic sent by sources, even in a best
effort network. In the early days of Internet, a congestion collapse did occur. It was due to a
combination of factors, some of them were the absence of traffic control mechanisms, as explained
before. In addition, there were other aggravating factors which led to “avalanche” effects.

• IP fragmentation: if IP datagrams are fragmented into several packets, the loss of one sin-
gle packet causes the destination to declare the loss of the entire datagram, which will be
retransmsitted. This is addressed in TCP by trying to avoid fragmentation. With IPv6, frag-
mentation is possible only at the source and for UDP only.
• Go Back n at full window size: if a TCP sender has a large offered window, then the loss of

segment n causes the retransmission of all segments starting from n. Assume only segment
n was lost, and segments n+ 1, . . . ,n+ k are stored at the receiver; when the receiver gets
those segments, it will send an ack for all segments up to n+ k. However, if the window is
large, the ack will reach the sender too late for preventing the retransmissions. This has been
addressed in current versions of TCP where all timers are reset when one expires.
• In general, congestion translates into larger delays as well (because of queue buildup). If

nothing is done, retransmission timers may become too short and cause retransmissions of

31
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data that was not yet acked, but was not yet lost. This has been addressed in TCP by the
round trip estimation algorithm.

Congestion control has been designed right from the beginning in wide-area, public networks
(most of them are connection oriented using X.25 or Frame Relay), or in large corporate net-
works such as IBM’s SNA. It came as an afterthought in the Internet. In connection oriented
network, congestion control is either hop-by-hop or rate based: credit or backpressure per con-
nection (ATM LANs), hop-by-hop sliding window per connection (X.25, SNA); rate control per
connection (ATM). They can also use end-to-end control, based on marking packets that have expe-
rienced congestion (Frame Relay, ATM). Connectionless wide area networks all rely on end-to-end
control.

In the Internet, the principles are the following.

• TCP is used to control traffic
• the rate of a TCP connection is controlled by adjusting the window size
• additive increase, multiplicative decrease and slow start, as defined in Chapter 1, are used
• the feedback from the network to sources is packet loss. It is thus assumed that packet loss

for reasons other than packet dropping in queues is negligible. In particular, all links should
have a negligible error rate.

One implication of these design decisions is that only TCP traffic is controlled. The reason is that,
originally, UDP was used only for short transactions. Applications that do not use TCP have to
either be limited to LANs, where congestion is rare (example: NFS) or have to implement in the
application layer appropriate congestion control mechanisms (examplee.g., QUIC or some audio
and video applications). We will see later what is done in such situations.

Only long lasting flows are the object of congestion control. There is no congestion control mech-
anism for short lived flows.

The detailed mechanisms are described below. Over the years, many variants of TCP congestion
control emerged. We describe here only a few representative ones. The concepts are heavily
influenced by the historical version, TCP RENO and its variant TCP NEW RENO, which we
describe next. Then we also describe TCP CUBIC and Data Center TCP, two widespread variants.

2.1.1 CONGESTION WINDOW

Remember that, with the sliding window protocol concept (used by TCP), the window size W (in
bits or bytes) is equal to the maximum number of unacknowledged data that a source may send.
Consider a system where the source has infinite data to send; assume the source uses a FIFO queue
as send buffer, of size W . At the beginning of the connection, the source immediately fills the buffer
which is then dequeued at the rate permitted by the line. Then the buffer can receive new data as
old data is acknowledged. Let T be the average time you need to wait for an acknowledgement
to come back, counting from the instant the data is put into the FIFO queue. This system is an
approximate model of a TCP connection for a source which is infinitely fast and has an infinite
amount of data to send. By Little’s formula applied to the FIFO queue, the throughput θ of the
TCP connection is given by (prove this as an exercize):

θ =
W
T

(2.1)
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The delay T is equal to the propagation and transmission times of data and acknowledgement,
plus the processing time, plus possible delays in sending acknowledgement. If T is fixed, then
controlling W is equivalent to controlling the connection rate θ. This is the method used in the
Internet. However, in general, T depends also on the congestion status of the networks, through
queueing delays. Thus, in periods of congestions, there is a first, automatic congestion control
effect: sources reduce their rates whenever the network delay increases, simply because the time
to get acknowledgements increase. This is however a side effect, which is not essential in the TCP
congestion control mechanism.

TCP defines a variable called congestion window (cwnd); the window size W is then given by

W = min(cwnd,offeredWindow)

Remember that offeredWindow is the window size advertized by the destination. In contrast,
cwnd is computed by the source.

The value of cwnd is decreased when a loss is detected, and increased otherwise. In the rest of
this section we describe the details of the operation.

A TCP connection is, from a congestion control point of view, in one of three phases.

• slow start: after a loss detected by timeout
• fast recovery: after a loss detected by fast retransmit
• congestion avoidance: in all other cases.

The variable cwnd is updated at phase transitions, and when useful acknowledgements are re-
ceived. Useful acknowledgements are those which increase the lower edge of the sending window,
i.e. are not duplicate.

2.1.2 SLOW START AND CONGESTION AVOIDANCE

exponential 
increase for cw nd 
until cw nd = tw nd 

 

Slow  Start

additive
increase for tw nd, 
cw nd = 
tw nd

Congestio
nAvoidanc
e

cw nd = 
tw nd

retransm ission
tim eout
:

- m ultiplicative 
decrease for tw nd
- cw nd = 1 seg

retransm ission
tim eout
:

- m ultiplicative 
decrease for tw nd
- cw nd = 1 seg

connection opening: tw nd = 65535 
B cw nd = 1 seg

Figure 2.1: Slow Start and Congestion Avoidance, showing the actions taken in the phases and at phase
transitions.

In order to simplify the description, we first describe an incomplete system with only two phases:
slow start and congestion avoidance. This corresponds to a historical implementation (TCP Tahoe)
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where losses are detected by timeout only (and not by the fast retransmit heuristic). According to
the additive increase, multiplicative decrease principle, the window size is divided by 2 for every
packet loss detected by timeout. In contrast, for every useful acknowledgement, it is increased
according to a method described below, which produces a roughly additive increase. At the be-
ginning of a connection, slow start is used (Algorithm 2 on page 25). Slow start is also used after
every loss detected by timeout. Here the reason is that we expect most losses to be detected instead
by fast retransmit, and so losses detected by timeout probably indicate a severe congestion; in this
case it is safer to test the water carefully, as slow start does.

Similar to “targetRate” in Algorithm 2, a supplementary variable is used, which we call the target
window (twnd) (it is called ssthresh in RFC 5681). At the beginning of the connection, or after
a timeout, cwnd is set to 1 segment and a rapid increase based on acknowledgements follows, until
cwnd reaches twnd.

The algorithm for computing cwnd is shown on Figure 2.1. At connection opening, twnd has
the maximum value (64KB by default, more if the window scale option is used – this corresponds
to the rmax parameter of Algorithm 2), and cwnd is one segment. During slow start, cwnd in-
creases exponentially (with increase factor w0 = 2). Slow start ends whenever there is a packet
loss detected by timeout or cwnd reaches twnd. During congestion avoidance, cwnd increases
according to the additive increase explained later. When a packet loss is detected by timeout, twnd
is divided by 2 and slow start is entered or re-entered, with cwnd set to 1.

Note that twnd and cwnd are equal in the congestion avoidance phase.

Figure 2.2 shows an example built with data from [4]. Initially, the connection congestion state is
slow-start. Then cwnd increases from one segment size to about 35 KB, (time 0.5) at which point
the connection waits for a missing non duplicate acknowledgement (one packet is lost). Then, at
approximately time 2, a timeout occurs, causing twnd to be set to half the current window, and
cwnd to be reset to 1 segment size. Immediately after, another timeout occurs, causing another
reduction of twnd to 2 × segment size and of cwnd to 1 segment size. Then, the slow start
phase ends at point A, as one acknowledgement received causes cwnd to equal twnd. Between
A and B, the TCP connection is in the congestion avoidance state. cwnd and twnd are equal
and both increase slowly until a timeout occurs (point B), causing a return to slow start until point
C. The same pattern repeats later. Note that some implementations do one more multiplicative
increase when cwnd has reached the value of twnd.

The slow start and congestion avoidance phases use three algorithms for decrease and increase, as
shown on Figure 2.1.

1. Multiplicative Decrease for twnd
twnd = 0.5 * current window size
twnd = max (twnd, 2 * segment size)

2. Additive Increase for twnd
for every useful acknowledgement received :

twnd = twnd + (segment size) * (segment size) / twnd
twnd = min (twnd, maximum window size)

3. Exponential Increase for cwnd
for every useful acknowledgement received :

cwnd = cwnd + (segment size)
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Figure 2.2: Typical behaviour with slow start and congestion avoidance, constructed with data from [4]. It
shows the values of twnd and cwnd.

if (cwnd == twnd) then move to congestion avoidance

In order to understand the effect of the Additive Increase algorithm, remember that TCP windows
are counted in bytes, not in packets. Assume that twnd = w segment size, thus w is the
size counted in packets, assuming all packets have a size equal to segment size. Thus, for
every acknowledgement received, twnd/segment size is increased by 1/w, and it takes a full
window to increment w by one. This is equivalent to an additive increase if the time to receive the
acknowledgments for a full window is constant. Figure 2.3 shows an example.

Note that additive increase is applied during congestion avoidance, during which phase we have
twnd = cwnd.

tw n
d =
1 seg

32 4

Figure 2.3: The additive increase algorithm.

The Exponential Increase algorithm is applied during the slow start phase. The effect is to increase
the window size until twnd, as long as acknowledgements are received. Figure 2.4 shows an
example.

Finally, Figure 2.5 illustrates the additive increase, multiplicative decrease principle and the role
of slow start. Do not misinterpret the term “slow start”: it is in reality a phase of rapid increase;
what is slow is the fact that cwd is set to 1. The slow increase is during congestion avoidance, not
during slow start.
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32 5cw nd = 1 seg 4 6 7 8

Figure 2.4: The exponential increase algorithm for cwnd.

additive increase additive increase

m ultiplicative decrease

slow  start

loss

loss

Figure 2.5: Additive increase, Multiplicative decrease and slow start.

2.1.3 FAST RECOVERY

As mentioned earlier, the full specification for TCP involves a third state, called Fast Recovery,
which we describe now. Remember from the previous section that when a loss is detected by
timeout, the target congestion window size twnd is divided by 2 (Multiplicative Decrease for
twnd) but we also go into the slow start phase in order to avoid bursts of retransmissions.

However, this is not very efficient if an isolated loss occurs. Indeed, the penalty imposed by slow
start is large; it will take about logn round trips to reach the target window size twnd, where
n = twnd/segment size. This is in particular to severe if the loss is isolated, corresponding
to a mild negative feedback. Now with the current TCP, isolated losses are assumed to be detected
and repaired with the Fast Retransmit procedure.

Therefore, we add a different mechanism for every loss detected by Fast Retransmit. The procedure
is as follows.

• when a loss is detected by Fast Retransmit (triplicate ack), then run Multiplicative Decrease
for twnd as described in the previous section.
• Then enter a temporary phase, called Fast Recovery, until the loss is repaired. When entering

this phase, temporarily keep the congestion window high in order to keep sending. Indeed,
since an ack is missing, the sender is likely to be blocked, which is not the desired effect:

cwnd = twnd + 3 *seg /* exponential increase */
cwnd = min(cwnd, 65535)
retransmit missing segment (say n)

• Then continue to interprete every received ack as a positive signal, at least until the lost is
repaired, running the exponential increase mechanism:

duplicate ack received ->
cwnd = cwnd + seg /* exponential increase */
cwnd = min(cwnd, 65535)
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send following segments if window allows

ack for segment n received ->
go into to cong. avoidance

Figure 2.6 shows an example.
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Figure 2.6: A typical example with slow start (C-D) and fast recovery (A-B and E-F), constructed with data
from [4]. It shows the values of twnd and cwnd.

If we combine the three phases described in this and the previous section, we obtain the complete
diagram, shown on Figure 2.7.

Slow  Start

- exponential
increase

Congestion
A voidance

- additive
 increase

Fast
Recovery

- exponential 
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beyond tw nd
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connection:

retr. tim eout:

cw nd = 
tw nd:

retr. tim eout:

retr. tim eout: expected ack received:

fast 
retransm it:

fast 
retransm it:

Figure 2.7: Slow Start, Congestion Avoidance and Fast Retransmit showing the phase transitions.

2.1.4 SUMMARY AND COMMENTS

In summary for that section, we can say that the congestion avoidance principle for the Internet,
used in TCP, is additive increase, multiplicative decrease. The sending rate of a source is governed
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by a target window size twnd. The principle of additive increase, multiplicative decrease is sum-
marized as follows. At this point you should be able to understand this summary; if this is not the
case, take the time to read back the previous sections. See also Figure 2.5 for a synthetic view of
the different phases.

• when a loss is detected (timeout or fast retransmit), then twnd is divided by 2 (“Multiplica-
tive Decrease for twnd”)
• In general (namely in the congestion avoidance phase), for every useful (i.e. non duplicate)

ack received, twnd is increased linearly (“Additive Increase for twnd”)
• Just after a loss is detected a special transient phase is entered. If the loss is detected by

timeout, this phase is slow start; if the loss is detected by fast retransmit, the phase is fast
recovery. At the beginning of a connection, the slow start phase is also entered.
During such a transient phase, the congestion window size is different from twnd. When the
transient phase terminates, the connection goes into the congestion avoidance phase. During
congestion avoidance, the congestion window size is equal to twnd.

2.2 ANALYSIS OF TCP RENO

2.2.1 THE FAIRNESS OF TCP RENO

In this section we determine the fairness of TCP, assuming all round trip times remain constant
over time. We can apply the analysis in Section 1.6 and use the method of the ODE.

TCP differs slightly from the plain additive increase, multiplicative decrease algorithm. Firstly, it
uses a window rather than a rate control. We can approximate the rate of a TCP connection, if we
assume that transients due to slow start and fast recovery can be neglected, by x = w

τ
, where w is

equal to cwnd and τ is the round trip time, assumed to be constant. Secondly, the increase in rate is
not strictly additive; in contrast, the window is increased by 1

w for every positive acknowledgement
received. The increase in rate at every positive acknowledgement is thus equal to K

wτ
= K

xτ2 = where
K is a constant. If the unit of data is the packet, then K = 1; if the unit of data is the bit, then K = L2,
where L is the packet length in bits.

In the sequel we consider some variation of TCP where the window increase is still given by K
wτ

, but
where K is not necessarily equal to (1 packet)2 and need not be the same for all TCP connections.

We use the same notation as in Section 1.6 and call xi(t) the rate of source i. The coefficient K
may now depend on the connection i and is denoted with Ki. The ODE is obtained by substituting
ri by Ki

xiτ
2
i

in Equation (1.30) on page 29:

dxi

dt
=

Ki

τ2
i
− (

Ki

τ2
i
+ηix2

i )
L

∑
l=1

gl( fl)Al,i (2.2)

which can also be written as

dxi

dt
= (

Ki

τ2
i
+ηix2

i )


Ki

τ2
i ηi

Ki
τ2

i ηi
+ x2

i
− ∂G(~x)

∂xi

 (2.3)
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This shows that the rates xi(t) converge at equilibrium towards a set of value that maximizes JC(~x),
with JC defined by

JC(~x) =
I

∑
i=1

1
τi

√
Ki

ηi
arctan

xiτi√
Ki
ηi

− G(~x) (2.4)

Thus, in the limiting case where the feedback expectation is close to a Dirac function, the rates are
distributed so as to maximize

FC(~x) =
I

∑
i=1

1
τi

√
Ki

ηi
arctan

xiτi√
Ki
ηi

subject to the constraints
I

∑
j=1

Al, jx j ≤ cl for all l

THE BIAS OF TCP RENO AGAINST LONG ROUND TRIP TIMES If we use the previous anal-
ysis with the standard parameters used with TCP-Reno, we have ηi = 0.5 for all sources and (the
unit of data is the packet)

Ki = 1

With these values, the expected rate of change (right hand side in Equation (2.2)) is a decreasing
function of τi. Thus, the adaptation algorithm of TCP contains a negative bias against long round
trip times. More precisely, the weight given to source i is

√
2

τi
arctan

xiτi√
2

If xi is very small, then this is approximately equal to 2xi, independent of τi. For a very large xi,
it is approximately equal to

√
2Π

2τi
. Thus, the negative bias against very large round trip times is

important only in the cases where the rate allocation results into a large rate.

Note that the bias against long round trip times comes beyond and above the fact that, like with
proportional fairness, the adaptation algorithm gives less to sources using many resources. Con-
sider for example two sources with the same path, except for an access link which has a very large
propagation delay for the second source. TCP will give less throughput to the second one, though
both are using the same set of resources.

We can correct the bias of TCP against long round trip times by changing Ki. Remember that Ki
is such that the window wi is increased for every positive acknowledgement by Ki

wi
. Equation (2.2)

shows that we should let Ki be proportional to τ2
i . This is the modification proposed in [9] and

[13]. Within the limit of our analysis, this would eliminate the non-desired bias against long round
trip times. Note that, even with this form of fairness, connections using many hops are likely to
receive less throughput; but this is not because of a long round trip time.

If we compare the fairness of TCP to proportional fairness, we see that the weight given to xi is
bounded both as xi tends to 0 or to +∞. Thus, it gives more to smaller rates than proportional
fairness.

In summary, we have proven that:
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PROPOSITION 2.2.1. TCP tends to distribute rates so as to maximize the utility function JC defined
in Equation (2.4).

• If the window increase parameter is as with TCP Reno (Ki = 1 for all sources), then TCP
has a non-desired negative bias against long round trip times.
• If in contrast the bias is corrected (namely, the window wi is increased for every positive

acknowledgement by Kτ2
i

wi
), then the fairness of TCP is a variant of proportional fairness

which gives more to smaller rates.

Thus, TCP Reno distributes rates equally among connections having the same paths, but has a bias
against connections

1. with a large number of hops
2. or with a large round trip time

The first bias is a result of proportional fairness and can be considered to be justified; the second
bias is less justified and is indeed a problem for connections using links with large latency, eg.,
satellite links.

2.2.2 THE LOSS-THROUGHPUT FORMULA

A coarser, but more enlightening, analysis of the performance of TCP Reno leads to a simple rela-
tion between the loss probability experienced by a TCP connection and its throughput, assuming
the application has an infinite amount of data to send (i.e., the bottleneck is the network). We
expect the throughput of TCP to decrease with the loss probability; this is indeed captured by the
following result.

THEOREM 2.2.1 (TCP loss - throughput formula [19]). Consider a TCP Reno connection with
constant round trip time τ and constant packet size L; assume that the network is stationary, that
the transmission time is negligible compared to the round trip time, that losses are rare and that
the time spent in slow start or fast recovery is negligible; then the average throughput θ (in bits/s)
and the average packet loss ratio q are linked by the relation

θ≈ L
τ

C
√

q
(2.5)

with C = 1.22

PROOF: We consider that we can neglect the phases where twnd is different from cwnd and
we can thus consider that the connection follows the additive increase, multiplicative decrease
principle. We assume that the network is stationary; thus the connection window size cwnd os-
cillates as illustrated on Figure 2.8. The oscillation is made of cycles of duration T0. During one
cycle, cwnd grows until a maximum value W , then a loss is encountered, which reduces cwnd to
W
2 . Now from our assumptions, exactly a full window is sent per round trip time, thus the window

increases by one packet per round trip time, from where it follows that

T0 =
W
2

τ
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Figure 2.8: The evolution of cwnd under the assumptions in the proposition.

The sending rate is approximately W (t)
τ

. It follows also that the number of packets sent in one
cycle, N, is given by

N =
∫ T0

0

W (t)
τ

dt =
3
8

W 2

Now one packet is lost per cycle, so the average loss ratio is

q = 1/N

We can extract W from the above equations and obtain

W = 2

√
2
3

1
√

q

Now the average throughput is given by

θ =
(N−1)

T0
L =

(
1
q −1

)
L√

2
3

1√
qτ

If q is very small this can be approximated by

θ≈ L
τ

C
√

q

with C =
√

3
2 .

Formula 2.5 is taken as a basis for designing alternatives to TCP Reno. It can be shown that the for-
mula still holds, though with a slightly different constant, if more realistic modelling assumptions
are taken [7, 17].

2.3 OTHER MECHANISMS FOR TCP CONGESTION CONTROL

2.3.1 CUBIC

WHY CUBIC. The motivation of this variant is networks where the bandwidth-delay product is
very large, i.e., when both the round trip time and the bit-rate available to one connection are large
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(“Long Fat Networks”). Consider the typical saw-tooth behaviour of TCP (and AIMD) illustrated
in Figure 2.8. The available bit rate is b =WL/τ where τ is the round-trip time and L is the packet
length; also recall that the duration T0 of one oscillation is T0 =W/2τ. Thus

T0 =
bτ2

2L

For example, if the round-trip time is τ = 100 msec, the available bit rate is 10Mb/s and the packet
size is 1250 bytes, then the time T0 taken by one oscillation is equal to 5 sec, which is small. But
if the available bit rate becomes 10Gb/s, T0 becomes 1 h 23 mn ! In the latter case, the additive
increase is too slow and chances are that the connection is over before completing even a single
oscillation. TCP CUBIC attempts to be a replacement for TCP Reno that alleviates this problem
in long fat networks but behaves the same as TCP otherwise [11, 24].

MECHANISMS OF CUBIC. CUBIC keeps multiplicative decrease and slow start as with TCP
Reno, and keeps the same rules for exiting congestion avoidance (on a loss event) as we have seen
in Section 2.1. However, when a loss is detected by duplicate acknowledgements, the multiplica-
tive decrease factor is 0.7 instead of 0.5 (i.e., when a loss is detected by duplicate acknowledge-
ments, the congestion window is set to 0.7Wmax where Wmax is the value of the congestion window
just before the loss event). The smaller window reduction intends to reduce the amplitude of the
oscillations.

TCP Cubic modifies Congestion Control

Why increase TCP rate fast on LFNs

How TCP Cubic keeps the same slow start, congestion avoidance,

fast recovery phases as TCP Reno, but:

Multiplicative Decrease is 0.7 (instead of 0.5)

During congestion avoidance, the increase is not additive but cubic

Say congestion avoidance

is entered at time and let

value of cwnd when loss is

detected.

Let

with such that

Then the window increases like

until loss occurs again.

Units are data 1MSS; time 1s

27

Additive Increase ( Reno)

with RTT = 0.1 s

Cubic

Figure 2.9: The window increase with TCP CUBIC.

But the major difference introduced by CUBIC is the replacement of additive increase during
congestion avoidance phase. The linear growth during additive increase is replaced by a cubic
function, as illustrated in Figure 2.9. Specifically, CUBIC uses a function W (t) to compute the
congestion window at time t seconds after a loss event, given by

W (t) =Wmax +a(t−K)3 (2.6)
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where a is a constant and K is computed such that W (0) = 0.7Wmax. As illustrated in the figure, the
growth of the congestion window is concave (slower than linear) as long as Wmax is not attained,
and convex (faster than linear) after that point. Thus, CUBIC increases slowly until the value Wmax
is reached; at this value, the increase is the slowest. This is indeed a very safe behaviour, since
in stable network conditions, Wmax is the region where congestion is likely to start, If, in contrast,
the network has plenty of capacity when the congestion window reaches Wmax, then the window
increase past this point is convex, i.e. increases fast. This is what allows CUBIC to accelerate the
window growth in long fat networks.

However, for small values of Wmax and round-trip time, which occur in non long fat networks, it
can happen that W (t) is smaller than WAIMD(t), the value of the congestion window that would
be obtained with additive increase, multiplicative increase (Figure 2.10). Since CUBIC aims to
obtain as much throughput as TCP Reno, CUBIC sets the value of the congestion window during
the congestion avoidance phase to

WCUBIC(t) = max{W (t),WAIMD(t)} (2.7)

There is a small issue here. The parameters of AIMD should be adapted in order to account for the
multiplicative decrease factor of 0.7 instead of 0.5. Indeed, TCP Reno increases the window size
by 1 packet per round trip time in congestion avoidance and multiplies the window by 0.5 at a loss
event. Therefore, WAIMD(t) is not equal to the value of the congestion window with TCP Reno, but
to the value obtained by a hypothetical AIMD that multiplies the window by 0.7 at a loss event. In
order to have a similar behaviour as TCP Reno, this version of AIMD should increases the window
size by r < 1 packet per round-trip time during congestion avoidance, in order to compensate for
the smaller decrease. Specifically, we can determine r by requiring that the loss throughput formula
gives the same value for both cases. The loss throughput formula in Equation (2.5) was derived for
the case of TCP Reno; it can easily be modified to the case where the additive increase is r packets
per round-trip time and the decrease factor is β. We find, in this case, that Equation (2.5) should
be modified such that C is replaced by

Cr,β =

√
r(1+β)

2(1−β)
(2.8)

The case of TCP Reno corresponds to r = 1,β = 0.5 and gives C1,0.5 =
√

3
2 as expected. For

CUBIC, β= 0.7 and the value of r should be such that Cr,0.7 =C1,0.5 which gives r = 31−β

1+β
= 0.529.

In summary, CUBIC uses Equation (2.7) with WAIMD(t)= 0.529 t
RT T . When CUBIC uses WAIMD(t),

i.e. when WAIMD(t)>W (t), we say that CUBIC is in the “TCP-friendly” region.

There is an additional mechanism called “Fast Convergence”, which is used to decrease the con-
gestion window size at a loss event more severely when Wmax is decreasing from one congestion
avoidance phase to the next, see [24] for details.

CUBIC’s increase of the congestion window is independent of the round-trip time, therefore we
might expect it to remove the undesired bias of TCP Reno against large round trip time. However,
as we see next, CUBIC does remove some of the bias against large round trip times, but not
entirely. This is because the sending rate is proportional to the window and the inverse of the
round-trip time: the increase in rate is slower for large round trip times.

ANALYSIS OF CUBIC. We can extend the loss throughput formula of TCP Reno in Theo-
rem 2.2.1 to the cubic increase function, using the same method.
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with RTT = 0.025 s

with RTT = 1 s

Figure 2.10: The window increase with TCP CUBIC. Left: RTT is small, the cubic window increase is less
than the additive increase and CUBIC uses WAIMD(t) . Right: the converse holds when RTT is large, and
CUBIC uses W (t).

THEOREM 2.3.1 (Loss - throughput formula with cubic increase). Consider a TCP connection
with constant round trip time τ and constant packet size L; assume that the network is stationary,
that the transmission time is negligible compared to the round trip time, that losses are rare and
that the time spent in slow start or fast recovery is negligible; also assume that when a loss event
occurs, the window is multiplied by a factor βW. Last, assume that the increase function is a cubic
function, given by

W (t) =Wmax +a(t−K)3 (2.9)

where Wmax is the window size just before the loss event that triggered a new congestion avoidance
phase, a is a constant and K is computed such that W (0) = βWmax.

Then the average throughput θ (in bits/s) and the average packet loss ratio q are linked by the
relation

θ≈ L
τ0.25

Ccubic
q0.75 (2.10)

with Ccubic =
(

a 3+β

4(1−β)

)0.25
.

PROOF: The proof is similar to the proof of Theorem 2.2.1. First observe that, with the condi-
tions in the theorem, the window increase is always in the concave phase and the window size is
periodic with period K. Let W be the max window size. The number of packets sent in one period
is

N =
1
τ

∫ K

0

(
W +a(t−K)3)dt =

1
τ

(
WK−a

K4

4

)
The function W (t) satisfies W (0) = βW hence, after some algebra:

W =
a

1−β
K3
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Combining with the previous equation gives

N =
1
τ

αK4 with α = a
3+β

4(1−β)

There is one loss event per period of duration K hence the loss probability is q = 1/N. Thus

K =
τ

1
4

(αq)
1
4

N−1 packets are successfully sent every K seconds hence the throughput is

θ = L
N−1

K
≈ L

N
K

=
L
q
× (αq)

1
4

τ
1
4

=
Lα

1
4

τ
1
4 q

3
4

This theorem can be used to obtain a very coarse loss-throughput formula for CUBIC. First, using
the values a = 0.4 and β = 0.7 we find Ccubic = 1.054. Second, observe that CUBIC’s window
increase does not use the cubic function W (t) but is linear when CUBIC operates in the TCP-
friendly region; in particular, CUBIC’s throughput is at least that of TCP Reno, which, according
to Equation (2.5), is L

τ

1.22√
q . An approximate formula is thus

θCUBIC ≈max
{

L
τ

1.22
√

q
,

L
τ0.25

1.054
q0.75

}
Cubic’s Other Bells and Whistles

Cubic’s Loss throughput formula

in MSS per second.

Cubic’s formula is same as Reno

for small RTTs and small BW delay

products.

Other Cubic details

computation uses more complex mechanism called

“fast convergence”

see Latest IETF Cubic RFC Internet Draft

or http://elixir.free electrons.com/linux/latest/source/net/ipv4/tcp_cubic.c
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RTT = 12.5 ms
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Figure 2.11: The throughput of CUBIC, as predicted by Equation (2.10), as a function of the loss probability,
for exponentially increasing values of the round-trip time. The red parallel lines (in log-log scale) represent
the throughput of TCP Reno. The throughput of CUBIC is given by the blue line down to the point where it
crosses the red line.

This formula is a bit coarse in that it ignores mixed cases, where CUBIC spends part of its time
in the TCP friendly region, part in the concave region. This is visible in the knee of every curve
in Figure 2.11, which occurs at the point where the max in Equation (2.10) goes from one branch
to the other. At such points the formula is not accurate. As with TCP Reno, the throughput of
CUBIC decreases with the round trip time; however, for large round trip times, the dependency is
less pronounced.
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2.3.2 ACTIVE QUEUE MANAGEMENT

THE BUFFERBLOAT SYNDROM. This is a non desirable side-effect of using loss as congestion
indication. Consider, for example, a scenario where a number of sources share a bottleneck link
and use loss based congestion control (such as TCP Reno or CUBIC). Assume sources increase
their window size more or less simultaneously. Figure 2.12 shows the evolution of the rate at
which every source delivers packets to destination and of the round trip times. At the beginning,
when windows are small, the rate is limited by the window and is equal to the window divided
by round trip time; in this regime there is hardly any queuing and the round-trip time is constant
equal to RT Tmin. As windows increase, the sum of source rates attains the link capacity (point A
on Figure 2.12) and queuing is still small. At this point, since the buffer is very large, sources do
not experience any loss and continue to increase their windows, up to point B. From point A to
point B the queuing delay and hence the queuing delay increase, and the rate of delivery of packets
to the destination remains the same, as it is determined by the bottleneck link. At point B the link
buffer fills up; beyond point B, the link buffer starts to overflow, sources experience losses and the
window (in average) does not increase any more.
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Figure 2.12: Operating point of congestion control when there is a single bottleneck link and the buffer is
very large. Adapted from [5].

Point B is where loss-based congestion control operates in steady state for this scenario: there,
the large link buffer is constantly oscillating from almost full to full and the round trip time is
large. The buffer is not well utilized since it is constantly very full, which translates into large
round trip times. In contrast, it would be better to operate around point A: there, the delivery
rate is the same but the round trip time is much less. This discussion illustrates that, with loss-
based congestion control, large buffers might be harmful. However, large buffers are needed for
bursty traffic and do help avoid losses when there are temporary overloads due to bursts, not due
to sustained congestion.

RANDOM EARLY DETECTION (RED). The root cause of buffer bloat is that the congestion in-
dicator is packet drop, which occurs only when buffers are full (“tail drop”). A mitigation method,
called “active queue management”, is therefore to drop packets in a network buffer well before the
buffer is full. It replaces tail drop by an intelligent admission decision for every incoming packet,
based on a local algorithm. The algorithm uses a estimator of the long term load, or queue length;
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Figure 2.13: Target drop probability as a function of average queue length, as used by RED

in contrast, tail drop bases the dropping decision on the instantaneous buffer occupancy only. The
most widespread algorithm is ‘Random Early Detection” (RED) [3], which works as follows.

• For every incoming packet, an estimator avg of the average queue length is computed. It is
updated at every packet arrival, using exponential smoothing:

avg := a * measured queue length + (1 - a) * avg

where a is the smoothing parameter, between 0 and 1.
• The incoming packet is randomly dropped, according to:

if avg < th-min accept the packet
else if th-min < avg < th-max drop packet

with probability p explained below
else if th-max <= avg drop the packet

where th-min and th-max are thresholds on the buffer content. By default, data is
counted in packets.

The drop probability p is computed in two steps. First, the target drop probability q is computed by
using the function of avg, shown on Figure 2.13, which, for avg between th-min and th-max,
is equal to

q = max-p * (avg - th-min) / (th-max - th-min)

Second, the uniformization procedure is applied, as described now. We could simply take p := q.
This would create packet drop events such that the interval between packet drops would tend
to be geometrically distributed (assuming q varies slowly). The designers of RED decided to
have smoother than geometric drops. Specifically, they would like that this interval is uniformly
distributed over {1,2, ..., 1

q}, assuming that 1
q is integer.

This can be achieved using the hazard rate of the uniform distribution, which we introduce now.
Let T be the random variable equal to the packet drop interval, i.e. T = 1 if the first packet
following the previous drop is also dropped. The hazard rate p(k) of T is the probability that a
packet is dropped, given that there were k−1 packets since the previous packet drop occurred, i.e.
p(k) = P(T = k|T ≥ k). If T has a geometric distribution, p(k) is independent of k. In contrast,
if T is uniformly distributed between 0 and a, then p(k) = 1

a−k+1 , so that p(k) increases when
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k increases from 1 to a and p(a) = 1. Furthermore, it can easily be shown that if we want drop
packets such that the interval between packet drops has a specific distribution, it is sufficient to
record the number k elapsed since the last packet drop and to drop a packet with probability p(k).
This is why RED computes p by letting

p = q/(1 - nb-packets * q)

where nb-packets is the number of packets accepted since the last drop.

When RED is used with proper tuning of its parameters, bufferbloat can be reduced: large buffers
are used to absorb bursts but in average are not very full. Another effect is that long-lived flows
experience a drop probability which depends only on the average amount of traffic present in the
network, not on short term traffic fluctuations.

Last, a modified version of RED can be used to provide differentiated drop probabilities: a provider
may modify the computed value of p in order to give larger drop probabilities to some flows, e.g. in
order to give preference to its internal video streaming flows over external flows. This non neutral
behaviour is against the original ideas of the Internet, but is technically possible and probably
in-use today.

2.3.3 EXPLICIT CONGESTION NOTIFICATION

The Internet uses packet drops as the negative feedback signal for end-to-end congestion control.
Losses have a negative impact on the delay performance of TCP as the lost packets need to be
retransmitted. A more friendly mechanism is to use an explicit congestion signal, as was originally
done with Jain’s “Decbit”. In the Internet, this is called Explicit Congestion Notification (ECN).

Explicit Congestion

Notification (ECN)
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Figure 2.14: ECN uses a combination of fields in the IP and TCP headers

ECN works with TCP and uses a combination of fields in the IP and TCP headers. With ECN,
when a router experiences congestion, it marks a “Congestion Experienced” bit in the IP header
(red bars in Figure 2.14). A TCP destination that sees such a mark in received packet sets the
ECN Echo (ECE) flag in the TCP header of packets sent in the reverse direction (red crosses in
Figure 2.14). When a TCP source receives a packet with the ECE flag from the reverse direction,
it performs multiplicative decrease (e.g. reduces the window by 0.5 for TCP Reno, by 0.7 for
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CUBIC). The source then sets the Congestion Window Reduced (CWR) flag in the TCP headers.
The receiver continues to set the ECE flag until it receives a packet with CWR set. The effect is
that multiplicative decrease is applied only once per window of data (typically, multiple packets
are received with ECE set inside one window of data).

ECN requires an active queue management such as RED to decide when to mark a packet with
Congestion Experienced: instead of dropping a packet with the probability computed by RED, it
marks it. If all parameters are properly set, a network with only ECN flows can avoid dropping
any packet due to congestion in router buffers. This considerably increases the delay performance
of every source.

An ECN-capable router needs to known whether a TCP source responds to ECN or not; if not, the
router should drop a packet instead of marking it since otherwise the source will not react. This is
achieved by using a bit in the IP header to indicate whether a source does support ECN or not; to
avoid misconfigurations or frauds, it is combined with a “Nonce Sum” mechanism (see RFC 3540
for details).

2.3.4 DATA CENTER TCP

Data Center TCP (DCTCP) is a variant of TCP congestion control that is adapted to the TCP
traffic seen in data centers. There, typically, there is a coexistence of many short flows with low
latencies (user queries, consensus protocols) and jumbo flows, i.e., with huge volume (backups,
data base synchronization). One issue is the throughput performance of jumbo flows. In order
to avoid packet losses, ECN is used; a remaining issue is the oscillations of the window due to
the multiplicative decrease present in TCP Reno or CUBIC, which occurs for every congestion
indication received (Note that for the conditions in a data center, where round-trip time is of the
order of 10 microseconds, CUBIC behaves as TCP Reno). As illustrated in Figure 2.8, if W is the
window size at which congestion occurs, the actual window oscillates between 0.5W and W (for
TCP Reno) and is thus equal to 0.75W in average. The goal of DCTCP is to make the average
window size very close to W .

To this end, DCTCP modifies TCP Reno as follows:

• ECN must be used. A DCTCP source monitors the probability of congestion. In order to
do this, the behaviour of ECN is modified such that a TCP receiver marks TCP acknowl-
edgements with ECE flags in proportion to the number of received packets with Congestion
Experienced marks. The receiver estimates the congestion probability as the proportion of
acknowledgement packets with ECE flags. This differs from standard ECN behaviour, where
feedback is a single bit of information per round trip time.
• When there is some non zero probability of congestion q, the multiplicative decrease factor

is
βDCTCP =

(
1− q

2

)
It follows that if there is little congestion (q is small) then the window reduction is small, much
smaller than 0.5.

It follows that DCTCP competes unfairly with other TCPs; it cannot be deployed outside data
centers (or other controlled environments). Inside data centers, care must be given to separate the
DCTCP flows (i.e. the internal flows) from other flows. This can be done with class based queuing,
as we discuss later.
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2.4 TCP FRIENDLY APPLICATIONS

It can no longer be assumed that the bulk of long lived flows on the Internet is controlled by TCP
only: some applications such as videoconferencing often use UDP as they have stringent delay
requirements. Other applications use QUIC, an application layer framework that runs on top of
UDP and replaces TCP (and the secure socket layer).

The solution which is advocated by the IETF is that all TCP/IP applications which produce long
lived flows should mimic the behaviour of a TCP source. We say that such applications are “TCP
friendly”. In other words, all applications, except short transactions, should behave, from a traffic
point of view, as a TCP source. For applications that use QUIC this is simple, as QUIC uses packet
numbering and acknowledgements and reproduces the same congestion control features as TCP.

But for applications that do not use acknowledgements, how can TCP friendliness be defined ?
One solution is the TCP-Friendly Rate Control protocol [8], which works as follows.

1. the application determines its sending rate using an adaptive algorithm;
2. the applications is able to provide feedback in the form of amount of lost packets; the loss

ratio is the feedback provided to the adaptive algorithm;
3. in average, the sending rate should be the same as for a TCP Reno connection experiencing

the same average loss ratio. This is typically achieved by using the loss-throughput formula
in Equation (2.5).

There are many possible ways to implement an adaptive algorithm satisfying the above require-
ments. This can be achieved only very approximately; for more details on equation based rate
control, see [26].

TCP friendly applications often use the so-called “Real Time transport Protocol” (RTP). RTP is
not a transport protocol like TCP; rather, it defines a number of common data formats used by
multimedia application. RTP comprises a set of control messages, forming the so called RTP
Control Protocol (RTCP). It is in RTCP that feedback about packet loss ratio is given. Then it is
up to the application to implement a TCP friendly rate adaptation algorithm.

2.5 CLASS BASED QUEUING

In general, all flows compete in the Internet using the congestion control method of TCP (or are
TCP-friendly). In controlled environments (e.g. a data center, a smart grid, a TV distribution
network, a cellular network) the competition can be modified by using per-class queuing.

With per class queuing, routers classify packets (using an access list) and every class is guaranteed
a minimum rate – classes may exceed the guaranteed rate by borrowing from other classes if there
is spare capacity. This is enforced in routers by implementing one dedicated queues for every
class; the arbitration between classes is performed by a scheduler which implements some form of
weighted fair queuing. With weighted fair queuing, every class, say i, at this router, is allocated a
weight wi > 0 and the scheduler serves packets on an outgoing link in proportion of the weights.
As a result, class i is guaranteed to receive a long-term rate equal to ri = c qi

∑i q j
, where c is the bit

rate of the outgoing link and the summation is over all classes that share this link. For a concrete
example of scheduler, see Deficit Round Robin [25]. If class i is using less than its guaranteed rate
ri, the unused capacity is available to other classes, also in proportion to their weights.
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Figure 2.15: A Network with Per-Class Queuing.

Figure 2.15 illustrates a typical use of per-class queuing. Class 1 is for traffic sent by sensors at
a constant rate; it is not congestion controlled and thus could cause congestion collapse. This is
avoided here by allocating a sufficient rate to class 1 in every router, during a procedure called
“traffic engineering”. Class 2 is ordinary TCP/IP traffic, which is congestion controlled. It is also
allocated a rate at every router. The rate at which sources of class 2 may send depends on the state
of other sources in classes 1 and 2. Assume for example that the sources are exactly as shown on
the figure. The two TCP connections share the available capacity, which is 9 Mb/s on the leftmost
link and 8 Mb/s on the other links. If their RTTs are identical, each of these TCP connections
will achieve a rate of 4 Mb/s. This illustrates how the rate that is allocated to class 1, but is not
entirely used, is made available to class 2. Observe that class 2 is guaranteed a rate of 7.5 Mb/s.
In normal operation, it obtains more; in contrast, if there is a failure in some of the class 1 devices
that causes them to send more traffic than they normally should, class 2 is guaranteed to receive at
least 7.5 Mb/s in total: the schedulers achieve isolation of the classes.

2.6 SUMMARY

1. Congestion control in the Internet is performed primarily by TCP, using the principles of
Additive Increase, Multiplicative Decrease.

2. Congestion control in the internet provides a form of fairness close to proportional fairness,
but with a non-desired bias against long round trip times.

3. The historical version of congestion control was introduced in TCP-Reno. Its loss-throughput
formula maps the packet loss probability to the achieved rate.

4. Many variants of TCP congestion control exist. CUBIC is one of them, it replaces the linear
window increase by a cubic function in long fat networks.

5. With Explicit Congestion Notification, routers signal losses to TCP sources without dropping
packets.

6. RED is a mechanism in routers to drop packets before buffers get full. It avoids buffer to fill
up unnecessarily when the traffic load is high. A variant of it can also be used to compute
the congestion signal sent by routers when ECN is used.

7. Data Center TCP replaces the constant multiplicative decrease factor by a factor that depends
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on an estimation of the loss or congestion probability. It is more aggressive than regular TCP
(is not TCP-friendly) and is typically deployed in closed environments.

8. Non TCP applications that send large amounts of data should be TCP-friendly, i.e. not send
more than TCP would. This can be achieved by mimicking TCP or by controlling the rate
and enforce TCP Reno’s loss throughput formula.

9. Per-class queuing is used in closed environments to support non TCP-friendly traffic.
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